ISBN: n.n.

Proc. of the SSI Conf. 2015

From the Internet-of-Things to Sensor Clouds - Unified Distributed
Computing in Heterogeneous Environments with Smart and Mobile
Multi-Agent Systems

Stefan Bosse, University of Bremen, Dept. of Mathematics & Computer Science,
28359 Bremen, Germany

Abstract: A novel and unified design approach for reliable distributed and parallel data
processing in large scale networks consisting of high- and of low-resource nodes using
mobile agents is introduced. This approach enables the development of sensor clouds of
the future integrated in daily use computing environments and the Internet. Agents can mi-
grate between different hardware and software platforms by migrating the program code of
the agent, embedding the state and the data of an agent, too. Agent mobility crossing dif-
ferent execution platforms, agent interaction by using tuple-space databases, and agent
code reconfiguration enable the design of reliable distributed sensor processing networks.

1. Introduction

Trends recently emerging in engineering and micro-system applications such as the
development of sensorial materials [1][2] show a growing demand for distributed
autonomous sensor networks of miniaturized low-power smart sensors embedded in
technical structures. Multi-agent systems (MAS) can be used for a decentralized and
self-organizing approach of data processing in a distributed system like a resource-
constrained sensor network (discussed in [4] and [5]), enabling smart and adaptive
distributed information extraction, for example, based on pattern recognition (e.g.,
referring [6] and [7]), by decomposing complex tasks in simpler cooperative agents. It
can be shown that MAS-based data processing approaches are scalable from generic
computer to single microchip level platforms which can aid the material-integration of
Structure Monitoring applications. Currently there are only few proposed agent pro-
cessing platforms which can be scaled to microchip level.

In [4] the agent-based architecture considers sensors as devices used by an upper
layer of controller agents. Agents are organized according to roles related to the differ-
ent aspects to integrate, mainly sensor management, communication and data
processing. This organization isolates largely and decouples the data management
from changing networks, while encouraging reuse of solutions.

The deployment of agents can overcome interface barriers and closes the gap aris-
ing between platforms and environments differing considerably in computational and
communication capabilities, enabling the integration of sensor networks in large-scale
world-wide-web (WWW) applications and providing Internet connectivity, shown in
Fig. 1. This is addressed by using a unified agent-based programming and interaction
model, independent of the underlying processing platform. For the proposed
advanced agent processing platform architecture there exist suitable hardware, soft-
ware, and simulation model implementations, which can be interconnected in
networks. They are compatible on the operational and execution level, thus, agents
can migrate between these different implementation platforms.

Agent mobility crossing different execution platforms and agent interaction by using
tuple-space databases and global signal propagation aid solving data distribution and
synchronization issues in the design of distributed sensor networks.

Stefan Bosse -1-

2015

ISBN: n.n. Proc. of the SSI Conf. 2015

3. Self-organizing agent systems with exploration, distribution, replication, and interval
voting behaviour based on feature marking are used to identify a region of interest
(RO, a collection of stimulated sensors) and to distinguish sensor failures (noise) from
correlated sensor activity within this ROI.

It is assumed that sensor nodes arranged in a two-dimensional grid network (as
shown in Fig. 4) providing spatially resolved and distributed sensing information of the
surrounding technical structure. The computational nodes arranged at the outside of
the network are further divided in pre-computation and the final computation nodes
(the four nodes located at the corners of the network). The pre-computational nodes
can be embedded PCs or single micro-chips, and the computational nodes can be
workstations or servers physically displaced from the material-embedded sensor net-
work. Only the inner sensor nodes are micro-chip platforms embedded in the technical
structure material, for example, using thinned silicon technologies.

The computation of the system response information requires basically the com-
plete sensor signal matrix S. In this approach presented here the elements of the
sensor matrix are only updated if a significant change of specific sensors occurred.
Only the four computational nodes at the corners store the complete sensor matrix
and perform the load computations (e.g., using inverse numeric or supervised
machine learning). The sensor processing uses both stationary (non-mobile) and
mobile agents carrying data, illustrated in Fig. 4 on the left side. There are two differ-
ent stationary (non-mobile) agents operating on each sensor node: the sampling
agent which collects sensor data, and the sensing agent, which pre-processes and
interprets the acquired sensor data. If the sensing agent detects a relevant change in
the sensor data, it sent out four mobile event agents, each in another direction. The
event agent carries the sensor data and delivers it to the pre-computation nodes at the
boundary of the sensor network. The Agent behaviour are specified in Def. 2.

