
DOI: 10.1109/FiCloud.2016.43 Proc. of the 4th IEEE FICLOUD
Mobile Multi-Agent Systems for the Internet-of-Things and
Clouds using the JavaScript Agent Machine Platform and

Machine Learning as a Service

Stefan Bosse
University of Bremen, Department of Mathematics & Computer Science,

ISIS Sensorial Materials Scientific Centre, Germany

Abstract The Internet-of-Things (IoT) gets real in today’s life
and is becoming part of pervasive and ubiquitous computing net-
works offering distributed and transparent services. A unified and
common data processing and communication methodology is re-
quired to merge the IoT, sensor networks, and Cloud-based envi-
ronments seamless, which can be fulfilled by the mobile agent-
based computing paradigm, discussed in this work. Currently,
portability, resource constraints, security, and scalability of Agent
Processing Platforms (APP) are essential issues for the deployment
of Multi-agent Systems (MAS) in strong heterogeneous networks
including the Internet, addressed in this work. To simplify the de-
velopment and deployment of MAS it would be desirable to imple-
ment agents directly in JavaScript, which is a well known and
public widespread used programming language, and JS VMs are
available on all host platforms including WEB browsers. The novel
proposed JS Agent Machine (JAM) is capable to execute AgentJS
agents in a sandbox environment with full run-time protection and
Machine learning as a service. Agents can migrate between differ-
ent JAM nodes seamless preserving their data and control state by
using a on-the-fly code-to-text transformation in an extended
JSON+ format. A Distributed Organization System (DOS) layer
provides JAM node connectivity and security in the Internet, com-
pleted by a Directory-Name Service offering an organizational
graph structure. Agent authorization and platform security is en-
sured with capability-based access and different agent privilege
levels.

Keywords: Agents, IoT, Cloud Computing, Agent Platforms, Learning

I.INTRODUCTION

The Internet-of-Things gets more and more real in today’s
life and is becoming part of pervasive and ubiquitous comput-
ing networks offering distributed and transparent services.
Agents are already deployed successfully in production and
manufacturing processes [1], and newer trends poses the suit-
ability of distributed agent-based systems for the control of
manufacturing processes [2], facing manufacturing, mainte-
nance, evolvable assembly systems, quality control, and energy
management aspects, finally introducing the paradigm of indus-
trial agents meeting the requirements of modern industrial
applications by integrating sensor networks. Multi-agent sys-
tems can be already successfully deployed in sensing
applications, e.g., structural monitoring [3].

In [4] the agent-based architecture considers sensors as
devices used by an upper layer of controller agents. Agents are
organized according to roles related to the different aspects to
integrate, mainly sensor management, communication and data
processing. This organization isolates largely and decouples the
data management from changing networks, while encouraging
reuse of solutions.

Distributed data mining and Map-Reduce algorithms are
well suited for self-organizing MAS. Cloud-based computing
with MAS, e.g., as a base for cloud-based design and manufac-

turing, means the virtualization of resources, i.e., storage,
processing platforms, sensing data or generic information [5].
Mobile Agents reflect a mobile service architecture. Com-
monly, distributed perceptive systems are composed of sensing,
aggregation, and application layers, shown in Fig. 1. But IoT
and Cloud environments differ significantly in terms of
resources: The IoT consists of a large number of low-resource
devices interacting with the real world and having strictly lim-
ited storage capacities and computing power, and the Cloud
consists of large-scale computers with arbitrary and extensible
computing power and storage capacities in a basically virtual
world. A unified and common data processing and communica-
tion methodology is required to merge the IoT with Cloud
environments seamless, fulfilled by the mobile agent-based
computing paradigm, discussed in this work.

The scalability of complex industrial applications using such
large-scale cloud-based and wide area distributed networks
deals with systems deploying thousands up to million agents.
But the majority of current laboratory prototypes of MAS deal
with less than 1000 agents [2]. Currently, many traditional
processing platforms cannot yet handle a big number of agents
with the robustness and efficiency required by the industry [2]
and Cloud applications. In the past decade the capabilities and
the scalability of agent-based systems have increased substan-
tially, especially addressing efficient processing of mobile
agents. The integration of perceptive and mobile devices in the
Internet raises communication and operational barriers, which
must be overcome by a unified agent processing architecture
and framework, discussed in this work.

