
DOI 10.1007/s10586-018-02894-x Cluster Computing

Stef
Material-integrated Cluster Computing in Self-Adaptive Robotic
Materials using Mobile Multi-Agent Systems

Stefan Bosse1, Dirk Lehmhus2
1University of Koblenz-Landau, Faculty Computer Science, Koblenz, Germany

2Fraunhofer IFAM, Bremen, Germany

Abstract Recent trends like Internet-of-Things (IoT)
and Inernet-of-Everything (IoE) require new distributed
computing and communication approaches as size of inter-
connected devices moves from a cm3- to the sub-mm3-
scale. Technological advance behind size reduction will fa-
cilitate integration of networked computing on material
rather than structural level, requiring algorithmic and archi-
tectural scaling towards distributed computing. Associated
challenges are linked to use of low reliability, large scale
computer networks operating on low to very low resources
in robotic materials capable of performing cluster comput-
ing on micro-scale. Networks of this type need superior ro-
bustness to cope with harsh conditions of operation. These
can be provided by self-organization and –adaptivity. On
macro scale, robotic materials afford unified distributed data
processing models to allow their connection to smart envi-
ronments like IoT/IoE. The present study addresses these
challenges by applying mobile Multi-agent systems (MAS)
and an advanced JavaScript agent processing platform
(JAM), realizing self-adaptivity as feature of both data pro-
cessing and the mechanical system itself. The MAS’ task is
to solve a distributed optimization problem using a mechan-
ically adaptive robotic material in which stiffness is in-
creased via minimization of elastic energy. A practical
realization of this example necessitates environmental inter-
action and perception, demonstrated here via a reference ar-
chitecture employing a decentralized approach to control
local property change in service based on identification of
the loading situation. In robotic materials, such capabilities
can support actuation and/or lightweight design, and thus
sustainability.
Keywords: Pervasive Computing, Ubiquitous Computing, Agents,

Optimization, Material Informatics, Self-organizing and
self-adaptive systems

1 Introduction

Cluster computing is commonly related to large-scale
networks composed of powerful computers and servers con-
nected by reliable high-bandwidth interconnections and the
Internet. There is an ongoing trend to create big machines
providing high storage, memory, and CPU capacities to-
wards Cloud computing and data centers. This is the macro-
scale level of computing. But there is also an emerging mi-
cro-scale level of computing, using low-resource and minia-
turized computers towards the mm3 scale deployed in mate-
rial-integrated computer networks and the Internet-of-
Things [1]. The term material is related to the micro-size-
scale level (element size about mm3), and structures to the
meso-size-scale level (element size about cm3).

In the last decades there was a shift from passive single
sensors and centralized sensor data processing towards
large networks [2] of smart sensors equipped with Informa-
tion-Communication-Technologies (ICT) forming Sensori-

al Materials as one class of Material-Integrated Intelligent
Systems (MIIS) [3]. Furthermore, there was a significant in-
crease of the sensor density in sensor networks integrating
sensors and ICT in materials [3], used, e.g., for Structural
Health Monitoring (SHM) [4] or in smart textiles. Finally,
micro system technologies enable the integration of actua-
tion in materials creating Robotic Materials [5], e.g., using
thermoplastic actuators [6] to modify structures.

Robotic Materials are characterized by a tight coupling
of sensing, actuation, computation, and communication.
Data processing in Robotic Materials can be considered as
cluster computing on micro-scale level. Sensorial and Ro-
botic Materials are operating under harsh environmental
conditions requiring resilient behaviour, captured by the en-
tire design of the ICT architecture and distributed algo-
rithms.

Load-bearing structures are typically designed towards
relevant load cases known at design-time. New technolo-
gies enabling the design of structures that change material
properties in service in response to load change (i.e., using
robotic materials) could raise additional weight saving po-
tentials, extending the lifetime, and increasing operational
safety. Thus, self-adaptive Robotic Materials support light-
weight design and sustainability inspired by bionic design,
e.g., by a top-down approach based on the structure, load,
and function with similarity classification [7]. But still bion-
ic design has to consider specific load cases and perform
classification in advance, e.g., performed by the ELiSE de-
sign framework [8]. Examples of cross-sectorial and materi-
al-independent structural lightweight constructions propose
weight savings about 20% - 50% [9]. Our approach aims to
overcome this limitation.

Structures composed of simple and unreliable actuators
are difficult to control due to non-linearity and a lack of
physical models. One concern regarding active smart cellu-
lar structures is the correlated and self-organizing control of
cells' responses, and the underlying informational organiza-
tion providing robustness.

 Robustness and real-time capabilities require some kind
of self-organizing and self-adapting computational model
instead of the functional models commonly used (e.g., in
control theory).

The adaptation of mechanical actuated structures to
varying load situations based on external perception or pro-
prioception that is considered in this work can be treated as
an optimization problem that will be controlled in this work
by Multi-agent Systems.

The next section 2 outlines the general problem descrip-
tion of distributed computing in material-integrated ICT
systems and the novelty of this work.
an Bosse et al. - 1 - 2019

DOI 10.1007/s10586-018-02894-x Cluster Computing

Stef
Figure 1. Overview of the concepts fusioned in this work (lower
three levels are the deployment fields)

 Section 3 discusses data processing integrated in mate-
rials and structures from a technical point of view. Robotic
materials and the reference architecture used in this work is
described in Section 4. The optimization problem addressed
in this work is introduced in Section 5, and the MAS imple-
mentation is described in Section 6.Sections 7, 8, and 9 ad-
dresses the agent and simulation platform. Finally, sections
10 and 11show and evaluate a use-case study.

2 Problem description and contribution

An overview of the concepts addressed in this work is
shown in Fig. 1. Assuming large-scale sensor- and actuator
networks (i.e., sensorial and robotic materials) that are inte-
grated in materials (or microscopic structures), distributed
computing problems are solved by self-* Multi-agent Sys-
tems, finally performing distributed optimization (adapta-
tion of mechanical properties of a robotic material). The
four upper layers (green boxes) are addressed in this work.

The lower four layers are the platform and deployment
fields of the proposed distributed computing approach using
mobile agents, not addressed in this work.

Optimization problems are commonly solved mathemat-
ically and numerically [10][11]or treated as global problems
[6][12] that can only be solved by processing the entire sen-
sor data set in each solver iteration. But the transition to dis-
tributed approaches with local processing is necessary to
reach scaling of large systems in the future consisting of
Thousands and Millions of small perceptive and computa-
tional nodes (embedded computers). These tiny computa-

tional units are characterized by their low computational
power and data storage capacity.

This work addresses distributed information processing
integrated in materials and structures posing self-adaptivity
of the material using a MAS approach with algorithms
based on Multi-Phase Topology Optimization (MPTO)
[13] and simulated annealing, which can be considered as a
bionic structural optimization approach..

On the macro-scale level, agents and distributed agent-
based systems are already deployed successfully in hetero-
geneous large environments, e.g., production and manufac-
turing processes [14][15], facing adaptive manufacturing,
maintenance, evolvable assembly systems, quality control,
and energy management aspects, and in sensing applica-
tions, e.g., monitoring of mechanical structures and devices
[16]. Finally, the paradigm of industrial agents meeting the
requirements of modern industrial applications by integrat-
ing sensor networks was introduced in [33]. In the present
study, we show that agents can be deployed successfully on
the micro-scale level, too.

The central approach in this work focuses on mobile
agents solving an optimization problem by a divide-and-
conquer approach. They pose the ability to support mobile
reconfigurable code embedding the agent behaviour, the
agent data, the agent configuration, and the current agent
control state, finally encapsulated in a portable textual rep-
resentation.

In this work JavaScript code (AgentJS) is used and exe-
cuted by the JAM platform [17]. The code is capable of mi-
gration between nodes in the network required for autono-
mous distributed data processing. This approach requires
only a minimal Agent Processing Platform Service (APPS).
The AgentJS code can be directly executed by the underly-
ing JS VM (e.g., node.js, jxcore, JVM, webview for mobile
App. development, or spidermonkey used in browsers).

On the one hand, Robotic Materials provide internal and
external perception that can be used in a wide range of sens-
ing applications on the Internet (e.g., product life-cycle
management). Robotic Materials will be part of larger net-
works, i.e., the Internet-of-Things. On the other hand, Ro-
botic Materials can profit from environmental information,
e.g., collected by mobile devices and crowd sensing. There-
fore, these material-integrated computational networks
should be connected to a local Intranet or to the global In-
ternet (see Fig. 2, left side).

One of the major challenges in distributed sensing and
control systems is the derivation of meaningful information
from sensor data. Often the sensors of mobile consumer de-
vices (such as accelerometer, humidity, light, battery, tem-
perature, and location) suffer from a poor quality. Distribut-
ed sensor fusion can be applied to improve the statistical
significance of such sensor signals by collecting sensor data
in a region of interest from multiple devices. Fusion can
profit from Machine Learning (ML), which usually bases
on classification algorithms derived from supervised ma-
chine learning or pattern recognition using, e.g., self-orga-
nizing [2] and distributed multi-agent systems with less or
no a-priori knowledge of the environment.