Computational
Node

- Node Agent

Event Agent

o Explorer Agent

e Explorer Child Agent

e Processing Agent

B ink

Nodes

Precomputation Nodes

Figure 4. A sensor network deployed with explorer (X), event deliver (E), node (N), and
computational processing agents (P). The sensor network can contain missing or broken
links between neighbour nodes.

Stefan Bosse -7- 2015

ISBN: n.n. Proc. of the SSI Conf. 2015

Def.2. MAS Agent Behaviours for event-based sensor data processing

Event Agents. An event agent has a pre-defined path in the direction dir which is followed by the move
activity as long as there is connectivity to the next neighbour node in this direction. Normally the agent
travels to the outside of the network in the given direction by applying a normal routing strategy suc-
cessfully (goal: minimizing the distance). If it is not possible to migrate in the pre-defined direction, an
alternative path is chosen by using an opposite routing strategy, which chooses a path away from the
original destination (random walk) to bypass not connected nodes and missing communication links.
Using a relax routing strategy the agent is directed again to the original planned path. Making routing
decisions and migration are performed in a move activity of the agent, followed by a check activity
which collects sensor data from the current node and checks the destination node goal, and if reached
delivering the sensor values in a deliver activity.

Each pre-computation node stores a row or a column of the sensor matrix S. If their data changes,
the pre-computation nodes will send out two mobile distribution agents in opposite directions, delivering
a row or column of S to the final computation nodes, located at the edges of the sensor network.

This approach offers robustness in the case of link or node failures by smart and autonomous path

finding and redundancy.
Explorer Agents. The goal of the explorer agents is finding the outline of extended correlated regions
(ROI) of increased sensor stimuli which can be distinguished from the neighbourhood. The output is
used to trigger the event agents. Furthermore, faulty or noisy sensors which can disturb the further data
processing algorithms significantly should not delivered to the computational nodes.

An initial root explorer agent is instantiated by the sensing agent with an initial direction argument
ORIGIN. This explorer agent will read the local sensor values from the tuple database. The root agent
will send out explorer child agents to all connected neighbour nodes. These child agents compute a
partial term of the local stimuli H calculation by sending out additional explorer child agents until the
boundary of the ROI is reached. To avoid multiple visiting of a node by different child agents of the
same exploration group, a marking is set on each visited node (a tuple with a limited lifetime removed
by a garbage collector). If there is already a marking, an explorer child agent will go back immediately
to its parent agent node location and delivers the computed partial term h of H. An explorer or explorer
child agent that sent out additional child agents will wait (sleep) until all child agents have returned their
computation results or a time-out occurs. Data is exchanged between child and parent agents by using
the tuple-space database and synchronization (wake-up) is handled by using signals.

5. Case Study: A Material-integrated Load Monitoring Network

An example use-case should demonstrate the deployment of the introduced unified
agent model, agent interaction, and mobility of agent processes in an heterogeneous
network environment and technical structures equipped with sensor networks. Initially
unknown external forces acting on a mechanical structure lead to a deformation of the
material based on the internal forces, shown in Fig. 5.

A material-integrated active sensor network with strain-gauge sensors, electronics,
data processing, and communication, together with mobile agents is used to monitor
relevant sensor changes with the event-based information delivery behaviour, finally
distributing and pre-computing the sensor data according to the agent behaviour intro-
duced in Sec. 4. The unknown system response for an externally applied load L is
measured by the strain sensor stimuli response S, finally computing an approximation
of the response L’ using inverse numeric methods.

Inversion problems, in particular those with incomplete and noisy data, are usually
extremely ill-conditioned, meaning that small errors in the signals or the model lead to
huge errors in any solution gained by such a naive approach. Therefore, inverse
methods try to stabilize the inversion process using regularization techniques (Tik-

Stefan Bosse -8- 2015

ISBN: n.n. Proc. of the SSI Conf. 2015

honov, CG), performed off-line (details can be found in [3]) based on prior FEM
simulations of the structure under test finally calculating the inversion matrix, which is
required for the inverse computation of the load matrix from the sensor data matrix.

