
DOI:10.1109/JSEN.2014.2301938 IEEE Sensors Journal

St
Distributed Agent-based Computing in Materi-
al-Embedded Sensor Network Systems with the

Agent-on-Chip Architecture
Stefan Bosse

Working Group Robotics, ISIS Sensorial Materials Scientific Centre, Germany
Abstract

Distributed material-embedded systems like sensor
networks integrated in sensorial materials require
new data processing and communication architec-
tures. Reliability and robustness of the entire hetero-
geneous environment in the presence of node, sensor,
link, data processing, and communication failures
must be offered, especially concerning limited ser-
vice of material-embedded systems after manufac-
turing. In this work multi-agent systems with state
based mobile agents are used for computing in unre-
liable mesh-like networks of nodes, usually consist-
ing of a single microchip, introducing a novel design
approach for reliable distributed and parallel data
processing on embedded systems with static resourc-
es. An advanced high-level synthesis approach is
used to map the agent behaviour to multi-agent sys-
tems implementable entirely on microchip-level sup-
porting Agent-On-Chip processing architectures
(AoC). The agent behaviour, interaction, and mobil-
ity are fully integrated on the microchip using a re-
configurable pipelined communicating process
architecture implemented with finite-state machines
and register-transfer logic. The agent processing ar-
chitecture is related to Petri Net token processing. A
reconfiguration mechanism of the agent processing
system achieves some degree of agent adaptation and
algorithmic selection . The agent behaviour, interac-
tion, and mobility features are modelled and speci-
fied with an activity-based agent behaviour
programming language (AAPL). Agent interaction
and communication is provided by a simple tuple-
space database implemented on node level and sig-
nals providing remote inter-node level communica-
tion and interaction.

I. INTRODUCTION AND OVERVIEW

Embedded systems required for sensorial perception and
structural monitoring (perceptive networks), used, for ex-
ample in Cyber-Physical-Systems (CPS) and Structural
Health Monitoring (SHM) [6], perform the monitoring and
control of complex physical processes using applications
running on dedicated execution platforms in a resource-con-
strained manner and with real-time processing constraints.
Trends emerging recently in engineering and micro-system
applications such as the development of sensorial materials
[16] show a growing demand for autonomous networks of
miniaturized smart sensors and actuators embedded in tech-
nical structures [6] (see Fig. 1). To reduce the impact of such
embedded sensorial systems on mechanical structure prop-
erties, single microchip sensor nodes (in mm3 range) are
preferred. Real-time constraints require parallel data pro-

cessing usually not provided by microcontrollers. Hence
with increasing miniaturization and node density, new de-
centralized network and data processing architectures are re-
quired. Multi-agent systems (MAS) can be used for a
decentralized and self-organizing approach of data process-
ing in a distributed system like a sensor network [2], en-
abling the mapping of distributed raw sensor data to
condensed information, for example based on pattern recog-
nition [5]. In [2], the agent-based architecture considers sen-
sors as devices used by an upper layer of controller agents.
Agents are organized according to roles related to the differ-
ent aspects to integrate, mainly sensor management, com-
munication and data processing. This organization isolates
largely and decouples the data management from the chang-
ing network, while encouraging reuse of solutions. Multi-
agent system-based structural health monitoring technolo-
gies are used to deal with high-density and different kinds
of sensors in reliable monitoring of large scale engineering
structures [5]. In [19] and [20], agents are deployed for dis-
tributed sensing and power management in wireless sensor
networks, but still using embedded system nodes not suit-
able for material integration.
Material-embedded data processing systems usually consist
of single microchip nodes connected either wired in mesh-
like networks [6] or wireless using ad-hoc networks [8] with
limited energy supply and processing resources. But tradi-
tionally, mobile agents are processed on generic program-
controlled computer architectures using virtual machines
[7][8][19][20], which usually cannot easily be reduced to
single microchip level like they are required in sensorial
materials. Furthermore, agents are treated with abstract
heavy-weighted knowledge-based models, not entirely
matching distributed data processing in sensor networks. In
[3], a multi-agent system is used for advanced image pro-
cessing making profit from the inherent parallel execution
model of agents.
Application specific digital logic hardware design has ad-
vantages compared to program controlled microcontroller
approaches concerning power consumption, performance,
and chip resources by exploiting parallel data processing
(covered by the agent model) with lower clock frequencies
and enhanced performance [10].
There are actually four major issues related to the scaling of
traditional software-based multi-agents systems to micro-
chip level and their design:
• limited static processing, storage, and communication re-

University of Bremen, Department of Mathematics & Computer Science,
efan Bosse - 1 - 2014

DOI:10.1109/JSEN.2014.2301938 IEEE Sensors Journal

St
sources, real-time processing,

• unreliable communication,

• suitable simplified programming models and processing
architectures offering hardware designs with finite state
machines (FSM) and resource sharing for parallel agent
execution, and

• a generic high-level synthesis design approach.

Microchip level implementations of multi-agent systems
were originally proposed for low level tasks, for example in
[12] using agents to negotiate network resources and for
high-level tasks using agents to support human beings in
ambient-intelligence environments [15]. The first work im-
plements the agent behaviour directly in hardware, the sec-
ond uses still a (configurable) microcontroller approach with
optimized parallel computational blocks providing instruc-
tion set extension. A more general and reconfigurable imple-
mentation of agents on microchip level is reported in [1],
providing a closed-loop design flow especially focussing on
communication and interaction, though still assuming and
applying to program controlled data processing machines
and architectures. Hardware implementations of multi-agent
systems are still limited to single or a few and non-mobile
agents ([1][21])
In this work, an advanced high-level synthesis approach is
introduced to map the agent behaviour of multi-agent sys-
tems on microchip-level with an Agent-On-Chip processing
architecture (AoC). The agent behaviour, interaction, and
mobility are fully integrated on the microchip using a recon-
figurable pipelined communicating process architecture im-
plemented with finite-state machines and register-transfer
logic. This architecture supports parallel agent execution
with a resource shared pipeline approach. In this approach,
the agent processing is comparable to Petri Net token pro-
cessing. A reconfiguration mechanism of the agent process-
ing system achieves some kind of agent adaptation and
algorithmic section based on environmental changes like
partial hardware or inter-connect failures or based on learn-
ing and improved knowledge base.
The agent behaviour, interaction, and mobility features are