���������	
��
����������������	
��
�������

�	���������������	�
�����������
����
���������
����
���������

�	���������������	�
�����������
����
���������
����
���������

�	��
��
 	�!
�"�

�	��
��
 	�!
�"�

�#����
��
 	�!
�"�

�#����
��
 	�!
�"�

�	��
�������
�$
�
��#�
%��	�����

�	��
�������
�$
�
��#�
%��	�����

%�������	�������	��%�������	�������	��

����������
�����
���&������������
�����
���&��

'��	��	��(�'��	��	��
��)&����
������*����
��	���

'��	��	��(�'��	��	��
��)&����
������*����
��	���

��	���+�
#	�����
+����
�����,�%-�./%�

��	���+�
#	�����
+����
�����,�%-�./%�
an Bosse et al. - 2 - 2019

DOI 10.1007/s10586-018-02894-x Cluster Computing

Stef
Figure 2. Unified distributed information processing in heterogeneous MIIS / IoT / Cloud environments with mobile agents using a
hybrid platform framework consisting of the JavaScript Agent Machine Platform (JAM) and the low-resource AgentFORTH machine
(AFVM)

The IoT, material-integrated ICT networks, mobile, and
Cloud environments differ significantly in terms of resourc-
es (computational power and data storage). The IoT and
mobile networks consist of a large number of low-resource
devices interacting with the real world and having strictly
limited storage capacities, energy, and computing power,
and the Cloud consists of large-scale computers with arbi-
trary and extensible computing power and storage capaci-
ties in a basically virtual world.

A unified and common data processing and communica-
tion methodology is required to merge the IoT with Cloud
environments seamlessly, which can be fulfilled by mobile
agent-based computing proposed in this work.

The scalability of complex ubiquitous applications using
such large-scale cloud-based and wide area distributed net-
works deals with systems deploying thousands up to a mil-
lion agents.

Considering such strong heterogeneous environments
with computers ranging from 1 MIPS computational power
and 1 MB RAM to 1 GIPS and 1GB RAM a hybrid dual-
platform approach have to be used for agent processing
(Fig. 2, right side).

Addressing the Internet, mobile networks and the IoT,
the JAM platform [17] is used offering agents directly im-
plemented in JavaScript (AgentJS) program code holding
the entire control and data state of an agent

Agent processing on very-low resource platforms is per-
formed with a stack-based processor approach (executing
AgentFORTH code) featuring hardware implementation and

advanced token-based agent process scheduling using the
AFVM platform [18].

Both program code models base on the same behaviour
and agent behaviour model (ATG/AAPL) and can be trans-
formed to each other. The agents themselves conform to the
mobile processes model introduced by Milner [19] ensuring
seamless agent mobility. The code can be modified by the
agent itself using code morphing techniques required for be-
haviour adaptation (directly supported by JavaScript Just-
in-time and Bytecode Compiler VM platforms).

This work adds to earlier work [20] the following exten-
sions and novelties:

• Distributed and decentralized solving of mechanical
optimization problems using different algorithms;

• Self-* Multi-agent System performing distributed opti-
mization in a robotic material providing self-adaptation
based on varying load situations and mechanical
defects;

• Reference architecture of a Robotic Material composed
of a mesh-grid network of agent processing platforms;

• Different enhanced distributed mechanical optimiza-
tion algorithms and their evaluation applied to robotic
materials that are used to meet mechanical constraints
under varying load and damage situations (e.g. holes);

• Multi-domain simulation with tight coupling of physi-
cal and computational agent models.

���������	�
��������

�������
� ������
������� �������������

��	

�

� ��� �����

	
������
���

������������������
��������

��	

������

������
�����

��
�����

�

�

�

 ���

�

�

�������������������
����������� �!���

"#������ ��������$

����� ��
������ %
�������

�

�

������

��

� �& �����

��

�

��

��

�� ��

�

��

� ��
��

������ '��(��)�
��
� ���������

���

�	

�
� ��������

���������� ��

��
���

�������

�	
��� ��

�������

�����

�������

��
� !"�#

 ��
����"�	

 ��
���$$

�
�
�

�
�
�� ��������

�

��

�

an Bosse et al. - 3 - 2019

DOI 10.1007/s10586-018-02894-x Cluster Computing

Stef
The next sections offer an introduction to Material-Inte-
grated Intelligent Systems and the Robotic Material refer-
ence architecture, followed by an introduction of the pro-
posed distributed optimization algorithms and their
implementation with MAS. Finally, an evaluation of the
distributed MAS optimization is performed by a multi-do-
main simulation (coupling physical and computational
models) of a JAM network embedded in a robotic material.

3 Material-integrated Intelligent Systems

Material-integrated intelligent systems feature materials
with embedded data processing, communication, sensors,
actuators, and energy supply. These materials can be classi-
fied in:

1. Sensorial Materials providing intrinsic or environ-
mental perception capabilities by coupling sens-
ing, computation, and communication.

2. Robotic Materials providing intelligent perception
and mechanical adaptation capabilities by coupling
sensing, actuation, computation, and communica-
tion.

3. Self-adaptive Robotic Materials providing a closed
control loop using perception to adapt the material/
structure to changing load situations or defects.

All three classes use large-scale autonomous distributed
networks with embedded systems characterized by low
power consumption, low data storage resources, and low
processing power. Commonly, the network nodes are self-
powered by using local energy storage and harvesting.

The main fields of application of Sensorial Materials are
Load and Structural Health Monitoring, the field of applica-
tion of robotic materials are mechanical adaptive structures.

Intelligence is provided on software level featuring self-
* capabilities. Adaptivity, reconfiguration, and healing in
the presence of technical failures (data processing, network-
ing, communication, low energy, sensor faults) are elemen-
tary features of resilient systems in safety-critical environ-
ments.

Load-bearing structures are typically designed towards
relevant load cases assuming static shape and fixed sets of
materials properties decided upon during design and materi-
als selection. New technologies enabling the design of
structures that could change local properties in service in re-
sponse to load change could raise additional weight saving
potentials, thus supporting lightweight design and sustain-
ability. Materials with such capabilities must necessarily be
composite in the sense of a heterogeneous build-up, exhibit-
ing, e.g., an architecture consisting of networks with numer-
ous active cells providing sensing, signal and data process-
ing, communication, and actuation/stimulation capability
[4] forming Robotic Materials and Structures [21]. One ex-
ample for such a material is a special class of polymers be-
ing capable to change their elasticity based on the influence
of optical, thermal, or electrical fields [5].

Although no specific technology assumptions were made
in this work, there are already micro-scale computers suit-
able for such material-integrated computing. An example is
the Micro MOTE M3 [37] providing about 1MIPS comput-
ing power and 4kB data memory with 0.1mm2 chip area
consuming less 100μW power. The FreeScale KL03 pro-
vides 50MIPS/2kB with 4mm2 chip area and 3mW power
consumption. Both microcontrollers base on ARM architec-
ture.

4 Robotic Material and Reference
Architecture

The reference architecture in this work consists of a
three-dimensional grid network of controller nodes with
physical and communication connectivity between nodes,
shown in Fig. 3. The physical links are actuators that can
change mechanical properties of the material (e.g., stiff-
ness). No technology-specific assumptions were made re-
garding communication links and actuators.

In our understanding, a self-adaptive Robotic Material
provides the following major features:

1. Perception using various kinds of sensors, e.g.,
measuring of strain, displacement, temperature,
pressure, forces;

2. Capability of changing local material and structure
properties by actuators, e.g., stiffness or damping
variation;

3. Integrated networks of information processing and
communication technologies (ICT);

4. Distributed approach: Local sensor processing,
aggregation, and actuator control; Global coopera-
tion and coordination solving optimization.

The general model of such a Robotic Material is shown
in Fig. 3. It is assumed that the material (on micro-scale lev-
el) or structure (on meso-scale level) consists of volume el-
ements (bounded regions of the material) that are connected
with neighbourhood elements via links. The links should
provide some kind of sensing (e.g., measuring the strain or
displacement along the link main axis) and some kind of
material or structure control providing a controllable actua-
tor (e.g., modifying the stiffness of the link). A link can be a
discrete part or a continuous region of the material. A set of
actuators is connected to each node. Two nodes share an ac-
tuator (e.g., a damped spring of variable stiffness and damp-
ing).

Each element contains an embedded computer that is
considered as a node in a mesh-grid communication net-
work. Each node provides some kind of data processing
(processor or digital logic RTL), data and program memory,
communication, energy supply and energy management.
Since the distributed sensing and control of the material
should be performed by an agent-based approach each node
has to provide an agent processing platform (APP).
an Bosse et al. - 4 - 2019

DOI 10.1007/s10586-018-02894-x Cluster Computing

Stef
Figure 3. (a) General network architecture of a Robotic Material = Sensorial + Actuated Material (b) Hardware + Software architecture
(c) Functional Decomposition: Sensing, Acting, Processing ↔ Data + Instruction Streams (d) Node connectivity (physical) of controlled
actuators attached to neighbour nodes (shown are the delta vectors relative to a node position)

The APP is executed typically on a virtual machine, dis-
cussed in Section 7. Agents have to be able to access sen-
sors and actuators by a hardware abstraction layer (HAL),
optimally provided by the APP.

 It is assumed that the nodes are organized in an ad-hoc
way. Technical failures of single nodes is considered as the
common and may not affect the operation of the Robotic
Material and its capability to satisfy some global objective
function. This implies a self-organizing and self-adaptive
approach with respect to the connectivity structure has to be
used to create some kind of holonic system and is the first
level of intelligence in a smart system.

Each node controls a number of actuated springs and
dampers connected to neighbouring nodes as shown in Fig.
3 (d). Each spring has a virtual strain (displacement) sensor
attached, e.g., a strain gauge sensor. Together with the cur-
rent stiffness parameter value, the spring energy can be
computed. It is assumed that the stiffness of each spring can
be varied between a lower and an upper boundary [s0,s1]. A
technically reasonable range is ±50% around a nominal
stiffness value. The missing sensor values (spring displace-
ment and current stiffness) must be retrieved from neigh-
bour nodes.