In this work the behaviour of mobile agents are modeled
with dynamic Activity-Transition Graphs (ATG), which are
directly implemented in JavaScript (JS) program code holding
the entire control and data state of an agent. The agent model
bases on the mobile processes model introduced by Milner [6]
several decades ago. The code can be modified by the agent
itself using code morphing techniques (directly supported by
JavaScript Just-in-time Compiler VM platforms), and that is
capable to migrate in the network between nodes. This
approach requires only a minimal Agent Processing Platform
Service (APPS) and a RPC-based Distributed Organization
System (DOS) layer for the deployment in the Internet domain,
entirely implemented in JS, too. The AgentJS code can be
directly executed by the underlying JS VM, in contrast to ear-
lier work where special AgentFORTH code was used and
executed on a dedicated stack-based VM (implemented itself in
JS, too) [7].
Stefan Bosse - 1 - 2016

DOI: 10.1109/FiCloud.2016.43 Proc. of the 4th IEEE FICLOUD
Fig. 1. Unified IoT - Cloud Distributed Perception and Information Processing with mobile agents and a JavaScript (JS) Agent Machine Platform (JAM) and
Programming model AgentJS. An optional Distributed Organization System (DOS) layer [7] adds connectivity and security to JAM in the Internet domain.

The Bigraphical model proposed by Milner models the
entire "computing" environment with place and link graphs,
composing finally bigraphs [8], reflected by the DOS layer and
a Directory-Name mapping service (DNS) representing graphs.

Agents processed on one particular node can interact and
synchronize by using a tuple-space, which were proposed in [9]
and [10] as a suitable MAS interaction and coordination
paradigm.

Privileged agents can store and look-up functions (e.g.,
learning algorithms) in a code dictionary. Remote interaction is
provided by signals carrying data which can cross sensor node
boundaries. The minimal APPS provides these interaction ser-
vices among agent execution, mobility, and Machine Learning
services accessed through the platform API. This approach pro-
vides a high degree of computational independency from the
underlying platform and other agents, and enhanced robustness
of the entire heterogeneous environment in the presence of
node, sensor, link, data processing, and communication
failures.

A sensor network as part of the IoT is composed of nodes
capable of sensor processing and communication. Smart sys-
tems are composed of more complex networks (and networks
of networks) differing significantly in computational power and
available resources, rising inter-communication barriers.

 They provide higher level information processing that maps
the raw sensor data to condensed information. They can pro-
vide, e.g., Internet connectivity of perceptive systems (body
area networks...). These smart systems unite sensing, aggrega-
tion, and application layers [11], offering a more unified design
approach and more generic and unified architectures. Smart
systems glue software and hardware components to an
extended operational unit, the basic cell of the IoT.

The central approach in this work focuses on mobile agents
and the ability to support mobile reconfigurable code embed-
ding the agent behaviour, the agent data, the agent
configuration, and the current agent control state, finally encap-
sulated in portable JavaScript code. The mobility is granted by
converting the agent program in a textual JSON+ representa-

tion, and finally by parsing this text and executing the code
again. This agent-specific mobile program code can be exe-
cuted on a variety of different host platforms including mobile
devices, embedded devices, sensor nodes, and servers, using
JAM and a JS VM, closing the gap between the IoT and Cloud
infrastructures.

Among the Internet-of-Things and Ubiquitous Sensorial
Perception, one major field of application for the agent-based
information processing is Structural and Structural Health
Monitoring (SM/SHM) of technical structures.

One of the major challenges in sensing systems is the deriva-
tion of meaningful information from sensor input. Basically
there are two different information extraction approaches: (I.)
First those methods based on a system model of the technical
structure, the device under test (DUT), and the sensor, and (II.)
second those without any or with only a partial model. The lat-
ter class can profit from machine learning (ML), which usually
bases on classification algorithms derived from supervised
machine learning or pattern recognition using, e.g., self-orga-
nizing [11] and distributed multi-agent systems with less or no
a-priori knowledge of the environment.

This work introduces some novelties compared to other data
processing and agent platform approaches:
• Seamless integration of different host platforms (server,

desktop computer, mobile devices, embedded devices,
material-integrated sensing systems) with one unified
agent model and portable platform architecture.

• The agent behaviour is modelled with an Activity-Transi-
tion Graph (ATG) and implemented entirely in JavaScript
with a restricted and encapsulated access to the platform
API (AgentJS).

• The novel proposed JS Agent Machine (JAM) is capable to exe-
cute AgentJS agents in a sandbox environment with full run-time
protection. Agents can migrate between different JAM nodes
seamless preserving their data and control state by using a on-the-
fly code-to-text transformation in an extended JSON+ format. A
Distributed Organization System (DOS) layer provides JAM node
Stefan Bosse - 2 - 2016

DOI: 10.1109/FiCloud.2016.43 Proc. of the 4th IEEE FICLOUD
connectivity and security in the Internet. JAM provides machine
learning as a service.