modelled and specified with an activity-based agent behav-
iour programming language (AAPL). The activity-graph
based agent model is attractive due to the proximity to the fi-
nite-state machine model, which simplifies the hardware im-
plementation. With this AAPL a high-level agent compiler is
able to synthesize a hardware model on Register-Transfer
Level (RTL, VHDL), alternatively a software model (C, ML),
or a simulation model (XML) suitable to simulate a multi-
agent system using the SeSAm simulator framework [9].
Agent interaction and communication are provided firstly by
a simple tuple-space database implemented on each node
providing access and sharing of local data, and secondly by
signals able to propagate in the network (like messages) pre-
ferred for fast and light-weighted remote inter-node level
communication and interaction. To enable dynamic adapta-
tion of the agent behaviour at run-time, the agent processing
architecture implementing the agent behaviour can be
(re)configured by agents by modifying the transitional net-
work.
Traditionally agent programs are interpreted, leading to a
significant decrease in performance. In the approach pre-
sented here the agent processing platform can directly be im-
plemented in s tandalone hardware nodes without
intermediate processing levels and without the necessity of
an operating system, but still enabling software implementa-
tions that can be embedded in applications.
There is related work concerning agent programming lan-
guages and processing architectures, like APRIL [14] provid-
ing tuple-space like agent communication, and widely used
FIPA, ACL, and KQGML [11] focusing on high-level knowl-
edge representation and exchange. All those approaches rep-
resent communication and information on complex and
abstract level not fully suited for the synthesis of low-re-
source data processing systems in distributed loosely cou-
pled networks, especially in sensor networks, in contrast to
the proposed AAPL approach, simple enough to enable
hardware design synthesis, but powerful enough to model
the agent behaviour of complex distributed systems, which
is demonstrated in the following case study.

Fig. 1. Sensorial Materials embedded in robots providing perception information of external applied load forces or
internal structure load.
efan Bosse - 2 - 2014

DOI:10.1109/JSEN.2014.2301938 IEEE Sensors Journal

St
Though the imperative programming model is quite simple
and closer to a traditional PL it can be used as a common
source and intermediate representation for different agent
processing platform implementations: hardware (HW), soft-
ware (SW), and simulation (SIM).
What is novel compared to other approaches?
• Reliability and reactivity provided by the autonomy of

mobile state-based agents and reconfiguration.

• Agent mobility and interaction by using tuple-space da-
tabases and global signal propagation aid solving data
distribution and synchronization issues in distributed
systems design, and tuple spaces represent agent belief.

• One common agent programming language and process-
ing architecture enables the synthesis of standalone par-
al le l hardware implementat ions , a l ternat ively
standalone software implementations, and behavioural
simulation models, enabling the design and test of large-
scale heterogeneous systems.

• AAPL provides powerful statements for computation and
agent control with static resources.

• A token-based pipelined multi-process agent processing
architecture suitable for hardware platforms with Regis-
ter-Transfer Level Logic offering optimized computa-
tional resources and speed.

• Improved scaling in large network applications com-
pared with full or semi centralized and pure message
based processing architectures.

II. FIELDS OF APPLICATION: SENSORIAL MATERIALS

Sensorial Materials are equipped with material-embedded
high miniaturized distributed sensor networks performing
load monitoring or environmental perception [16], shown in
principle in Fig. 1. These embedded sensor networks consist
of nodes equipped with sensor signal electronics and digital
logic performing computation and communication. Option-

ally there are material-embedded energy sources (energy
harvester) supplying the nodes locally.
Fig. 2 shows a prototype of a Sensorial Material using intel-
ligent sensor networks. Each autonomous network node is
connected with up to four neighbours and strain-gauge sen-
sors mounted on a rubber sheet, altogether equipped with
nine bi-axial strain-gauge sensors placed at a distance of 70
mm. The Sensorial Material was used to retrieve load infor-
mation about the sheet (applied by external forces) by using
advanced machine learning methods from a small set of un-
calibrated sensors with unknown electro-mechanical model
still providing high spatial resolution compared with the dis-
tance of the sensors to each other.
Fig. 3 shows the usage of such material in an intersection el-
ement of a robot arm manipulator providing external envi-
ronmental perception required for robot control. The
proposed robot manipulator [17] consists of actors (joint
drives) and intersection elements with integrated smart sen-
sor networks. Distributed data processing is provided by
mobile agents. The agent behaviour is implemented with
SoC designs on hardware-level. The intersection element
connects two joint actors with a rigid double-pipe construc-
tion, which is surrounded by two opposite placed load sensi-
tive skins (bent rubber plate), equipped each with four
strain-gauge sensor pairs (bi-axially aligned). Each sensor
pair is connected to a sensor node providing parallel data
processing, agent behaviour implementation, and communi-
cation/networking. All sensor nodes are arranged in a mesh-
like network connected with serial point-to-point links.
Communication is established by a smart and robust routing
protocol.

III. STATE-BASED AGENTS AND THE AGENT PROGRAM-

MING LANGUAGE APL

Initially, a sensor network is a collection of independent
computing nodes. Interaction between nodes is required to
manage and distribute data and to compute information. One
common interaction model is the state-based mobile agent.

Fig. 2. Prototype of a Sensorial Material using intelligent sensor networks.
efan Bosse - 3 - 2014

DOI:10.1109/JSEN.2014.2301938 IEEE Sensors Journal

St
Fig. 3. Robot arm manipulator intersection element equipped with smart sensor networks providing perception infor-
mation of external applied load forces based on preliminary work with flat rubber plate.