The models of the actuator (relation of relative displace-
ment l-l0 and force fi,j between two nodes) and the sensor
(strain gauge signal Si,j) are given in Eq. 1 and 2, respective-
ly.

(1)

(2)

 with s: stiffness parameter, k: a spring constant, d:
damping parameter, u: relative velocity between nodes i and
j, R: electrical resistance, GF: gauge factor, ε:strain.

The adaptivity of the robotic material requires perception
based on sensors, interpretation of current and past load sit-
uation (locally or globally or both) and the control of the ac-
tuators. Besides the energy required to perform computation
and communication, the most prominent part of the energy
consumption during operation is caused by the actuators.
The change (increase or decrease) of the stiffness of the
springs commonly requires or releases energy (e.g., thermo-
plastic materials require controlled heating), or requiring
energy in both directions, depending on the actuator tech-
nology (e.g., optically excited bi-stable materials)!

The entire computation and the entire agent processing
implementing the structure optimization discussed in the
next Section is performed by the material-integrated ICT
network. There is no off-loading of parts of the computation
to external computers.

5 Distributed Self-Optimization

The concept of self-adaptive robotic materials draws
much of its appeal from the fact that engineering design has
to decide which are the load cases or service conditions to
base design on, while reality typically knows no such limi-
tations: Conventional techniques like shape, topology or
multi-material optimization all need to single out few or
even one set of boundary conditions to adapt to. Any real

�������	
�
�
������

�
��

������
�
�
����
�

�������	
���
�

��
��
	��
�����

�
������
���� ����
�

�����
���������

��������
���� ���
��

�
������

��������

�������	����������

���

� � ���

���

 !!

 !"

!
!
"

#

$

�

!

!

!

 " !

!" "

" " "

"
" ! "

"

 "

 !"

"
"

f l s d k s l l dui j, (, ,) - (-) -= 0 0

S f S f GF GF R Ri j i j i j G, , ,() , / ()= =0 with Δ ε
an Bosse et al. - 5 - 2019

DOI 10.1007/s10586-018-02894-x Cluster Computing

Stef
world load-bearing structure may see different scenarios in-
cluding misuse, which might be impossible to capture and
define in the design stage. Such unforeseen loads may in the
worst case lead to immediate failure - in other cases, they
might just wear out a structure, causing it to fail premature-
ly and/or in places determined by unexpected local load his-
tories. A smart adaptive material or structure that is capable
of adjusting its mechanical characteristics - like stiffness -
to external loads could actively manage this local load his-
tory. It could protect areas already worn out and distribute
loads to others instead.

There are three different optimization algorithms that are
applied to materials of this kind and evaluated in this work:

1. Global optimization;

2. Segmented optimization;

3. Neighbourhood optimization (originally proposed
in [20]),

summarized in Tab. 1. They are originally based on the
concept of Multi-phase Topology Optimization (MPTO)
and simulated annealing used to optimize structures at de-
sign time by reorganizing material parameter distributions
[13]. The algorithms are reactive and iterative, in contrast to
classical mathematical minimization being commonly func-
tional, applying small changes step-wise to satisfy the glob-
al goal and to minimize an error function. The global algo-
rithm is presented here for reference only as it requires a
central instance, although the action is performed locally

but based on a global observable. The neighbourhood algo-
rithm operates continuously without a defined termination,
while the two other algorithms can terminate if they satisfy
a bounded error condition.

The segment and neighbourhood algorithms are suitable
for distributed processing performing region exploration
and negotiation, characterized by self-* features (self-adap-
tivity and robustness in case of sensor or node failures and
changes in the network connectivity). That means, there are
multiple instances operating on spatially bounded data (lo-
cal data) satisfying global objectives, e.g., minimizing the
mechanical strain energy of a structure. One major issue in
distributed systems without a central instance is the efficient
collection and computation of observation variables (ob-
servables) like the accumulated strain energy of a region of
nodes. This is discussed in the next section. The optimiza-
tion of the structure is performed by modifying a target
variable (control parameter), e.g., the stiffness of the actua-
tors, based on a comparison of a local observable (e.g., the
local node strain energy) with a global or glocal (region)
observable, e.g., the strain energy of nodes in a region
around the particular node or just a global accumulated val-
ue.

The total strain energy U of a mechanical structure is the
integral of the strain tensor ε over the volume V of the struc-
ture. The discretized strain energy for each node ui is com-
puted from all attached springs j={1,..,n} with their dis-
placement dj and current stiffness sj. The total discretized
strain energy of a structure is the sum over all node strain
energies given by Eq. 3.

Table 1. Different optimization algorithms (simplified) for material/structure adaptation, with N: Set of nodes, S: Set of segments S, U:
Total strain energy; ε: Strain; σ: Stress; xi: observation variable of i-th node (element), x: Some observation variable; X: Some
accumulated observation variable; ri: Optimization ratio parameter for i-th node, |X|: Cardinality of a set X, R: Some radius, D:
Some discretization function; si: Stiffness of i-th node/element, [s0,s1]: Limits of stiffness, [r0,r1]: Limits of optimization
parameter, kx: Some problem specific mapping and scaling function with weight factor w; |pos1-pos2|=1: Neighbourhood
relationship of elements or segments.

Global Algorithm

do with x ∈ {ε,σ,U}
 X:=0; ∀n∈N do X := X + xn
 X := X/|N|

 ∀n∈N do
 rn := kx(xn/X, sn)

 sn := sn * rn
until |Err| < Err0
kU
1 :(q,s) → if q*w∈[r0,r1] ∨
 s∉[s0,s1] then 1 else
 elsif r*w<r0 then r0 else r1
kU
2 :(q,s) → if s∉[s0,s1] then
 1 elsif q*w∈[r0,r1] then q*w
 elsif r*w<r0 then r0 else r1

Segment Algorithm

do with x ∈ {ε,σ,U}
 S = {Si}
 Si={ni,{nj} ∈ N | i≠j ∧
 |pos(ni)-pos(nj)|≤R}
 ∀Si∈S do
 Xs:=0;

 ∀n∈Si do Xs := Xs + xn
 Xs,i := Xs,i / |Si|
 ∀n∈Si do
 rn := kx(xn/Xs,i, sn)

 sn := sn * rn
until |Err| < Err0

Neighbour Algorithm

do

 ∀{ni,nj ∈ N | i≠j ∧
 |pos(ni)-pos(nj)|=1} do

 if ui < uj ∧
 si-Δs > s0 ∧
 sj+Δs < s1 then
 si := si - Δs
 sj := sj + Δs
 end if

always
an Bosse et al. - 6 - 2019

DOI 10.1007/s10586-018-02894-x Cluster Computing

Stef
(3)

There is a set of observation variables: Strain ε, Stress σ,
and the strain energy U finally computed, which is an objec-
tive variable, too. The optimization variable is the stiffness
of elements ε, which is used to minimize the strain energy,
stress, or strain. Thus, the optimization (objective) function
is: minU(ε,σ) with ε(e) and σ(e) being a function of the e
module (stiffness).

The basic principle of optimization uses a ratio parame-
ter r based on the relation of observation variables (either ε,
σ, or U) to a spatially extended ensemble value of this vari-
able (mean). The ratio parameter is applied to the target
variables, i.e., the stiffness of elements of the material/struc-
ture. In Tab.1 there are two different example functions kU

1

and kU
2 shown that compute the actual ratio parameter us-

ing the strain energy U(=x).
There is a set of all nodes: N, a set of all segments group-

ing nodes (uniquely or overlapping): S , and segments with
a sub-set of nodes: S⊆N. Each segment is centered around a
node of the network, i.e., neighbour segments overlap that
corresponds to a moving window. The segmented algorithm
performs modification of elements partitioned in segments
based on locally bounded data. The neighbourhood algo-
rithm performs element modification between two neigh-
bouring nodes only (point-to-point).

6 Self-* MAS

Self-* capabilities are addressed in this work by (1) Dis-
tributed data processing and (2) Mechanical optimization.
The MAS in combination with used distributed algorithms
pose self-capabilities on different levels (compare [22]):

1. Self-configuration

2. Self-organization

3. Self-adaptivity

4. Self-healing

There is no a-priori knowledge of the network and clus-
ter structure or any world model. The global system behav-
iour is a result of self-configuration and self-organization of
the agents on a local domain scope and by neighbourhood
relations. Self-adaptivity is provided by means of (1) Data
processing in the presence of technical failures of nodes or
communication and changing network connectivity, and (2)
Algorithmic adaptation of mechanical properties of the
structure based on perception and negotiation as part of the
optimization problem. Self-healing is provided by the MAS

(1) By locating and isolating faults (technical failures) [23],
and (2) By compensating defects or holes in the mechanical
structure by adapting mechanical properties.

Node controller agents haveto control a set of springs
pointing to neighbouring nodes and sensors, shown in Fig.
3d. Each spring has a virtual sensor attached delivering the
strain (displacement between two nodes). Together with the
current stiffness parameter value of a spring, the spring en-
ergy can be computed. It is assumed that the stiffness of
each spring can be varied between a lower and an upper
boundary [s0,s1]. A technical reasonable range is ±50%
around a nominal stiffness value. The missing sensor values
(spring displacement and current stiffness) from other
neighbour nodes are delivered by remote tuple operations
(see Fig. 4b).

The MAS has the goal to minimize a global or local me-
chanical variable, e.g., the total strain energy U and the
strain by using an observation variable. The control is per-
formed by modifying a control variable, e.g., the spring
stiffness. The three different algorithms introduced in Sec. 5
require different MAS behavioural models. The neighbour-
hood algorithm bases on negotiation and uses a simple stiff-
ness swap algorithm, discussed below. The segment algo-
rithm bases on a region mean of the observable. i.e., the
mean strain energy in the region. The mean value is used to
modify the control variable based on a simple decision tree.