• Agent mobility crossing different execution platforms in
networks and agent interaction by using tuple-space data-
bases and global signal propagation aid solving data distri-
bution and synchronization issues in the design of
distributed sensor networks.

• Agent privilege levels based on capability rights and oper-
ational restrictions ensure agent authorization and platform
security.

• Event-based information distribution and processing with
agents reduces communication and overall network activ-
ity significantly, leading to reduced energy consumption.
Regional-distributed on-line learning of pre-processed sen-
sor data allows the prediction of the system response based
on data from prior on-line training runs with selected sys-
tem conditions. Machine learning is a platform service that
can be accessed by the agent.

The next sections introduce the activity-based agent process-
ing model, available mobility and interaction, and the proposed
JavaScript agent platform architecture related to the program-
ming model. Finally, the agent platform is evaluated with a
case study and further applications are discussed.

II.THE ACTIVITY-TRANSITION-GRAPH-BASED AAPL AGENT
BEHAVIOUR MODEL

The implementation and deployment of mobile multi-agent
systems with embedded and mobile systems is a complex
design challenge. High-level agent programming and behaviour
modelling languages can aid to solve this design issue. Reactive
activity-based agent models can aid to carry out multi-agent
systems on low-resource platforms.

In this work, agents are modelled based on a reactive behav-
iour model. The behaviour of a reactive activity-based agent is
characterized by an agent state, which is changed by activities.
Activities perform perception, plan actions, and execute actions
modifying the control and data state of the agent. Activities and
transitions between activities are represented by an activity-
transition graph (ATG). The ATG-based agent-orientated pro-
gramming language AAPL [7] was designed to offer the
modelling of the agent behaviour on an easy-to-understand pro-
gramming level, defining activities with procedural statements
and transitions between activities with conditional expressions
(predicates), which is suitable for beginners and non-experts.
Though the imperative programming model is quite simple and
closer to a traditional PL it can be used as a common source and
intermediate representation for different agent processing plat-
form implementations (hardware, software, WEB, simulation).

Definition: There is a multi-agent system (MAS) consisting of a set
of individual mobile agents {A1,A2,..}. There is a set of different agent
behaviours, called classes C={AC1, AC2,..}. A class AC consists of an
Activity-Transition Graph that can be modified at run-time, and agent
body variables. Activities perform actions like computation, migration,
agent creation or destruction, and interaction with other agents. An
agent is initially derived from one class. In a specific situation an
agent Ai is processed on a network node Nl (e.g., mobile device) at a
unique spatial location l. There is a set of different nodes N={N1,
N2,..} arranged in networks with physical or logical connectivity (e.g.,
a two-dimensional grid). Each node is capable to process a number ni

of agents in parallel or sequentially scheduled. An agent including its
state can migrate to a neighbour node preserving its state (snapshot)
where it continues working. There are agent sub-classes SC ⊆ S ⊆
C derived from super classes S, enabling agent behaviour spe-
cialization and agent goal selection at run-time.

Therefore, the agent behaviour and the action on the envi-
ronment is encapsulated in agent classes, with activities
representing the control state of the agent reasoning engine,
and conditional transitions connecting and enabling activities.
Activities provide a procedural agent processing by a sequential
execution of imperative data processing and control statements.
Agents can be instantiated from a specific class at run-time. A
multi-agent system composed of different agent classes enables
the factorization of an overall global task in sub-tasks, with the
objective of decomposing the resolution of a large problem into
agents in that they communicate and cooperate with each other.

The activity-graph based agent model is attractive due to the
proximity to the finite-state machine model, which simplifies
the programmatically implementation.

An activity is activated by a transition depending on the
evaluation of (private) agent data (conditional transition)
related to a part of the agents belief in terms of BDI architec-
tures, or using unconditional transitions (providing sequential
composition), shown in Fig. 2. Each agent belongs to a specific
parameterizable agent class AC, specifying local agent data
(only visible for the agent itself), types, signals, activities, sig-
nal handlers, and transitions.
A. AAPL Agent Classes, Reconfiguration, and Instantiation

The AAPL programming model (detailed description in [7])
relies on the ATG behaviour model by means of an agent class
template containing activity and transition sections, shown in .
Fig. 2. APPL offers statements for parameterized agent instanti-
ation, like the creation of new agents and the forking of child
agents inheriting the parent state, using the new(args) and
fork(args) statements, respectively.