The behaviour of a state-based agent can be easily modelled
with a finite-state machine completely implementable with
register-transfer logic (RTL) on microchip level easing high-
level synthesis and the exploitation of concurrency required
for material-embedded real-time data processing. The im-
plementation of mobile multi-agent systems for resource
constrained embedded systems with a focus on microchip
level is a complex design challenge. High-level agent pro-
gramming languages can aid to solve this design issue.
Though there are already several agent modelling, interac-
tion, and communication languages, they are not fully suit-
able to carry out multi-agent systems on microchip level.
For this purpose, the Agent Programming Language AAPL
was designed to enable the optimized design of state-based
agents and microchip scaled processing dealing with limited
static resources. This language consists of generic impera-
tive and computational statements and a type system derived
from a subset of the Modula-3 language, allowing subrange
types required for hardware synthesis, and agent specific
statements to specifying the behaviour, mobility, and inter-
action of agents. This technology-independent programming
model can be directly synthesized to hardware, alternatively
to software and simulation model targets without modifica-
tion.
The agent behaviour is partitioned and modelled with an ac-
tivity graph, with activities (representing the control state of
the agent) and conditional transitions enabling activities.
Activities provide sequential execution of procedural data
processing statements. An activity is activated by a condi-
tional transition depending on the evaluation of agent data
(conditional transition), or using unconditional transitions.
An agent belongs to a specific parameterized agent class
AC, specifying local agent data (only visible for the agent it-
self), types, signals, activities, signal handlers, and transi-
tions, shown in principle in Fig. 4.
New agents of a specific class can be created at runtime by

agents using the new AC(v1,v2,..) statement returning a node
unique agent identifier. An agent can create multiple living
copies of itself with a fork mechanism, creating child agents
of the same class with inherited data and control state but
with different parameter initialization, done by using the
fork(v1,v2,..) statement. Agents can be destroyed by using
the kill(ID) statement.
Statements inside an activity are processed sequentially and
consist of data assignments (x := ε) operating on agent’s pri-
vate data, control flow statements (conditional branches and
loops), and special agent control and interaction statements,
summarized in Def.1 .
Agent interaction and synchronization is provided by a tu-
ple-space database server available on each node. An agent
can store an n-dimensional data tuple (v1,v2,..) in the data-
base by using the out(v1,v2,..) statement (commonly the first
value is treated like a key). A data tuple can be removed or
read from the database by using the in(v1,p2?,v3,..) or
rd(v1,p2?,v3,..) statements with a pattern template based on
a set of formal (variable,?) and actual (constant) parameters.
These operations block the agent processing until a match-
ing tuple was found/stored in the database. These simple op-
erations solve the mutual exclusion problem in concurrent
systems easily. Only agents processed on the same network
node can exchange data this way.
The existence of a tuple can be checked by using the exist?
function or with atomic test-and-read behaviour using the
try_in/rd functions. A tuple with a limited lifetime (a mark-
ing) can be stored in the database by using the mark state-
ment. Tuples with exhausted lifetime are removed
automatically by a garbage collector. Tuples matching a spe-
cific pattern can be removed with the rm statement.
Remote light-weighted interaction between agents is provid-
ed by signals with optional parameters, implementing a re-
mote-procedure call interface.
efan Bosse - 4 - 2014

DOI:10.1109/JSEN.2014.2301938 IEEE Sensors Journal

St
Fig. 4. Agent behaviour programming level with activities and transitions (AAPL programming level, left); agent
class model organizing activities and transitions in graphs (middle); agent instantiation, processing, and interaction
on the network node level (right).

A signal can be raised by an agent using the send(ID,S,V)
statement specifying the ID of the target agent (which must
be created by the sending agent), the signal name S, and an
optional argument value V propagated with the signal. The
receiving agent must provide a signal handler (like an activ-
ity) to handle signals (asynchronously). Alternatively, a sig-
nal can be sent to a group of agents belonging to the same
class AC within a bounded region using the broad-
cast(AC,DX,DY,S,V) statement.
Migration of agents to a neighbour node (by preserving the
local data and processing state) is performed by an agent us-
ing the moveto(DIR) statement, assuming the arrangement
of network nodes in a mesh- or cube-like network. To test if
a neighbour node is reachable (testing connection liveli-
ness), the link?(DIR) statement returning a boolean result
can be used.
Within activities agents can change the transitional network
(initially specified in the transition section) by changing, de-
leting, or adding (conditional) transitions using the transi-
tionΞ(S1,S2,cond) statements (with Ξ=’+’:add, ’-’: remove,
and ’*’: change transition).
The usage of the programming language is illustrated in
more detail in the following case study.

Def. 1. Summary of the AAPL Language (.. x .. means x is
part of an expression ε, and ; terminates procedural state-
ments)

Agent Class Definition
 agent class (arguments) = definitions end;
Activity Definition
 activity name = statements end;
Data Statements
 var x,y,z:type;
 x := ε(variable,value,constant);
Conditional Statements
 if cond then statements else statements end;
 case ε of | v1 -> statements | .. end;
Loop Statements
 for i := range do statements end;
 while cond do statements end;
Transition Network Definition
 transitions = transitions end;
 a1 -> a2: cond ;
Tuple Database Statements

 out(v1,v2,..); .. exist?(v1,?,..) ..
 in(v1,x1?,v2,x2?,...); rd(v1,x1?,v2,x2?,...);
 try_in(timeout,v1,..); try_rd(timeout,v1,..);
 mark(timeout,v1,v2,..); rm(v1,?,..);
Signals
 signal S:datatype;
 handler S(x) = statements end;
 send(ID,S,v); reply(S,v);
 broadcast(AC,DX,DY,S,v);
 timer+(timeout,S); timer-(S); sleep; wakeup;
Exceptions
 exception E; raise E;
 try statements except E -> statements end;
Mobility, Creation, and Reproduction
 moveto(direction);
 .. link?(direction) ..
 id := new class (arguments);
 id := fork(arguments);
 kill(id);
Reconfiguration
 transition+(a1,a2,cond);transition*(a1,a2,cond);
 transition-(a1,a2);