The MAS is composed of different agent classes. All ap-
proaches (Tab. 1) uses node agents but apply different be-
havioural models that can be united in one agent enabling
the selective change of the optimization approach and ob-
jectives. The negotiation approach uses an additional broker
agent for negotiation, having a distinct behaviour described
below and illustrated in Fig. 4. Additional explorer and no-
tification agents can be used for segmented or regional ac-
tion (e.g., to compute a global observable by random walk
and directed diffusion).

A. Neighbour Negotiation

Node Agent
The negotiation approach considers only observables of

two neighbour nodes. The node agent is a stationary agent.
Its behaviour consists of the following main activities.

init
The initialization activity mainly creates a broker agent,
starts the adaptation handler timer, and set up the sensor
acquisition and spring control.

perceive
Getting notifications via the tuple-space data base. Listen-
ing for tuples: {SENSOR, STIFFNESS, ADAPT}. The
SENSOR tuple is either sent by the world agent or by sur-
rounding neighbour node agents. The ADAPT tuple is sent
by the broker agent if there is a change in the spring stiff-
ness that was negotiated (either an increase or decrease).
All controlled springs of a node are always set to the same
stiffness.

U dV

u d s

U u

T

V

node i i
i

n

i
i

N

=

=

=

∫

∑

∑
=

=

ε σε

2

1

1

an Bosse et al. - 7 - 2019

DOI 10.1007/s10586-018-02894-x Cluster Computing

Stef
process
New sensor data is processed, and the current strain of
each spring and the total node strain energy is computed.
Relevant sensor distribution and negotiation events are
started. In the case of an energy event (i.e., the current
strain energy is above a threshold), an alarm tuple
ALARM(energy, stiffness, ..) is created that is
consumed by a waiting and listening broker agent.

notify
The notification activity distributes sensor and spring data
to neighbour nodes by sending remote SENSOR tuples.
The attached broker agents is notified by ENERGY and
ALARM tuples. Based on sensor data of all known springs
attached to this node a NEIGHBOURS tuple is sent to the
broker to inform about connectivity.

adapt
This handler changes the stiffness parameters of all con-
trolled springs. To avoid high stiffness changes, a low-
pass filter is applied. This activity is executed periodically
by a timer. Again, all springs are set always to the same
stiffness.

Broker Agent
The negotiation and broker agent is a mobile agent and is

responsible for the neighbourhood self-adaptation of the
material based on the current load situation in the neigh-
bourhood and self-regulation. It interacts with the node
agents and other broker agents via tuple exchange.

Its behaviour consists of the following main activities:

perceive
Getting notifications via the tuple-space data base. Listen-
ing for tuples: {ENERGY, ALARM, NEIGHBOURS, VOTE}.
The ENERGY tuple informs about the current strain energy
and stiffness setting of the node, whereas the ALARM tuple
triggers a voting cycle (transition to vote activity). A
VOTE tuple containing a SWAP? request initiates an elec-
tion.

vote
A voting cycle is initiated by sending a VOTE(SWAP?)
request tuple to a randomly chosen neighbourhood node.
During the voting or election cycle further ALARM and
SWAP? requests from other nodes are blocked (ignored).

notify
If this broker started a voting cycle and got a SWAP+
response, it notifies the node agent about the successful
stiffness swap negotiation by sending an ADAPT tuple to
commit the election result.

election
This is the election handler managing a swap election ini-
tiated by the first SWAP? vote after a time-out. The elec-
tion determines the majority vote among all collected
votes. If the major vote with the highest energy can be
granted, the voter gets a SWAP+ declaration, otherwise it

is declined with a SWAP- declaration, and also all voters
losing the competition get a SWAP- declaration. The deci-
sion for the stiffness swapping bases on the local strain
energy and stiffness, compared with the major requesting
node’s energy and stiffness, i.e., swapit=this.energy <
major.energy && this.stiffness-major.request > this.stiff-
ness.low.

B. Segment and Global Control

Node Agent
The non-negotiated distributed control requires only one

node agent per node. The original numerical segment ap-
proach (Tab. 1) partitioned the network in rectangular seg-
ments. This requires a central instance. To avoid such exter-
nal instance, each node creates a segment region around its
position posing a set of overlaid moving window segments.
Each segment implements a virtual sensor of the observable
[24][25]. In contrast to the negotiation approach an extend-
ed region observable is collected in the segmented ap-
proach, i.e., the accumulated strain energy of nodes in the
neighbourhood within a distance n (e.g., 2). The actuator
modification (i.e., stiffness of springs) bases on the ratio of
this accumulated observable and the local observable value.
Node agents communicate with each other directly via re-
mote tuples or signals. The modification of the target vari-
able (spring stiffness s) can be step-wise and discretized,
i.e., applying a small fixed delta change based on the ob-
servable ratio (u/U) resulting finally in a minimum/maxi-
mum stiffness distribution, or linear using the observable
ratio directly for the computation of a new correction value
for the target variable:

Step-wise:
 if u > U+ΔU then s=s+Δs
 else if u < U-ΔU then s=s-Δs
Linear:
 s=s0*u/U*k

init
The initialization activity explores the neighbourhood
connectivity and starts the adaptation handler timer, and
set up the sensor acquisition and spring control.

perceive
Getting notifications via the tuple-space data base. Listen-
ing for tuples: {SENSOR, OBSERVABLE}. The SENSOR
tuple is either send by the world agent or by surrounding
neighbour node agents. The OBSERVABLE tuple is sent by
neighbouring nodes (alternatively using remote signals,
see below)

process
New sensor data is processed, and the current strain of
each spring and the total node strain energy is computed.

notify
The notification activity distributes sensor and computed
observable data to neighbour nodes by sending remote
SENSOR and OBSERVABLE tuples or signals. To prevent
an Bosse et al. - 8 - 2019

DOI 10.1007/s10586-018-02894-x Cluster Computing

Stef
high notification rates, the notify activity is inhibited for
some time if there was recently a notification event.

adapt
All actuators (springs) of a node are updated (setting new
stiffness values based on computation and perception).

Signals and Handlers
Depending on the data distribution approach, signal han-
dlers are used to receive neighbour and to trigger actuator
updates (signals SENSOR, OBSERVABLE). Instead, using
an actuator update activity (adapt) that has to be acti-
vated on an event, a signal handler can be used that is
activated by a periodical timer.

C. Agent Behaviour: Explorer and Notify Agent

The explorer and notify agents explore a larger radius of
neighbourhood (not limited to direct node neighbours) to
collect and distribute sensor data and physical state infor-
mation (e.g., a mean strain energy of a segment region or
the global observable mean). Commonly a central instance
is required for global action. Random walk and directed dif-
fusion behaviour can be used to approximately compute and
distribute a global observable without a central instance.
The evaluation of the proposed distributed processing from
Sec. 9. shows that there is no strict requirement for any
global observable. An observable mean in a large region is
sufficient.

D. Distributed Computation of Observables using Chains

Another approach without a central instance is neigh-
bourhood exploration and chaining. Each node propagates
its current local observable value (e.g., the node strain ener-
gy u0) to all its direct neighbour nodes via remote signals if
the observable has changed. After the first delivery phase,
each node has neighbourhood information of distance 1.
Each next delivery can deliver distance 2 values by mean
computation u1 of orthogonal node observables with respect
to the current delivery direction and the over next node ob-
servable in the opposite direction (u2), shown in Fig. 4a. Fi-
nally, each node can compute a region value of the observ-
able. The propagation of observable values to neighbour
nodes is given by the following algorithm:

∀ dir ∈ {NORTH,SOUTH,WEST,EAST,UP,DOWN} do
 ne=neighbours,u0=this.u
 dir=WEST|EAST?: u1=ne[NORTH].u0+ne[SOUTH].u0
 dir=NORTH|SOUTH?: u1=ne[WEST].u0+ne[EAST].u0
 dir=NORTH|SOUTH?: u2=ne[SOUTH|NORTH].u0
 dir=WEST|EAST?: u2=ne[EAST|WEST].u0
 dir=UP|DOWN?: u2=ne[DOWN|UP].u0
 sendto(dir, { u0:u0,u1:u1,u2:u2 })

Figure 4. MAS interaction: (a) Observable propagation using
remote signals (b) Sensor distribution using remote tuples (c)
Negotiation in neighbourhood algorithm using remote tuples

7 Agent Platforms

The selection of an appropriate agent programming mod-
el (APM) and agent processing platform (APP) is eminent
for the foreseen use case of material-integrated ICT net-
works that are connected to the Internet and Cloud environ-
ments.

The deployment of a single APP (the agent VM, com-
monly, e.g., the JAVA-based JADE platform) in such
strongly heterogeneous environments with different con-
straints and organizational structures is not possible. There-
fore, a set of APPs have to be deployed. But all APPs
should address the same APM to enable cross-over migra-
tion.