There are statements for ATG transformations and composi-
tion. Agents can modify their behaviour at run-time by
reconfigure the ATG using transitionX(ai,aj,cond?)
and activityX(a1,a2,..) statements with X=+ (add), ‐
(remove), * (update), respectively.
B. AAPL Agent Interaction

Furthermore, unified agent interaction is provided by using
synchronized Linda-like tuple database space access and signal
propagation (messages carrying simple data delivered to asyn-
chronous executed signal handlers).

Access of the tuple space is granted by using in(TP),
rd(TP), rm(TP), exist?(TP), and out(T) primitives (T: n-
dimensional value tuple, TP: n-dimensional tuple with value
patterns), reading, removing, testing, or generating tuples,
respectively. Reading bases on template pattern matching and
can block agent execution if there is actually no match. Tuple-
space communication is generative, i.e., a tuple is independent
of the generating process after generation, and can have a life-
time beyond the generating process.

Stefan Bosse - 3 - 2016

DOI: 10.1109/FiCloud.2016.43 Proc. of the 4th IEEE FICLOUD
Fig. 2. Agent behaviour programming level with activities and transitions (AAPL, middle); agent class model and activity-transition graphs (left); agent instan-
tiation, processing, and agent interaction on the network node level (right) [12].

For some situations, tuple can remain in the tuple space never
consumed. To avoid a flooding of tuple spaces with "orphan"
tuples, the mark(tmo,T) operation can be used to store tuples
with a limited lifetime tmo, which are destroyed by the TS
manager automatically. These marking are extensively used in
divide-and.-conquer systems discussed in the following sec-
tions. A signal SIG can be sent to an agent specified by its ID
identifier using the send(ID,SIG,ARG) statement. A signal
can be send to a group of agents of a specified agent class AC
and within a given local range Δ by using the broad‐
cast(AC,Δ,SIG,ARG) statement.
C. AAPL Agent Mobility.

Agent mobility (migration) is provided by the
moveto(DIR) statement. The destination can be a geometric
direction (e.g., NORTH), a delta-distance vector, a host port, or
an URL/IP address.
D. AAPL Machine Learning

Learning agents can access basic machine learning opera-
tions provided by the platform as a service, using model=
learn(datasets, classes, features, alg?) and
classify(model, dataset) primitives. The agent stores
only the learned model, and do not carry any learning algo-
rithms or previous training sets.

Finally, agents can store and look-up functions in a code dic-
tionary by using the store(name, fun) and fun=
lookup(name) primitives.

III.JAM: THE JAVASCRIPT AGENT PROCESSING MACHINE
PLATFORM

Commonly, agents are implemented with some high-level
modelling and programming language having a specific, often
abstract, agent behaviour and interaction model, that is finally
compiled to machine code for native host platforms or virtual
machines. The AAPL Programming Language is a common
base for software and hardware implementations of reactive
agents supporting a wide range of agent processing and host
platforms including microchip hardware designs [12]. The lat-
est extension of the agent platform family was the Agent Forth
Virtual Machine (AFVM) fully implemented in JavaScript
including Browser implementations, which is capable of exe-
cuting agent code using a stack-based FORTH machine

language with AAPL agent-specific extensions [7]. The AFVM
was optimized originally for low-resource environments,
including single microchip implementations. One major feature
of AAPL agents is the capability of reconfiguration and agent
behaviour (re)composition at run-time. The code-based agent
platforms therefore support this by enabling and using code-
morphing.

To simplify the development and deployment of multi-agent
systems it would be desirable to implement AAPL agents
directly in JavaScript (JS), which is a well known and public
widespread used programming language. JS execution plat-
forms are available for a very broad range of devices and
operating systems, e.g., Intel x86/x64, Arm32, Linux, Win-
dows, Solaris, MacOS, FreeBSD, Android, IOS, and many
more. Furthermore, the implementations of mobile agents
directly in JS would benefit from actually existing high-perfor-
mance JS VMs, e.g., Googles Chrome V8 or Mozillas
Spidermonkey engines with Just-in-Time native code compila-
tion (JIT). At a glance, JS is a very simple but highly dynamic
language covering procedural, object-orientated, and functional
concepts. Even if a JIT-based VM is used, full code-to-text and
text-to-code transformation is preserved at any execution time,
including functions and data. This enables the capability of
code morphing at run-time, a prerequisite for AAPL-based
agents, used to store the current state of an agent process (e.g.,
prior to migration) and to modify the behaviour of an agent by
applying a recomposition to the ATG by the agent itself. In
contrast to JAVA and common JAVA-based agent frameworks
(e.g., JADE), JS has a loose coupling to and low dependencies
of the underlying execution platform. This is a significant
advantage over JAVA or C programming languages, which
must be always compiled before the code can be executed, and
being very sensitive for API and library mismatches. JS consid-
ers functions as first-order values, enabling code
reconfiguration on-the-fly like any other data modification
using the built-in eval function.
A. AgentJS: JavaScript Object and extended Code-to-Text