IV. AGENT-ON-CHIP: THE AGENT PROCESSING ARCHI-

TECTURE AND SYNTHESIS

The agent processing architecture required at each network
node must implement different agent classes and must be
scalable to the microchip level to enable material-integrated
embedded system design, and represent a central design is-
sue for new the Agent-on-Chip data processing approach,
further focussing on parallel agent processing and optimized
resource sharing.
Activity Processing
In this work the agent behaviour is implemented with a re-
configurable pipelined communicating process model de-
rived from the Communicating Sequential Process model
(CSP) proposed by Hoare (1985). The set of activities {Ai}
is mapped on a set of sequential processes {Pi} executed
concurrently. The set of transitions {Ti} is mapped on a set
of synchronous queues {Qi} and transition selectors {Si}
providing inter-activity-process communication, shown in
Fig. 5. Agents are represented by tokens (natural numbers
equal to the agent identifier, unique on each node), which
are transferred by the queues between activity processes de-
efan Bosse - 5 - 2014

IEEE Sensors JournalDOI:10.1109/JSEN.2014.2301938

St
pending on the specified transition conditions. This multi-
process model is directly mappable to RTL hardware and
software implementations. Each process Pi is mapped to a fi-
nite state machine FSMi controlling process execution and a
register-transfer data path. Local agent data is stored in a re-
gion of a memory module assigned to each individual agent.
There is only one incoming transition queue for each process
consuming tokens, performing processing, and finally pass-
ing tokens to outgoing queues, which can depend on condi-
tional expressions. There are computational and IO/event
based activity statements. The latter ones can block the
agent processing until an event occurs (for example, the
availability of a data tuple in the database). Blocking state-
ments {sj,i} of an activity Ai are assigned to separate inter-
mediate IO processes {Pi,j} handling only IO events or
additional post computations, as shown on the bottom of
Fig. 5.
Agents in different activity states can be processed concur-
rently. Thus, activity processes that are shared by several
agents may not block. To prevent blocking of IO-event
based processes (for example waiting for data), not-ready
processes pass the agent token back to the input queue. An
IO process either processes unprocessed agent tokens or
waits for the happening of events, controlled by the agent
manager.
The pipeline architecture offers advanced resource sharing
and concurrent processing of agents in different activity
states. Only one activity process chain implementation for
each agent class is required on each node, in contrast to pre-
vious programmable architectures [4] providing only limited
concurrency and resource sharing.

Resources
A rough estimation of the resource requirements R for the
hardware implementation of the agent processing architec-
ture supporting a set of N different agent classes {ACi} is
shown in Eq. 1, with each class having Mi activities, Ti tran-
sitions, Di data cells with a resource weight wdata, and wact,i,j
for each activity, and a maximal number of managed agents
for each class Nagents,i. The tuple space database requires
wts,i*Si resources for each supported n-dimensional space.
The Cx values are control parts independent of the above
values.

(Eq. 1)

For example, assuming simplified four agent classes with N
=16 agents for each class, each class requires D=512 bit
memory, M=10 (wact=500) , T=16, three tuple spaces (1,2,3)
with S=32 (and w1=32,w2=64,w3=128) entries each, and

wdata=4, wqueue=150, wsched=60, wcond=50, wact= 500,
Csched=5000, Ccomm=10000, Cts=1000 (based on experi-
mental experiences, all w and C values in eq. gates units),
which results in 189400 eq. gates for the HW implementa-
tion.
Power/Efficiency
Agents are often heavy-weighted processing entities inter-
preted by software-based virtual machines. In contrast, in
the proposed RTL architecture the agent behaviour is
mapped on finite state machines and a data path with data
word length scaling, offering minimized power- and re-
source requirements, both in the control and data path. Most
activity statements are executed by the platform in one or
two clock cycles! All commonly administrative parts like
the agent manager, communication protocols, and the tuple-
space database commonly part of an operating system are
implemented in hardware, offering advanced computational
power enabling low-frequency and low-power designs, well
suited for energy-autonomous systems. Transition network
changes can be performed within a few clock cycles.

Agent Manager
The agent manager provides a node level interface for
agents, and it is responsible for the creation, control (includ-
ing signals, events, and transition network configuration),
and migration of agents with network connectivity, imple-
menting a main part of an operating system. The agent man-
ager controls the tuple-space database server and signal
events required for IO/event based activity processes.
The agent manager uses agent tables and caches to store in-
formation about created, migrated, and passed through
agents (req., for ex., for signal propagation), see Fig. 6.
Migration
Migration of agents between nodes incorporates only the
transfer of the agent state consisting of data (the content of
body variables) and the control state (a pointer to the next
activity to be executed after migration and the transition
configuration) of the agent together with a unique global
agent identifier (extending the local ID with the agent class
and the relative displacement of its root node) encapsulated
in messages with low overhead, shown in Fig. 6. This ap-
proach minimizes network load and energy consumption
significantly. Migration of simple agents results in a mes-
sage size between 100-1000 bits. The agent start-up time af-
ter the data transfer is low (about some hundred clock
cycles).
Transition Network
A switched transition network allows the reconfiguration of
the activity transitions at runtime. Though the possible re-
configuration and the conditional expressions must be
known at compile time (static resource constraint!), a recon-
figuration can release the use of some activity processes and
enhances the utilization for concurrent processing of other
agents of the same class. The transition network is imple-
mented with tables in case of the HW implementation, and
with dynamic lists in case of the SW and SIM implementa-
tions. Agent activity transition configurations can be inherit-
ed by child agents.