There are only few agent programming models that cov-
er very low-resource processing platforms. The AAPL pro-
gramming model (a meta model, detailed description in
[17][18]) relies on the Activity-Transition Graph behaviour
model given by an agent class template containing activity
and transition sections. AAPL is an abstract programming
meta model that can be implemented with different pro-
gramming languages. The agent is composed of activities
(graph nodes) with conditional or unconditional transitions
based on agent data (perception and state). AAPL offers
statements for parametrized agent instantiation, like the cre-
ation of new agents and the forking of child agents inherit-
ing the parent state. Unified agent interaction is provided by
using synchronized Linda-like tuple database spaces and
signal propagation (messages carrying simple data deliv-
ered to signal handlers). Agent mobility (migration) is pro-
vided by transferring the entire state and code of an agent
process. The destination can be specified by a geometric re-
lation and a direction (e.g., North, South, ..), a delta-dis-

�������	
����	�

���������� �����	���
�����
��������

�����	������
������	����������

���	

���	���	��

��������

�	���
�����	
������	�������	
���������	
 �	
�!�����	�

�"�
#

�"�
#

$%&

$%&
an Bosse et al. - 9 - 2019

DOI 10.1007/s10586-018-02894-x Cluster Computing

Stef
tance vector usable in mesh grids, a host port, or an URL/IP
address.

There are actually two different programmable agent
processing platforms supporting agents based on the meta
agent programming model AAPL: The Agent FORTH Virtu-
al Machine (AFVM)[18][26] as a low-resource platform and
the JavaScript Agent Machine (JAM)[25] as an Internet
platform.

A. AFVM Platform

The AFVM platform (see Fig. 5, right) is a low-resource
platform suitable for hardware integration (microchip lev-
el), requiring about 1000k logic gates (~1mm2 chip core ar-
ea with a TSMC 65nm manufacturing process). Among a
hardware implementation there are different software im-
plementations fully operational and code compatible with
each other that can be connected in heterogeneous net-
works. The AFVM is a multi-processor computer architec-
ture using a stack processor providing multi-process sched-
uling (of agent processes) using a token and queue-based
approach. Agents are implemented with code frames con-
sisting of FORTH code with agent specific extensions and
embedded data storing the entire agent control and data
state. Code morphing enables agent behaviour modification
by changing activity or transition functions.

B. JAM Platform

The JAM platform (see Fig. 5, left) addresses the deploy-
ment in large-scale networks, i.e., the Internet (of Things),
mobile networks, and Clouds. It requires a JavaScript exe-
cution platform, e.g., node.js, jxcore, or any JS capable Web
browser. The deployment of JAM in large-scale world-wide
networks in an Earthquake monitoring use-case was shown
in [27]. Although both platforms support agents with nearly
the same behaviour and operational model they are not
compatible on code level. JAM agents are programmed in
AgentJavaScript ([28]). JAM consists of a set of modules
providing agent programming, agent control, agent mobili-
ty, agent interaction, and machine learning. Basically JAM
is implemented as a library that can be integrated in any
host application. The central Agent Input Output System
(AIOS) module is the (secured and sand-boxed) interface
between agents and JAM. Agents are always created from
JS text code. An agent JS object stores the entire agent code
and data. Due to functions being first order values in JS the
agent behaviour can be changed by modifying activities or
transitions directly without recompilation or recoding.

The mobility is granted by converting the agent program
and process snapshot in a textual JSON+ representation that
can be sent via various communication technologies, and fi-
nally executing the code by parsing the text again. This mo-
bile agent program code can be executed on a variety of dif-
ferent host platforms including mobile devices, embedded
devices, macroscopic sensor nodes, and servers, using JAM
and a generic JS VM, bridging the gap between the IoT and
Internet/Cloud infrastructures.

C. Hybrid Architecture and the IoT

Although in this work MAS are implemented and pro-
cessed in JAM networks, the technological realization of
material-integrated computing requires the execution of
MAS on the AFVM platform.

To enable the composition of future large-scale applica-
tions ranging from very-low-resource nodes (1mm3 com-
puters integrated in materials and structures) to high-re-
source devices (generic computers, servers, mobile and
embedded devices), both platform architectures have to co-
exist supporting agent migration seamlessly. This co-exis-
tence demands a compatibility layer that can be realized by
introducing an on-the-fly cross-compiler enabling agent
mobility between different platform technologies seamless-
ly, shown in Fig. 5 (middle). This cross-compiler translates
agents in AgentFORTH object code to AgentJS text code
agents and vice versa by preserving the entire agent state.
This compiler is optimally contained in JAM as a service.

8 Agent Communication

Communication is central in large-scale distributed sys-
tems with a high impact on the overall system performance
and stability. Two main issues arise that affect design con-
siderations: 1. Efficiency of the communication with re-
spect to latency, computational complexity, and storage; 2.
Addressing and delivery of messages to destination entities.
Efficiency is a key factor in self-powered material-integrat-
ed low-resource computing networks. Commonly, end-to-
end communication is established between processes using
IP protocols and computer nodes having unique addresses,
which is not suitable for large-scale material-integrated net-
works and mobile agents. The agent model usually implies
autonomy and requires a loosely coupling to the environ-
ment, i.e., without a strong binding to a specific node.
Moreover, there is usually no global knowledge of the cur-
rent position of an agent in the network at all. Basically
three approaches are available to exchange information be-
tween agents: Tuple-space access, signal messages, and
agent migration. Tuple-spaces were proposed in [29] and
[30] as a suitable MAS interaction and co-ordination para-
digm. They are discussed below and compared in Fig. 6.

A. Tuple-Spaces

Tuple-space communication exchanges data tuples be-
tween entities based on pattern matching, i.e., between pro-
cesses and agents. The information exchange is data-driven
and bases on the data structure and content of the data, and
does not require any destination addressing or negotiation
between communicating entities. Furthermore, tuple-space
communication is generative, i.e., the lifetime of data can
exceeds the lifetime of the producer. There are producer and
consumer agents. A tuple-space can be characterized by a
local bounding posing a limited access region, commonly
limiting data exchange to entities executed on the same net-
work node. Distributed tuple-spaces require inter-node syn-
chronization and base on replication and some kind of dis-
tributed memory model.
an Bosse et al. - 10 - 2019

DOI 10.1007/s10586-018-02894-x Cluster Computing

Stef

Figure 5. The hybrid architecture merges two Agent Processing Platforms: (Left) JAM & (Right) AFVM (Middle) J2F Bridge compiler
(Top) Deployment areas compared with some other popular platforms; Legend: TS: Tuple Space, WS: Watchdog, AMP: Agent Manage-
ment Port, CHAN: Channel, MOBI: Mobility, CONF: Code reconfiguration, SIG: Signals, AIOS: Agent Input Output System ,CS/DS/
RS: Stacks, CCS: Common Code Segment

The AAPL agent model originally uses tuple-spaces only
for agent communication executed on the same node.

B. Agent-to-Agent (A2A) Signals

Signals are lightweight messages that are delivered to
specific agents (Agent-to-Agent, A2A), in contrast to the
anonymous tuple exchange. One major issue is facilitating
remote agent communication, i.e., agents executed on dif-
ferent network nodes. Although an agent can be addressed
by a unique identifier, the path between a source and desti-
nation agent is initially unknown. For the sake of simplicity
and efficiency, advance routing table management and net-
work exploration is avoided. Instead, the APPL platforms
(JAM/AFVM) support signal delivery along paths of mobile
agents only. That is, that a signal from a source node A can
only be delivered to a destination agent actually on node B
iff the destination agent was executed (or created) on node
A some time ago.

The concept thus requires that two agents had to be exe-
cuted on the same node in the past. Agent migration and
signal propagation is recorded by the agent platform using
look-up table caches with time limited entries and garbage
collection. Signals have the advantage of being delivered
and proecssed asynchronously by signal handlers (although
not pre-emptively) compared with tuples that have to be
read or consumed by the agent explicitly.

C. Agent-to-Node (A2N) Signals

Previous agent platform implementations only support
signal delivery along migration paths based on the destina-
tion agent identifier (private, uni-cast) or the agent class
(public, broadcast). The new JAM platform 2.0 introduces
signal delivery of signals to specific remote platforms (re-

mote signalling) based on paths specified by the signal
sender agent. The destination platform node broadcasts the
signal to all listening agents executed on this particular
node. To simulate private A2A uni-cast (or multi-cast) com-
munication, agents can use a randomly generated signal
name only known by the sender and the receiver. This new
approach enables agent interaction between agents never
executed on the same node. Furthermore, these remote sig-
nals are used to implement distributed tuple-spaces, dis-
cussed later.

D. Mobile Agents

Mobile agents can be used to distribute information in
networks. They can get data/information from the tuple-
space of the current node and store them in remote tuple-
spaces by migrating to the respective nodes. The advantage
of this approach is the ability to find suitable remote nodes
and paths to nodes autonomously or based on content nego-
tiation, and to filter, map, or process the collected data, e.g.,
using data fusion techniques. The disadvantage is a high
communication and processing overhead caused by the
agent process migration.

Additionally, mobile agents can be used to deliver data
in mobile network environments by using a mobile device
for spatial migration (piggyback approach, see [25] for de-
tails), not possible with A2A/A2N signals or remote tuples.

E. Distributed Tuple-Spaces

The new JAM platform 2.0 introduces the support for tu-
ple migration using the collect, copyto, and store operations
performed by agents. This feature enables the composition
of distributed tuple-spaces controlled by agents. The collect
and copyto operations transfer tuples from the local tuple-

���

�����

� � �

����

	
�

� � �

���

���
	����
	�������

��

	
� 	
�

��

	
� ���

� � �

�� 	��� ����

	�����
��	

�� 	!�� ��

����

����

�����

����"#��
an Bosse et al. - 11 - 2019

DOI 10.1007/s10586-018-02894-x Cluster Computing

Stef
space to a remote using pattern matching, similar to the inp
and rd operations. The store operation sends a tuple to a re-
mote tuple-space, similar to the out operation.

Remote tuple space access is performed by A2N signals.