JSON+ Representation
Textual representations used as an data and code interchange

format is a prerequisite for data and code processing in strong
heterogeneous platform and network environments, mixing

: Cond
Stefan Bosse - 4 - 2016

DOI: 10.1109/FiCloud.2016.43 Proc. of the 4th IEEE FICLOUD
big- and little endian machines, different data word sizes, and
data codings. Though byte-code based interchange formats are
widely used, they require a strict compliance of the coding
between a sender and a receiver. At any time, a JS object can be
converted to text in JSON format at run-time. Originally, JSON
was introduced for portable exchange of JS data objects in a
textual representation only, being much more compact and eas-
ier to interpret than XML. A JAM/AgentJS agent is basically a
JS object containing data (values, data objects, arrays) and
functions, representing the agent activities and transitions of the
ATG, requiring an extended JSON text formatter and parser
supporting functions, which was introduced in JAM. An entire
agent process can be converted at any time to the textual repre-
sentation (JSON+) preserving its current control and data state,
which can be exchanged by different network and agent plat-
form nodes, and that is finally back converted to JS code. The
only existing limitation are circular (self) references inside of
an object, which still cannot be handled, but not being a real
restriction. Transferring text instead of binary code results in a
significantly increased communication cost on agent migra-
tion, but the text can be compressed reducing the size
significantly (experiments showed that LZ compressing reduces
the JSON+ text size and hence the communication costs about
5-6 times). Embedded devices can utilize hardware compressor
modules, e.g., using FPGA-based co-processors, maximizing
communication efficiency without additional CPU costs.
B. AgentJS Sandbox Environment

Stability and robustness of the agent processing platform is
one major challenge in the design of those platforms. Agents
can be considered as autonomous or semi-autonomous pro-
cesses and execution units. But this autonomy requires strictly
bounded and safe platform environments for the execution of
agent processes, and the strict isolation of agent processes from
each other. An agent platform must be capable to execute hun-
dreds and thousands of different agent processes. Though there
are extension modules for some JS VMs (e.g., webworker)
allowing the execution of a JS program in a separate host pro-
cess (or thread), this method is not portable and is creates
significant overhead in time and memory space. Unfortunately,
JS has only a very limited scoping mechanism, basically lim-
ited to function closures and the this object, and with one global
space shared by all imported modules and evaluated code. This
limitation initially prohibits the safe and interference-free exe-
cution of multiple agent processes within one JS VM. But
fortunately, JS provides the with (mask) {code} statement,
executing the code with an additional new overlaid name space
given by the mask object argument. This cannot limit the name
space scope (scopes are chained, and higher scopes like the
global one are still visible), but it can be used to override higher
scope level and global name qualifiers, and to invalidate refer-
ences to free variables and functions without compromising
other agent processes or the JAM modules.

So basically the agent process execution is an execution of a
function with a strictly limited visible name space without any
bindings to external and free variables and functions. To ensure
this, the JSON parsing and evaluation is always performed
inside the with statement with a mask environment only pro-
viding a selected AIOS set of objects and functions, discussed
in the next sub-section. A creation of a new agent will always

first stringify the agent object, and finally coding back a sand-
boxed agent object free of any free and global object
references, which can be executed the AIOS agent scheduler
without any interference with the platform and other agents.
This approach protects the agent execution and JAM at least
against failures by accident using common JS coding styles.
The capability of full intrusion protection depends on the JS
VM environment itself.
C. AIOS: The Agent Execution and IO Environment for

AgentJS
The AIOS is the main execution layer of JAM. It consists of

the sandbox execution environment encapsulating an agent pro-
cess, with different privileged sub-sets depending of the agent
role (level 0,1,2). Furthermore, the AIOS module implements
the agent process scheduler and provides the API for the logical
(virtual) world and node composition. The sandbox environ-
ment provides restricted access to a code dictionary based on
the privilege level, enabling code exchange between agents.
D. Agent Scheduling and Checkpointing