R w N D

C w M w

data i
agents

i
i AC

sched sched i
i AC

sched

; ()

() max(

+

+ +
∈

∈

∑
∑ NN

C w w T w

i
agents

comm queue cond i
i AC

i j
act

j ATi i

)

()() (),

+

+ + +
∈ ∈
∑ ∑

∈∈

∈

∑
∑+

AC

ts i
ts

i
i TS

C w S()
2014- 6 -efan Bosse

DOI:10.1109/JSEN.2014.2301938 IEEE Sensors Journal

St
Fig. 5. Mapping of the agent behaviour programming level to the agent processing architecture with pipelined com-
municating sequential processes and the final mapping on RT level. Agent tokens are passed by queues and condition-
al selectors from an outgoing to an incoming activity process.

Fig. 6. Agent migration and signal propagation using mes-
sage transfers (LAH: Local Agent Handler, LID: Local
Agent Identifier, AC: Agent Class, LIVE: agent life, STATE:
agent state, DX and DY: spatial displacement vector, SID:
Signal Identifier, SIG: pending signal ID)

Tuple-Space Database
Each n-dimensional tuple-space TSn (storing n-ary tuples) is
implemented with fixed size tables in case of the hardware
implementation, and with dynamic lists in the case of the
software and simulation model implementations. The access
of each tuple-space is handled independently. Concurrent
access of agents is mutually exclusive. The HW implemen-
tation implicates further type constraints, which must be

known at design time (e.g. limitation of integer ranges) pro-
vided by sub-range-typing in the AAPL specification.
Signals
Signals must be processed asynchronously. Therefore, agent
signal handlers are implemented with a separate activity pro-
cess pipeline, one for each signal handler. For each pending
agent signal, the agent manage injects an agent token in the
respective handler process pipeline independent of the pro-
cessing state of the agent. Remote signals are processed by
the agent manager, which encapsulate signals in messages
sent to the appropriate target node and agent, shown in Fig.
6.

Synthesis
The database driven synthesis flow is illustrated in Fig 7.
The AAPL program is parsed and mapped to an abstract syn-
tax tree (AST). The first compiler stage analyzes, checks,
and optimizes the agent specification AST. The second stage
is divided into three parts: an activity to process mapper, a
transition to queue mapper, a transition (pipelined process-
ing architecture) network builder, and a message generator
supporting agent and signal migration. There are different
supported backends (HW/SW/SIM). The high-level hard-
ware description enables the SoC synthesis using the Con-
Pro high-level synthesis framework [10], which maps
activity processes on finite state machines and the RT datap-
ath level.
efan Bosse - 7 - 2014

DOI:10.1109/JSEN.2014.2301938 IEEE Sensors Journal

St
Fig. 7. Simplified Agent-on-Chip High-level Synthesis flow producing different (independent) output targets.

The ConPro programming model reflects an extended CSP,
which provides atomic guarded actions on shared resources
access. Each process is implemented with a FSM and a RT
datapath. Furthermore, a software description (C), which
can be embedded in application programs, and a simulation
model usable for MAS simulation using the SeSAm simula-
tor [9] can be derived.
All implementation models (HW/SW/SIM) provide equal
functional behaviour, and only differ in their timing, re-
source requirements, and execution environments.

Simulation
In addition to real hardware-implemented agent processing
platforms there is the capability of the simulation of the
agent behaviour, mobility, and interaction on a functional
level using the SeSAm simulation framework [9], which of-
fers a platform for the modelling, simulation, and visualiza-
tion of mobile multi-agent systems employed in a two-
dimensional world. The behaviour of agents is modelled
with activity graphs (specifying the agent reasoning ma-
chine) close to the AAPL model. But some special transfor-
mations must be applied to enable the simulation: 1. AAPL
activities (IO/event-based) can block the agent processing
until an event occurs. Blocking agent behaviour is not pro-
vided directly by SeSAm. ⇒ activity decomposition 2. The
transition network can change during run-time ⇒ use of a
transition scheduler 3. The handling of concurrent asynchro-
nous signals used in AAPL for inter-agent communication
cannot be established with the generic activity processing in
SeSAm ⇒ use of a signal scheduler.

V. CASE STUDY: STRUCTURAL HEALTH MONITORING

A small example implementing a distributed feature detec-
tion in an incomplete and unreliable mesh-like sensor net-
work using mobile agents should demonstrate the suitability
of the proposed agent processing approach. The sensor net-
work consists of nodes with each node attached to a sensor
(e.g. Strain-gauge). The nodes can be embedded in a me-
chanical structure, for example, used in a robot arm. The
goal of the MAS is to find extended correlated regions of in-
creased sensor intensity (compared to the neighbourhood)
due to mechanical distortion resulting from externally ap-
plied load forces. A distributed directed diffusion behaviour
and self-organization (see Fig. 8) is used, derived from the

image feature extraction approach proposed in [18]. Single
sporadic sensor activities not correlated with the surround-
ing neighbourhood should be distinguished from an extend-
ed correlated region, which is the feature to be detected.
There are three different agent classes: an exploration, a
node agent, and a deliver agent. A node agent is immobile
and is primarily responsible for sensor measurement and ob-
servation.
The feature detection is performed by the mobile explora-
tion agent that supports two main different behaviours: dif-
fusion and reproduction. The diffusion behaviour is used to
move within a region, mainly limited by the lifetime of the
agent, and to detect the feature, here the region with in-
creased mechanical distortion (more precisely the edge of
such an area). The detection of the feature enables the repro-
duction behaviour that induces the agent to stay at the cur-
rent node, setting a feature marking and sending out more
exploration agents in the neighbourhood. The local stimuli
H(i,j) for an exploration agent to stay at a specific node with
the coordinates (i,j) is given by eq. 2.