F. Assessment of Communication

The scaling and performance of distributed and cluster
computing is strongly related to the communication archi-
tecture. In this work, computation is coupled to a physical
system and communication depends on changes of the
physical system and the respective sensors (e.g., strain sen-
sors). To evaluate and compare different communication
approaches described previously, a simulation of a large
scale network under real operation conditions was per-
formed using the reference architecture from Section 4 and
the multi-domain simulation from Section 9.

Figure 6. Agent communication in AAPL (a) Tuple-space com-
munication between agents on same node (b) Agent-to-Agent
Signals (c) Remote Agent-to-Node Signals (d) Remote Tuple
Operation

The computational network consists of 8x5x3 nodes, and
the physical Device under Test (DUT) is a plate (modelled
with 8x5x3 body nodes). The network can perform event-
based sensor distribution as discussed in Sec. 6. Results are
shown in Fig. 7.

The bottom plots show the event-based communication
activity in the network as a response to a physical state
change. Nodes and their node agents decide individually
about distributing new sensor data avoiding the flooding of
the network with messages. Three different physical config-
urations were compared resulting in different network be-
haviour: Full plate, plate with hole, and with an additional
load (Fig. 7, top). The last case causes the highest network
activity due to the highest level of dynamic changes of the
physical system.

Figure 7. Computation and communication of a MAS: Simulation
results and comparison of different communication strategies
under different structure and load situations of the reference archi-
tecture. Action of the MAS: Event-based sensor distribution.
(Top) Case 1: Plate, Case 2: Plate with large hole, Case 3: Plate
with hole and an additional circular load on the top. (Middle) Total
computation and communication after 15000 simulation steps
(Bottom) Selected time plots of communication and signals for
remote tuple approach.

9 Multi-domain Simulation

The design and technological implementation of Robotic
Materials is a considerable challenge. Fundamental con-
cepts have to be proven before any real system can be de-

������

�	

��������	
���
�������������� �������
�������������������

����
����������������

��

����������������������������������

������

���

��

������

���
���

���

�	�

	�

��

�	�
 �	�

�	�

��

�	�
 �	�

�	�

�

������

����
����������

��
���

������ ������

�� ��

��

��

���
��

�
 ��

��

�

���

���

�� ��

��

��
an Bosse et al. - 12 - 2019

DOI 10.1007/s10586-018-02894-x Cluster Computing

Stef
veloped. Due to the strong coupling of sensing, reactive
control, and information processing a multi-domain and
multi-scale simulation was conducted posing a tight cou-
pling of physical and computational models.

There are different mechanical models and solvers that
can be used to compute the behaviour of the physical sys-
tem in response to different load and use case situations and
the reaction of a computational control system:

1. Finite Elements Analysis (FEA); and

2. Multi-Body Physics (MBP, based on coupled
spring-mass element networks).

The second model is closer to the proposed computation-
al mesh-grid node network architecture and structures on
macro level, while the first model is better related to materi-
als on micro level. Based on these two mechanical models
two different computational frameworks performing apply-
ing structure/material optimization are used.

FEA-NUM: Finite Element Analysis is used to develop
and evaluate optimization algorithms, performing, e.g., the
minimization of a target function value numerically, e.g.,
reducing the total strain energy, local strain, or inner force
peaks. FEA is stationary, i.e., no swinging or oscillation of
the structure under test is considered, and a FEA simulation
iteration ends with a stationary state of the structure. Algo-
rithms operating on global (centralized) and local data (dis-
tributed) were originally investigated using Abaqus FEA
simulation and Matlab performing the computational part of
the algorithms [31].

MBP-MAS: Simulation of Multi Body Physics in com-
bination with MAS is used to investigate and evaluate the
computational and coordination model proposed in this
work (details in [20]). In contrast to static FEA the MBP
simulation is dynamic and provides real-time resolution be-
haviour of structures. The MAS interacts with non-station-
ary states of the structures (swinging, oscillation, ..), too,
which is closer to real-world interaction. The MAS imple-
ments the algorithms investigated in prior FEA.

One major difference between the FEA-NUM and the
MBP-MAS approach concerns the sensor processing. The
nearly real-time resolution MBP-MAS approach performs
sensor distribution by MAS communication that introduces
different time delays affecting the optimization algorithms
and their outcome. Additionally, the MAS operates event-
based, leading to varying responses to a sensor stimulus as a
result of structure dynamics.

Monte-Carlo Methods: Complex distributed and cou-
pled systems tend to be very sensitive to small parameter
changes, i.e., small input changes (actio) result in large out-
put changes (reactio). Therefore, it is essential to repeat
simulations with varying randomized disturbances, e.g., by
applying small variations to an initial set-up of the spring
stiffness.

Using the SEJAM simulator, the physical and computa-
tional system can be simulated simultaneously studying the
coupling and response of both systems to modifications.

The entire monolithic simulation framework is shown in
Fig. 8. It is entirely programmed in JavaScript and executed
by the node webkit framework (node.js JS VM for computa-
tion and IO combined with Chromium WEB browser for
GUI implementation), and the simulation model consisting
of the MAS program code and the physical CANNON mod-
el is specified in JavaScript and JSON, too. The computa-
tional and the physical simulation are coupled tightly, i.e.,
agents can access the physical model and simulation and
vice versa. Agents are processed with a JAM instance. This
architecture enables the integration of the simulator in real
world environments (hardware-in-the-loop) deployed with
JAM networks. Furthermore, the direct JAM processing pro-
vides advanced and realistic computational and communi-
cation analysis.

Figure 8. (Bottom) The multi-domain simulation environment
coupling physical and computational systems (Top, left) Computa-
tional network using JAM for computation and communication
(Top, right) Physical body-spring network using CANNON for
solving the physical equations

10 Use-case and Evaluation

The multi-domain simulation introduced in the previous
section is used to demonstrate and evaluate the proposed
optimization algorithms, MAS implementation providing
self-organizing and self-adaptivity features, and the JAM
platform with an advanced use-case. The device under test
used in the simulation is a plate consisting of 8x5x3 nodes.
Each node is a mass in the MBP model connected up to nine
neighbours via springs and a computer in the MAS model
connected to up to six neighbour nodes via communication
links. The start condition of the physical plate is shown in
Fig 8. Spring and gravity forces have an effect on each mass
element of the plate. Therefore, the plate will swing be-

��� ������

�	
���
�

�����������

�� ��� ��	

� � � �

����

��
��

�

��
������������

��
�������

��������

��

an Bosse et al. - 13 - 2019

DOI 10.1007/s10586-018-02894-x Cluster Computing

Stef
tween a maximal and a minimal bend until it reaches a static
state. The MAS will respond in a given time to dynamic
changes. The global goal may not be effected by this dy-
namic response, e.g., the MAS behaviour must not oscillate.

The event-based MAS will process sensor input data
differently (spatially and temporal) unlike the numerical al-
gorithms presented in Tab. 1. The results from the simula-
tion uses as a Device under Test (DUT) a plate basic shape
with a large central hole and an additional load on the top of
the DUT, which is shown Fig. 9. The diagrams in Fig. 9
compare the outcome of physical and computational proper-
ties of the DUT with different optimization algorithms. All
optimization results are compared with the same DUT with-
out performing optimization (no actuation, only perception
and sensor processing).

The physical properties give the accumulated total strain
energy U of the structure (global value), the maximum node
strain energy u (local value) from all nodes (including
boundaries), the maximum node energy of only the core ar-
ea of the structure, maximum of forces between nodes (tak-
en from the entire optimization run), and the accumulated
stiffness of all springs in the structure as a measure of ener-
gy required for actuators (in arb. units).

The communication and computational properties return
the accumulated communication load (in Bytes), the accu-
mulated number of remote signals (messages), and the total
accumulated active computation time of all nodes (in arb.
units) as a measure of the electrical energy required for the
entire optimization run.

The hole in the DUT introduces interruptions of the com-
munication network and affects the migration of agents or
the delivery of signals, but not the global emergence behav-
iour satisfying the optimization goal of the MAS, shown in
the optimization progress of the segment algorithm still
achieving nearly the same results as the global algorithm.

The results show the suitability of the event-based MAS
approach and the distributed algorithms versa the global
centralized algorithm. The achieved strain energy reduction
is about 40%. The segmented approach using a floating seg-
ment window around each node’s center position delivers
comparable results without the need for a central instance.
However, there is a significant difference between the step-
wise and linear correction function. Only the linear stiffness
adaptation between the (technical possible) limits achieves
a high total (global) strain energy and maximal node strain
energy reduction. The step-wise correction (leading basical-
ly to a discrete stiffness distribution) achieves only a 10%
reduction. Among the total strain energy the total sum of
stiffness settings of all nodes is important. Each stiffness in-
crease (of an actuated spring) requires energy, whereas a
decrease can release energy (that could be harvested and
stored by the system). The linear correction leads to an in-
crease of the stiffness sum about of 40%, whereas the step-
wise (discrete distribution) approach decreases the sum
about of 35%. This overall stiffness reduction can be con-
sidered as a structural relaxation, and is a base for a high dy-
namic adaptation capability of the structure as there is a bet-
ter utilization of the actuator ranges. The neighbour
negotiation algorithms underperforms compared with the

new segment approach but requires the lowest communica-
tion and computational resources (about 50% less than the
segmented approach) As expected, the global approach cre-
ates the highest communication and computational costs.

It should be noted that the results are sensitive to the
MAS parameter settings like sensor event and notification
thresholds. For example, the communication and computa-
tional costs depend on the notification behaviour inhibition
delay (update interval setting). The lowest accumulated
computation time of the ICT network is required by the
neighbour negotiation algorithm due to the lowest sensor
event rates and actuator modifications. The three algorithms
differ in convergence and stability (oscillation of the struc-
ture due to over- and under-optimization) and therefore
have a significant influence on the ICT activity and the en-
ergy consumption.