The Agent processing Platform nodes introduced in Sec. 2., which are capable of
executing Agent FORTH machine code programs, are implemented on SoC micro-
chip, in software, and in a simulation environment using the SeSAm Agent-Simulator,
all connected in a multi-domain network, shown in Fig. 5. together with the unified Big-
raph representation.

F,
) Technical Structure & F1 Technical Structure
Technical Structure Sensor Network With Load & Deformation
/ . = — = - yd =
~ —/ P T ,, Z g / ’\\\& R 7/—'*; E* > — —/
~ | L
Sensor Network &
On-line Data Processing o
Oftdine Data () Muti-Agent System ’ A Load stimui (?) ‘ L
Pmcessi(zg &LM ‘ ‘ @ Strain Reaction ‘ J
X v. /
€ Agent - v ‘ g Sensor Processing (@ ‘ S
=7 Sensor Node m— € o g
== Network Connection ' [E E Inverse Numeric 7
i L=T"(S L
Server Client User Mobile Client (S 0

Figure 5. Top: A Sensorial Material with a material-embedded sensor network connected
to a computational network, partitioning sensing and computation in on-line and off-line
domains. Agents can migrate between different networks and hosts (sensor nodes, com-
puters, servers, mobile devices). Bottom: Bigraph of the environment [sn/pn: Sensor/
Computational Node, cn: Communication Channel, N: Network, C: Computer, SIM: Agent
Simulator, MAT: Matlab]

6. Conclusion

A novel and unified design approach using mobile agents for reliable distributed and
parallel data processing in large scale networks consisting of high- and of low-
resource nodes can enable the development of sensor clouds of the future integrated
in daily use computing environments and the Internet. Agents can migrate between
different hardware and software platforms (they are compatible on the execution level)
by migrating the program code of the agent, embedding the state and the data of an

Stefan Bosse -9- 2015

ISBN: n.n. Proc. of the SSI Conf. 2015

agent, too. The AAPL programming language and Bigraph models are the main tools
for designing large scale and strong heterogeneous networks using MAS.

7. References

1. S. Bosse, Distributed Agent-based Computing in Material-Embedded Sensor Network Systems
with the Agent-on-Chip Architecture, IEEE Sensors Journal, DOl 10.1109/JSEN.2014.2301938

2. S. Bosse, Design of Material-integrated Distributed Data Processing Platforms with Mobile Multi-
Agent Systems in Heterogeneous Networks, ICAART 2014, DOI:10.5220/00048175006-90080

3. S. Bosse, A. Lechleiter, Structural Health and Load Monitoring with Material-embedded Sensor
Networks and Self-organizing Multi-Agent Systems, Procedia Technology, Elsevier, DOI:
10.1016/j.protcy.2014.09.039

4. M. Guijarro, R. Fuentes-fernandez, G. Pajares, A Multi-Agent System Architecture for Sensor
Networks, Multi-Agent Systems - Modeling, Control, Prog., Simulations and Applications, 2008.

5. A. Rogers, D. D. Corkill, N. R. Jennings, Agent Technologies for Sensor Networks, |IEEE Intelli-
gent Systems, vol. 24, no. 2, 2009.

6. X.Zhao, S. Yuan, Z.Yu, W. Ye, J. Cao, Designing strategy for multi-agent system based large
structural health monitoring, Expert Systems with Applications, 2008, 34(2), 1154—1168.
doi:10.1016/j.eswa.2006.12.022

7. J. Liu, Autonomous Agents and Multi-Agent Systems, World Scientific Publishing, 2001 (ISBN
981-02-4282-4)

8. R. Milner, The space and motion of communicating agents. Cambridge University Press, 2009.

9. R. Milner, Communicating and mobile systems: the n-calculus, Cambridge University Press,
Cambridge (1999)

10. L. Cardelli, A: Gordon, Mobile Ambients. Theoretical Computer Science, Special Issue on Coor-
dination 240(1), 177-213 (2000)

Stefan Bosse -10- 2015

	1. Introduction
	2. Mobile Multi-Agent Systems
	3. The Big Thing: Domains, Networks, and Mobile Agent Processing
	4. Robust Event-based Sensor Data Processing
	5. Case Study: A Material-integrated Load Monitoring Network
	6. Conclusion
	7. References