(Eq. 2)

The calculation of H at the current location (i,j) of the agent
requires the sensor values within the square area (the region
of interest ROI) R around this location. If a sensor value
S(i+s,j+t) with i,j ∈ {-R,..,R} is similar to the value S at the
current position (diff. is smaller than the parameter δ), H is
incremented by one.
If the H value is within a parameterized interval Δ=[ε0,ε1],
the exploration agent has detected the feature and will stay at
the current node to reproduce new exploration agents send to
the neighbourhood. If H is outside this interval, the agent
will migrate to a neighbour different node and restarts explo-
ration (diffusion).
The calculation of H is performed by a distributed calcula-
tion of partial sum terms by sending out child explorer
agents to the neighbourhood, which itself can send out more
agents until the boundary of the region R is reached. Each
child agent returns to its origin node and hand over the par-
tial sum term to his parent agent, shown in Fig. 8. Because a

H i j S i s j t S i j

S

t R

R

s R

R

(,) { (,) (,) }

:

= + + − ≤
=−=−
∑∑ δ

 Sensor Signal Sttrength

 Square Region around (i,j)R :
efan Bosse - 8 - 2014

DOI:10.1109/JSEN.2014.2301938 IEEE Sensors Journal

St
node in the region R can be visited by more than one child
agent, the first agent reaching a node sets a marking MARK.
If another agent finds this marking, it will immediately re-
turn to the parent. This multi-path visiting has the advantage
of an increased probability of reaching nodes with missing
(non operating) communication links (see Fig. 8). .A deliver
agent, created by the node agent, finally delivers explora-
tion results to interested nodes by using directed diffusion
approaches, not discussed here.
Ex. 1 shows the AAPL behaviour specification for the explo-
ration agent. The agent behaviour is partitioned in nine ac-
tivities and two signal handlers. If a sensor node agent
observes an increased sensor value, it creates a new explorer
agent that enters the start activity (lines 8-19). Each explorer
agent is initialized on creation with two parameter argu-
ments: a direction and a radius value. The first agent created
by the sensor node has no specific direction. Child agents
with a specific direction move to the respective node (line
11). In line 18, the transition move → percept _neighbour is
created (all existing transitions starting from activity move
are deleted first). The start activity transitions to the percept
activity, which creates child agents (lines 44-46). Forked
agents inherit all parent data and the current transition net-
work configuration. For this, in line 56 the transition per-
cept → move is established (and inherited), but after
forking reseted in lines 61-62 for the parent agent behaviour,
which await the return of all child agents and a decision for
behaviour selection (reproduce/diffuse).
The child agents enter the move (lines 20-25) activity after
forking and will migrate in the specific direction to the
neighbour node. Finally, the percept_neighbour activity is
reached, which performs the local calculation (line 55) if
there was no marking found, and finally stores the partial re-
sult in the tuple database. Further child agents are sent out if
the boundary of the ROI is still not reached.
Otherwise the agent goes back to his origin (parent) by en-
tering the goback activity performing the migration (lines
66-68), previously updating its h value from the tuple data-

base. If the returning agent has arrived, it will deliver its h
value by adding it to the local H value stored in the database
(lines 71-72) and raising the WAKEUP signal to notify the
parent, which causes the entering of the parent’s signal han-
dler (lines 77-79).
If there is enough input and all child agents had returned (or
a time-out has occurred handled by the signal handler TIM-
EOUT, lines 80-81), the exploration agent either enters the
diffuse or reproduce activity.
Diffusion and reproduction is limited by a lifetime (de-
creased each time an explorer agent is replicated or on mi-
gration, lines 27 & 36).
Synthesis and Simulation
The agent behaviour specification was synthesized to a digi-
tal logic hardware implementation (single SoC) and a simu-
lation model with equal functional behaviour suitable for the
MAS simulator environment SeSAm [9]. The suitability of
the self-organizing approach for feature detection was justi-
fied by simulation results shown in Fig. 9 for two different
sensor network situations, each consisting of a 10 by 10 net-
work with autonomous sensor nodes. Each node is connect-
ed with up to four neighbours. One situation creates
significant sensor values arranged in a bounded cluster re-
gion, for example, caused my mechanical forces applied to
the structure, and the other situation creates significant sen-
sor values scattered around the network without any correla-
tion, for example, caused by noisy or damaged sensors.
In the first clustered situation, the explorer agents are capa-
ble to detect the bounded region feature for the two separat-
ed regions (indicated by the change of the agent colour to
black). Due to the reproduction-behaviour there are several
agents at one location, shown in the right agent density con-
tour plot. In the second unclustered situation, the explorer
agents did not find the feature and vanish due to their limited
lifetime behaviour.
The feature-search is controlled by a set of parameters: {δ,
ε0, ε1, lifetime, search radius R}.

Fig. 8. Distributed feature extraction in an unreliable and incomplete mesh network (with missing links) by using dis-
tributed agents with directed diffusion migration and self-organization behaviour.
efan Bosse - 9 - 2014

DOI:10.1109/JSEN.2014.2301938 IEEE Sensors Journal

St
The synthesis results of the hardware implementation for
one sensor node are shown in Tab. 1, which are in accor-
dance with the resource estimation from Sec. IV. The AAPL
specification was compiled to the ConPro programming
model and synthesized to an RTL implementation creating
VHDL models. Two different target technologies were syn-
thesized by using gate-level synthesis: 1. FPGA, Xilinx
XC3S1000 device target using Xilinx ISE 9.2 software, 2.
ASIC standard cell LIS10K library using the Synopsys De-
sign Compiler software. The agent processing architecture
consisted of the activity process chain for the explorer and

node agent, the agent manager, the tuple-space database
(supporting two- and three-dimensional tuples with integer
type values), and the communication unit.
This case study showed firstly the suitability of the multi-
agent-based approach for feature detection in large scale
sensor networks, for example used in real-time structural
health monitoring for sensor data filtering, and secondly the
suitability of the proposed agent modelling and synthesis ap-
proach for single System-on-Chip microchip-level imple-
mentations.

Fig. 9. Simulation results for two different sensor network situations (left: start, middle: exploration, right: final re-
sult situation). Top row: sensor activity within clusters, bottom row: sensor activity scattered over the network.