The evaluation of a structure configuration with a large
hole inside of the structure, interrupting communication and
actuation, demonstrates the capability of the used MAS be-
haviour and optimization algorithm to compensate missing
nodes. The proposed approach shows a low sensitivity to
damages (both concerning the ICT and the structure optimi-
zation).

11 Dynamic Topology Optimization and
Lightweight Structures

Topology optimization in its classical form is a tech-
nique to improve material utilization: Within a given design
space, and for a given load case, blocks of material are re-
moved in areas with limited internal loads. A review of var-
ious approaches has recently been provided by Sigmund
and Maute [34]. The underlying assumption is that these
material fractions contribute least to structural stiffness: It
may be added here that topology optimization is generally
executed in the linear-elastic regime. Since material is only
removed, but not relocated, stiffness must effectively be re-
duced in the process.

However, this necessary loss in stiffness falls short of the
reduction in weight, leading to an increase in specific or
weight- related stiffness. A designer can thus in principle
exploit the result of an optimization run to generate a final
structure which may - if permissible - transgress the bound-
aries of the original part and offer the same stiffness at re-
duced weight. The weight reductions achievable via this
principle are limited, but significant. For example, by rule
of thumb, if the original problem is a solid beam, supported
at both ends and loaded in bending, a weight reduction of
roughly 30% can be achieved at a marginal loss of stiffness.
For other, more technical and thus more complex compo-
nents and associated load cases, weight reductions of ap-
proximately 20% have been demonstrated. Naturally, the
success of the method in optimizing a given structure de-
pends on the level of sophistication of the original design.
In many cases, however, an exact quantification is impossi-
ble because the topology-optimized design cannot be
matched against a conventional one, as the method is typi-
cally applied early in the design phase and using the com-
plete design space as starting point.
an Bosse et al. - 14 - 2019

DOI 10.1007/s10586-018-02894-x Cluster Computing

Stef
Figure 9. Evaluation of simulation results (DUT: plate with hole and external load) using different optimization algorithms (Top) Out-
come of physical properties of the DUT: Total strain energy U and node strain energy u, forces, and stiffness [arbitrary units] (Bottom)
Outcome of ICT properties: Total communication [Bytes], signals [arbitrary units], and computation [time, s]

In practice, manufacturing process constraints and limi-
tations have sometimes hampered the implementation of to-
pology-optimized designs. Processes like milling require di-
rect access to the surfaces that are to be machined.
Typically, optimum designs thus undergo a reworking
based on manufacturability. In contrast, the geometrical
flexibility of additive manufacturing has the potential of de-
veloping into a high road for pushing topology- optimized
design from the virtual to the real world on a larger scale. A
recent publication by Zhu et al. has collected several exam-
ples that illustrate the application of topology optimization
to aerospace structures [36].

Valdez et al. have recently published and overview of
benchmark solutions for typical, recurring 2D problems.
Their study does not provide clear answers on achievable
weight savings, since their starting point is a standard rect-
angular design space, but conveys a good impression of the
type of solution the method generates, and their dependence
on - sometimes slight - changes in the boundary conditions
[35]. Multi-phase topology optimization as developed by
Burblies deviates from the above in considering multiple
materials having individual properties - specifically, their
elastic properties (Young's modulus etc.) are assumed to
differ. Depending on the load case, the optimization ap-
proach relocates the originally arbitrarily distributed materi-
al elements within the set build envelope/space to achieve
maximum stiffness. This is done by means of an "element
exchange" technique which minimizes total strain energy in
the system. The result is a structure which matches the orig-

inal one in weight (material is not removed, but only redis-
tributed), but shows superior stiffness. The high stiffness
solution can then be transformed into a design which takes
over the suggested structuring, but reduces the amount of
material used and thus the structure's weight while still
meeting stiffness requirements [13]. The central drawback
of the methods as described above is that optimization is
typically done for a single load case. As a consequence, the
resulting structure may underperform compared to a non-
optimized one if the loading situation changes. Besides, the
optimized structure may turn out to behave more critical un-
der unexpected load cases: For example, topology-opti-
mized designs typically tend to be more prone to failure
modes like buckling.

To avoid these issue, strategies like average design can
be adopted which generate a common solution out of the
optimization results obtained for several load cases. How-
ever, this approach will naturally limit the weight saving
potential, since the final solution moves away from the opti-
mum for each single load case considered. This situation is
the realm which must seem most promising for the suggest-
ed dynamic optimization approach: Instead of having a
structure that can cope reasonably well with different load
cases, we propose a structure that can dynamically adapt to
the load cases it recognises and will thus adopt the optimum
configuration for each of them.

Needless to say, this type of structure will also be able to
respond to load cases not explicitly considered in the com-
ponent design phase. This capability may allow for reduc-

�� ��

����

���
��������	
��
��
�����

���
�	�
�������
�
�����

��	�
��������

��	�
�������
��

������	
��
��������
�
��

�����	
�
�
	
��

����
�
�����������
��

��

����
� ������	

��� ��� ��� ���

���

��
������

����
�����

���
�����

��� ��� ����
�����

���
�����

��� ��� ��� ��� ��� ���

��
���

������
���
��

���� ����
������

����
������

����

�����������������������������������

���
�	�
��

�����	
�
�
	
��
�����
��������

����
� ������	 ��
������

���	�
��

�� ��� ��

���

����

���

�� ����

���

��

��
��	��

��� ��� ��� ���

��

���

���
���
an Bosse et al. - 15 - 2019

DOI 10.1007/s10586-018-02894-x Cluster Computing

Stef
tion of safety margins and thus facilitate additional weight
savings.

In summary, we consider an average weight saving po-
tential accessible through the suggested adaptive materials
of approximately 20% a conservative estimate. Beyond
suitable algorithms as discussed in this paper, materials and/
or structural solutions that allow implementation of these
will be a major issue to be solved in future research.

12 Conclusion and Outlook

This paper showed the suitability of Multi-Agent Sys-
tems for reliable distributed computing in large-scale low-
resource computer networks by evaluating the use case with
a reference architecture of a self-adaptive robotic material
composed of nodes connected by actuated spring elements.
Each node is a micro-controller providing sensor process-
ing, power electronics, communication (wired or wireless),
an agent processing platform, and data storage. Such robotic
materials are characterized by a tight coupling of computa-
tion, communication, sensing, and actuation. The distribut-
ed computing and communication in material-integrated
large-scale computer networks can be considered as micro-
scale cluster computing.

The goal of the MAS is to optimize the material or struc-
ture under varying load situations and damages by collect-
ing observation variables (i.e., strain sensor data) and modi-
fying target variables (actuators, i.e., stiffness of spring
parameters) without any central instance (self-organized
and event-based). The emergence behaviour of the MAS
was robust by adaptivity in the presence of large defects.

Different optimization algorithms were introduced and
evaluated using the JavaScript Agent Machine platform. A
global optimization approach based on Multi-Phase Topolo-
gy Optimization was used as a reference algorithm for com-
parison with two distributed segment and neighbour algo-
rithms enabling dynamic topology optimization at run-time.
The segment algorithm achieved a 40% reduction of the to-
tal mechanical strain energy of the structure under test (with
a damage and external load applied), which is a relevant
measure of stability by self-adaptation and self-healing be-
haviour.

Although the JAM platform can be used on low-resource
embedded computers, another very-low resource platform
AFVM was introduced that is suitable for material-integrat-
ed computing. A just-in-time cross-compiler approach can
be used to enable seamless migration of mobile agents be-
tween both agent processing platforms, which is mandatory
for connecting Robotic Materials to the IoT and Clouds.

Different agent communication approaches were dis-
cussed and evaluated under real conditions (sensor process-
ing in the Robotic Material) showing efficient and scalable
behaviour. Mobile agents with a unified agent programming
and processing platform are the key technology for the cre-
ation of smart IT materials, e.g., tangible user interfaces
[32], product life-cycle management [33], integration in the
Internet of Things environment and providing Cloud Ser-

vices for and with Robotic Materials in everyday customer
devices.

Future work has to investigate the implementation of the
proposed MAS using the AFVM platform deployed in real
robotic structures. Although the AFVM bases on the same
AAPL agent metal model, is forces much higher limitations
and constraints with respect to agent code and data com-
plexity, and overall storage capacity. In this work the simu-
lation was performed with ideal actuators and sensors de-
scribed via linear input-output models. Technical actuators,
e.g., thermoplastic materials actuated by temperature varia-
tions, show highly non-linear behaviour. The proposed
MAS and optimization algorithms have to be evaluated to-
wards such unreliable and non-linear actuators and sensors.
Finally, the weight saving potential and energy balances
have to be investigated rigorously.

One major field of application and future road map for
the proposed MAS and ICT architecture is the Dynamic To-
pology Optimization (DTO) in complex mechanical struc-
tures and components introduced conceptually in Section
11. A proof-of-concept has to demonstrate the weight sav-
ing by DTO by the MAS at run-time. Furthermore, transfer-
ring this future work to actual physical materials and struc-
ture heavily depends on advances in manufacturing
technologies, sensors, and hybrid material design.

REFERENCES

[1] T. L. M. Choi, Y. Sui, I. H. Lee, R. Meredith, Y. Ma, G.
Kim, D. Blaauw, Y. B. Gianchandani, Autonomous Micro-
systems for Downhole Applications: Design Challenges,
Current State, and Initial Test Results, Sensors (Basel,
Switzerland), vol. 17, no. 2190, 2017.