Table 1. High-level and gate-level synthesis results for one sensor node

 Ex. 1. Excerpt of the AAPL specification for agent class Explore implementing a feature extraction agent with distributed
directed diffusion and self-organizing behaviour.
1 type keys = {ADC,FEATURE,H,MARK}; direction = {..}
2 signal WAKEUP,TIMEOUT; val RADIUS := 4; ...
3 agent explore(dir: direction,
4 radius: integer[1..16]) =
5 var dx,dy:integer[-100..100];
6 live:integer[0..15];
7 var* s: integer[0..1023];
8 activity start =
9 dx := 0; dy := 0; h:= 0;

10 if dir <> ORIGIN then
11 moveto(dir);
12 case dir of
13 | NORTH -> backdir := SOUTH
14 | SOUTH ->
15 else
16 live := MAXLIVE; backdir := ORIGIN
17 group := random(integer[0..1023]);
18 transition*(move,percept_neighbour);

AAPL & CP Synthesis FPGA/XC3S1000 Synthesis ASIC LSI10K Synthesis

AAPL Source: 200 lines LUTs (4-input): 10826 (70 %) Eq. NAND Gates: 309502
CP Source: 1615 lines FLIP-FLOPs: 2415 (15 %) Comb. Gates: 95354
VHDL Source: 37171 lines BLOCK RAMs: 19 (80 %) Non-comb. Gates: 214148
CP Processes: 28 Max. Clock: 85 MHz Chip area (180 nm): 7 mm2

CP Queues: 14

R
O

W

COLUMN

10

1

10

3

0

1

2

E
xp

l.
A

ge
nt

s

1

efan Bosse - 10 - 2014

DOI:10.1109/JSEN.2014.2301938 IEEE Sensors Journal

St
19 out(H,id(self),0); rd(ADC,s0?)
20 activity move =
21 case dir of
22 | NORTH -> backdir := SOUTH; incr(dy)
23 | SOUTH -> backdir := NORTH; decr(dy)
24 | WEST ->
25 moveto(dir)
26 activity diffuse =
27 decr(live); rm(H,id(self),?);
28 if live > 0 then
29 case backdir of
30 | NORTH -> dir :=
31 random({SOUTH,EAST,WEST})
32 | SOUTH ->
33 else kill(ME)
34 activity reproduce =
35 var n:integer;
36 decr(live);
37 if live > 0 then
38 for nextdir in direction do
39 if nextdir <> backdir and link?(nextdir) then
40 fork(nextdir,radius)
41 transition*(reproduce,stay)
42 activity percept = -- Master perception --
43 enoughinput := 0; transition*(percept,move);
44 for nextdir in direction do
45 if nextdir <> backdir and link?(nextdir) then
46 incr(enoughinput); fork(nextdir,radius)
47 transition*(percept,diffuse, (h<ETAMIN or
48 h > ETAMAX) and enoughinput < 1);
49 transition+(percept,reproduce, h>=ETAMIN and
50 h <= ETAMAX and enoughinput < 1);
51 timer+(TMO,TIMEOUT)
52 activity percept_neighbour =
53 if not exist?(MARK,group) then
54 mark(TMO,MARK,group); enoughinput := 0;
55 rd(ADC,s?); out(H,id(self), calc());
56 transition*(percept_neighbour,move);
57 for nextdir in direction do
58 if nextdir <> backdir and inbound(nextdir) and
59 link?(nextdir) then
60 incr(enoughinput); fork(nextdir,radius)
61 transition*(percept_neighbour,goback,
62 enoughinput < 1);
63 timer+(TMO,TIMEOUT)
64 else
65 transition*(percept_neighbour,goback) end
66 activity goback =
67 h := 0; try_in(0,H,id(self),h?);
68 moveto(backdir);
69 activity deliver =
70 var v:integer;
71 in(H,id(parent),v?); out(H,id(parent),h+v);
72 send(id(parent),WAKEUP); kill(ME)
73 activity stay =
74 rm(H,id(self),?);
75 n :=0; try_in(0,FEATURE,n?);
76 out(FEATURE,n+1)
77 handler WAKEUP =
78 decr(enoughinput); try_rd(0,H,id(self),h?);
79 if enoughinput < 1 then timer-(TIMEOUT) end
80 handler TIMEOUT =
81 enoughinput := 0; again := true
82 function calc():integer =

83 if abs(s-s0) <= DELTA then return 1
84 else return 0
85 function inbound(nextdir:direction):bool =
86 case nextdir of
87 | NORTH -> return (dy < RADIUS)
88 | SOUTH ->
89 transitions =
90 start -> percept; percept -> move;
91 move -> percept_neighbour;

VI. CONCLUSION

A novel design approach using mobile agents for reliable
distributed and parallel data processing in low-resource net-
works with embedded hardware nodes was introduced. A
multi-agent programming language AAPL provides compu-
tational statements and statements for agent creation, inheri-
tance, mobil i ty, interaction, reconfiguration, and
information exchange, based on the agent behaviour parti-
tioning in an activity graph, which can be directly synthe-
sized to the microchip level by using a high-level synthesis
approach and finite state machines on RT level.
Agent interaction is delivered by a simple but powerful tuple
database approach. The tuple-space is a central part of the
agent’s belief, and contributes to the decision making pro-
cess of agents. Agents can be created dynamically at runtime
by other agents.
This proposed agent processing architecture implements a
resource and speed optimized virtual machine consisting of
a reconfigurable pipelined communicating process chain.
Only one virtual machine is required for each agent class,
which should be supported on a particular network node.
The pipeline approach enables concurrent agent processing
and advanced resource sharing. Replication of activity pro-
cesses can increase the computational performance signifi-
cantly, for example, based on timed Petri-Net analysis.
Unique identification of agents does not require unique ab-
solute node identifiers or network addresses, a prerequisite
for loosely coupled and dynamic networks (due to failures,
reconfiguration, or expansion).
Reconfiguration of the activity transition network supported
on programming level offers agent behaviour adaptation at
runtime based on the data state of the agent resulting from
environmental changes like partial hardware or interconnect
failures or based on learning and improved knowledge base.
The transitional configuration can be inherited by child
agents. Finally, improved resource sharing for parallel pro-
cessing is offered.
A case study implementing a self-organizing multi-agent
system in a sensor network demonstrated the suitability of
the proposed programming model, processing architecture,
and synthesis approach. Migration of agents requires only
the transfer of the control and data space of an agent using
messages. The agent behaviour is fixed and bound to each
node. The high-level synthesis tool enables the synthesis of
different output models from a common programming
source, including hardware, software, and simulation mod-
els delivering an advanced design methodology for func-
tional testing.

VII. REFERENCES
efan Bosse - 11 - 2014

DOI:10.1109/JSEN.2014.2301938 IEEE Sensors Journal

St
[1] Y. Meng, An Agent-based Reconfigurable System-on-Chip
Architecture for Real-time Systems, in Proceeding ICESS
’05 Proceedings of the Second International Conference on
Embedded Software and Systems, 2005, pp. 166-173.

[2] M. Guijarro, R. Fuentes-fernández, and G. Pajares, A Multi-
Agent System Architecture for Sensor Networks, Multi-
Agent Systems - Modeling, Control, Programming, Simula-
tions and Applications, Dr. Faisal Alkhateeb (Ed.), ISBN:
978-953-307-174-9, InTech, 2011, DOI: 10.5772/14309.

[3] M. Lückenhaus and W. Eckstein, A Multi-Agent Based Sys-
tem for Parallel Image Processing, Proceedings of the In-
ternational Conference on Parallel and Distributed Methods
for Image Processing at SPIE's Annual Meeting, Proc. SPIE
3166, 1997

[4] S. Bosse, F. Pantke, Distributed computing and reliable
communication in sensor networks using multi-agent sys-
tems, Prod. Eng. Res. Devel., 2012, DOI 10.1007/s11740-
012-0420-8

[5] X. Zhao, S. Yuan, Z. Yu, W. Ye, J. Cao. (2008), Designing
strategy for multi-agent system based large structural
health monitoring, Expert Systems with Applications,
34(2), 1154–1168. doi:10.1016/j.eswa.2006.12.022

[6] F. Pantke, S.Bosse, D. Lehmhus, and M. Lawo, An Artificial
Intelligence Approach Towards Sensorial Materials, Future
Computing Conference, 2011

[7] H. Peine and T. Stolpmann, The Architecture of the Ara
Platform for Mobile Agents, MA '97 Proceedings of the
First International Workshop on Mobile Agents,Springer-
Verlag London, 1997

[8] A.I. Wang, C.F. Sørensen, and E. Indal., A Mobile Agent
Architecture for Heterogeneous Devices, Wireless and Op-
tical Communications, 2003

[9] F. Klügel, SeSAm: Visual Programming and Participatory
Simulation for Agent-Based Models, In: Multi-Agent Sys-
tems - Simulation and Applications, A. M. Uhrmacher, D.
Weyns (ed.), CRC Press, 2009

[10] S. Bosse, Hardware-Software-Co-Design of Parallel and
Distributed Systems Using a unique Behavioural Program-
ming and Multi-Process Model with High-Level Synthesis,
Proceedings of the SPIE Microtechnologies 2011 Confer-
ence, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Cir-
cuits and Systems

[11] S. Napagao, B. Auffarth, N. Ramirez, Agent Language
Analysis: 3-APL, 2007, (pp. 1-14), retrieved from http://
www-lehre.inf.uos.de/~bauffart/mas_3apl.pdf

[12] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, H.
Tenhunen, Agent-based on-chip network using efficient se-
lection method, 2011 IEEEIFIP 19th International Confer-
ence on VLSI and SystemonChip (pp. 284-289). IEEE.
doi:10.1109/VLSISoC.2011.6081593

[14] F. G. McCabe, K. L. Clark, APRIL - Agent Process Interac-
tion Language, 1995, (M. Wooldridge & N. R. Jennings,
Eds.) Intelligent Agents Theories Architectures and Lan-
guages LNAI volume 890. Springer-Verlag.

[15] I. del Campo, K. Basterretxea, J. Echanobe, G. Bosque, and
F. Doctor, A system-on-chip development of a neuro-fuzzy
embedded agent for ambient-intelligence environments.,
IEEE transactions on systems, man, and cybernetics. Part B,
Cybernetics : a publication of the IEEE Systems, Man, and
Cybernetics Society, vol. 42, no. 2, pp. 501-12, Apr. 2012.

[16] W. Lang, F. Jakobs, E. Tolstosheeva, H. Sturm, A. Ibragi-
mov, A. Kesel, D. Lehmhus, U. Dicke, From embedded
sensors to sensorial materials—The road to function scale
integration., Sensors and Actuators A: Physical, Volume

171, Issue 1, 2011
[17] S. Bosse, F. Pantke, S. Edelkamp, Robot Manipulator with

emergent Behaviour supported by a Smart Sensorial Mate-
rial and Agent Systems, Proceedings of the Smart Systems
Integration 2013, Amsterdam, 13.3. - 14.3.2013, NL

[18] J. Liu, Autonomous Agents and Multi-Agent Systems, World
Scientific Publishing, 2001 (ISBN 981-02-4282-4)

[19] C. Muldoon, G. O’Hare, M. O’Grady, R. Tyan. Agent mi-
gration and communication in WSNs, 2008. PDCAT 2008

[20] R. Tynan, D. Marsh, D. O’kane, G. O’Hare. Agents for
wireless sensor network power management, 2005. ICPP
2005 Workshops

[21] H. Naji, Creating an adaptive embedded system by applying
multi-agent techniques to reconfigurable hardware, Future
Generation Computer Systems, vol. 20, no. 6, pp. 1055–
1081, 2004.
efan Bosse - 12 - 2014

	I. Introduction and Overview
	II. Fields of Application: Sensorial Materials
	III. State-based Agents and the Agent Programming Language APL
	IV. Agent-on-Chip: The Agent Processing Architecture and Synthesis
	V. Case Study: Structural Health Monitoring
	VI. Conclusion
	VII. References