[2] V. Di Lecce, M. Calabrese, and C. Martines, From Sensors
to Applications: A Proposal to Fill the Gap, Sensors &
Transducers, vol. 18, no. Special Isse, pp. 5–13, 2013.

[3] S. Bosse, D. Lehmhus, W. Lang, M. Busse (Ed.), Material-
Integrated Intelligent Systems: Technology and Applica-
tions, Wiley, ISBN: 978-3-527-33606-7 (2018)

[4] M A McEvoy, Nikolaus Correll, Materials science. Mate-
rials that couple sensing, actuation, computation, and
communication, Science, 347(6228):1261689 (2015)

[5] M. A. McEvoy and N. Correll, Materials science.- Materi-
als that couple sensing, actuation, computation, and com-
munication, Science, vol. 347, no. 6228, 2015.

[6] M. A. McEvoy, N. Correll,.Thermoplastic variable stiff-
ness composites with embedded, networked sensing, actua-
tion and control.Journal of Composite Materials 49(2014)
DOI: 10.1177/0021998314525982.

[7] L. Zhao, J. Ma, T. Wang, and D. Xing, Lightweight Design
of Mechanical Structures based on Structural Bionic Meth-
odology, Journal of Bionic Engineering, vol. 7, pp. 224-
231, 2010.

[8] C. Hamm, S. Möller, ELiSE—An Integrated, Holistic Bi-
onic Approach to Develop Optimized Lightweight Solu-
tions for Engineering, Architecture and Design, in C.
Hamm, Ed., Evolution of Lightweight Structures. Spring-
er, 2015.

[9] C. Hamm, ELiSE: Bionic Lightweight Design, project fly-
er, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-
an Bosse et al. - 16 - 2019

DOI 10.1007/s10586-018-02894-x Cluster Computing

Stef
und Meeresforschung, Bremerhaven, Germany, 2013.
[10] C. Jog, R. Haber, M. Bendsøe, Topology design with opti-

mized, self-adaptive materials, International Journal for
Numerical Methods in Engineering, vol. 37, issue 8 (1994)
pp. 1323-1350

[11] M. A. McEvoy, N. Correll, Distributed Inverse Kinematics
for Shape-Changing Robotic Materials. Procedia Technol-
ogy 26 (2016) 4 - 11.

[12] J. J. Joo1, B. Sanders, G. Washington, Energy based effi-
ciency of adaptive structure systems, Published 9 January
2006, IOP Publishing Ltd, Smart Materials and Structures,
Volume 15, Number 1

[13] A. Burblies and M. Busse, Computer Based Porosity De-
sign by Multi Phase Topology Optimization, Multiscale &
Functionally Graded Materials Conference (FGM2006),
Honolulu, October 15th -18th 2006

[14] M. Caridi and A. Sianesi, Multi-agent systems in produc-
tion planning and control: An application to the schedul-
ing of mixed-model assembly lines, Int. J. Production
Economics, vol. 68, pp. 29–42, 2000.

[15] P. Leitão and S. Karnouskos, Industrial Agents Emerging
Applications of Software Agents in Industry. Elsevier,
2015.

[16] S. Bosse, A. Lechleiter, Structural Health and Load Moni-
toring with Material-embedded Sensor Networks and Self-
organizing Multi-agent Systems, Procedia Technology,
2014, DOI: 10.1016/j.protcy.2014.09.039

[17] S. Bosse, Mobile Multi-Agent Systems for the Internet-of-
Things and Clouds using the JavaScript Agent Machine
Platform and Machine Learning as a Service, in The IEEE
4th International Conference on Future Internet of Things
and Cloud , 22-24 August 2016, Vienna, Austria, 2016.

[18] S. Bosse, Unified Distributed Computing and Co-ordina-
tion in Pervasive/Ubiquitous Networks with Mobile Multi-
Agent Systems using a Modular and Portable Agent Code
Processing Platform, in The 6th International Conference
on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN 2015), Procedia Computer Science, 2015

[19] R. Milner, The space and motion of communicating agents.
Cambridge University Press, 2009.

[20] S. Bosse, D. Lehnhus, Towards Large-scale Material-inte-
grated Computing: Self-Adaptive Materials and Agents,
doi: 10.1109/FAS-W.2017.123 (2017)

[21] H. Janocha, Ed., Adaptronics and Smart Structures, 2nd
ed. Springer (2007).

[22] S. Poslad, Ubiquitous Computing: Smart Devices, Envi-
ronments and Interactions. 2009, Wiley

[23] F. Haneef and S.Angalaeswari, Self-Healing Framework
for Distribution Systems, International Journal of Scientific
& Engineering Research, vol. 4, no. 7, 2013.

[24] E. Pournaras, I. Moise, and D. Helbing, Privacy-preserv-
ing Ubiquitous Social Mining via Modular and Composi-
tional Virtual Sensors, in IEEE 29th International
Conference on Advanced Information Networking and Ap-
plications, 2015.

[25] S. Bosse, E. Pournaras, An Ubiquitous Multi-Agent Mobile
Platform for Distributed Crowd Sensing and Social Min-
ing, FiCloud 2017: The 5th International Conference on
Future Internet of Things and Cloud, Aug 21, 2017 - Aug
23, 2017, Prague, Czech Republic

[26] S. Bosse, Design of Material-integrated Distributed Data
Processing Platforms with Mobile Multi-Agent Systems in
Heterogeneous Networks, Proc. of the 6’th International

Conference on Agents and Artificial Intelligence ICAART
2014, 2014, DOI:10.5220/0004817500690080.

[27] S. Bosse, Incremental Distributed Learning with
JavaScript Agents for Earthquake and Disaster Monitor-
ing, International Journal of Distributed Systems and
Technologies (IJDST), (2017)

[28] S. Bosse, Distributed Machine Learning with Self-orga-
nizing Mobile Agents for Earthquake Monitoring, in 2016
IEEE 1st International Workshops on Foundations and Ap-
plications of Self* Systems (FAS*W) , SASO Conference,
DSS, 12 September 2016, Augsburg, Germany, 2016.

[29] L. Chunlina, L. Zhengdinga, L. Layuanb, and Z. Shuzhia,
A mobile agent platform based on tuple space coordina-
tion, Advances in Engineering Software, vol. 33, no. 4, pp.
215–225, 2002

[30] Z. Qin, J. Xing, and J. Zhang, A Replication-Based Distri-
bution Approach for Tuple Space-Based Collaboration of
Heterogeneous Agents, Research Journal of Information
Technology, vol. 2, no. 4. pp. 201–214, 2010

[31] D. Lehmhus, S. Bosse, A. Gemilang, A Multi-Agent System
based approach for Adaptive Property Control in Smart
Load-Bearning Structures, European Congress and Exhi-
bition on Advanced Materials and Processes, EUROMAT
(2017), Symposium E6, Modeling, Simulation and Optimi-
zation, 17-22 September, 2017, Thessaloniki, Greek

[32] J. Kang, Technique of Tangible User Interfaces for Smart-
phone, 12 International Conference on Information and
Computer Applications (ICICA 2012) IPCSIT vol. 24
(2012)

[33] D. Lehmhus, T. Wuest, S. Wellsandt, S. Bosse, T. Kaihara,
K.-D. Thoben, and M. Busse, Cloud-Based Automated De-
sign and Additive Manufacturing: A Usage Data-Enabled
Paradigm Shift, Sensors MDPI, vol. 15, no. 12, pp. 32079–
32122, 2015, DOI 10.3390/s151229905.

[34] O. Sigmund, K. Maute, Topology optimization approaches
- a comparative review, Structural and Multidisciplinary
Optimization, vol. 48 (2013) pp. 1031–1055, DOI:
10.1007/s00158-013-0978-6

[35] S. Ivvan Valdez, S. Botello, M. A. Ochoa, J. L. Marroquin,
V. Cardoso, Topology Optimization Benchmarks in 2D:
Results for Minimum Compliance and Minimum Volume in
Planar Stress Problems, Archives of Computational Meth-
ods in Engineering, vol. 24 (2017) pp. 803–839, DOI:
10.1007/s11831-016-9190-3.

[36] J.-H. Zhu, W.-H. Zhang, L. Xia, Topology Optimization in
Aircraft and Aerospace Structures Design, Archives of
Computational Methods in Engineering, vol. 23 (2016) pp.
595–622, DOI: 10.1007/s11831-015-9151-2.

[37] M. Choi, Y. Sui, I. H. Lee, R. Meredith, Y. Ma, G. Kim, D.
Blaauw, Y. B. Gianchandani, T. Li, Autonomous Micro-
systems for Downhole Applications: Design Challenges,
Current State, and Initial Test Results, doi:10.3390/
s17102190 (2017)
an Bosse et al. - 17 - 2019

	1 Introduction
	2 Problem description and contribution
	3 Material-integrated Intelligent Systems
	4 Robotic Material and Reference Architecture
	5 Distributed Self-Optimization
	6 Self-* MAS
	A. Neighbour Negotiation
	B. Segment and Global Control
	C. Agent Behaviour: Explorer and Notify Agent
	D. Distributed Computation of Observables using Chains
	7 Agent Platforms
	A. AFVM Platform
	B. JAM Platform
	C. Hybrid Architecture and the IoT
	8 Agent Communication
	A. Tuple-Spaces
	B. Agent-to-Agent (A2A) Signals
	C. Agent-to-Node (A2N) Signals
	D. Mobile Agents
	E. Distributed Tuple-Spaces
	F. Assessment of Communication
	9 Multi-domain Simulation
	10 Use-case and Evaluation
	11 Dynamic Topology Optimization and Lightweight Structures
	12 Conclusion and Outlook