Unfortunately, JS has a strictly single-threaded execution
model with one main thread, and even by using asynchronous
callbacks, these callbacks are executed only if the main thread
(or loop) terminates. This is the second hard limitation of the
execution of multiple agent processes within one JS JAM plat-
form. Agents processes are scheduled on activity level, and a
non-terminating agent process activity would block the entire
platform. Current JS execution platform including VMs in
WEB browser programs provide no reliable watchdog mecha-
nism to handle non-terminating JS functions or loops. Though
some browsers can detect time outs, they are only capable to
terminate the entire JS program. To ensure the execution stabil-
ity of the JAM and the JAM scheduler, and to enable time-
slicing, checkpointing must be injected in the agent code prior
to execution. This step is performed in the code parsing phase
by injecting a call to a checkpoint function CP() at the begin-
ning of a body of each function contained in the agent code, and
by injecting the CP call in loop conditional expressions. Though
this code injection can reduce the execution performance of the
agent code significantly, it is necessary until JS platforms are
capable of fine-grained checkpointing and thread scheduling
with time slicing. On code-to-text transformation (e.g., prior to
a migration request), all CP calls are removed.

AIOS provides a main scheduling loop. This loop iterates
over all logical nodes of the logical world, and executes one
activity of all ready agent processes sequentially. If an activity
execution reaches the hard time-slice limit, a SCHEDULE excep-
tion is raised, which can be handled by an optional agent
exception handler (but without extending the time-slice). This
agent exception handling has only an informational purpose for
the agent, but offers the agent to modify its behaviour. All con-
sumed activity and transition execution times are accumulated,
and if the agent process reaches a soft run-time limit, an EOL
exception is raised. This can be handled by an optional agent
exception handler, which can try to negotiate a higher CPU
limit based on privilege level and available capabilities (only
level-2 agents). Any ready scheduling block of an agent and
signal handlers are scheduled before activity execution.
Stefan Bosse - 5 - 2016

DOI: 10.1109/FiCloud.2016.43 Proc. of the 4th IEEE FICLOUD
1 agent explorer(dir,radius) var explorer = function (dir,radius) {
2 var x,y:int; this.dir=dir; this.radius=radius;
3 var mean,hop:int; this.x=0; this.y=0; this.mean=0;
4 var goback:boolean; this.hop=0; this.goback=false;
5 activity init = .. this.act = {
6 end; init:function() {..},
7 acitivity move = move:function() {
8 if (hop=radius) goback := true; if (this.hop==radius) this.goback=true;
9 else begin hop++; moveto(dir); end; else { this.hop++; moveto(this.dir);}
10 end; },
11 activity percept = percept: function () { var s;
12 var s:int; rd(SENSOR,s?); B([function () {rd([’SENSOR’,_],function(t) {s=t[1]}),
13 mean := (mean+s)/2; function () {mean = (mean+s)/2}]);
14 end; },
15 activity goback = goback: function () {
16 dir=opposite(dir); this.dir=opposite(this.dir);
17 end; },
18 activity deliver = deliver: function () {
19 out(MEAN,mean); signal($parent,DELIVER); out([’MEAN’,this.mean]); signal(parent(),DELIVER);
20 end; }};
21 handler S(v) = .. end; this.on = { S:function(v) {..} .. };
22 transitions = this.trans = {
23 init‐>move; init: function () {return ’move’},
24 move‐>percept:not goback; move: function () {
25 move‐>move:goback and hop>0; if (!this.goback) return ’percept’;
26 move‐>deliver:goback and hop=0; else if (this.goback && this.hop>0)
27 move‐>goback:hop=radius; return ’move’;
28 percept‐>move; else if (this.goback && this.hop==0)
29 goback‐>move; return ’deliver’;
30 deliver‐>end; else if(hop==radius) return ’goback’},
31 end; goback: function () {return ’move’},
32 end; deliver: function () {retunr ’end’}};
33 this.next=’init’};

Example 1.A simple neighbourhood explorer agent programmed in AAPL (left) and the corresponding AgnetJS code (right). Note: In AgentJS this always refer-
ences the agent object, even in deeper context levels.

After an activity was executed, the next activity is computed
by calling the transition function in the transition section.

In contrast to the AAPL model that supports multiple block-
ing statements (e.g., IO/tuple-space access) inside activities, JS
is not capable of handling any kind of process blocking (there
is no process and blocking concept). For this reason, scheduling
blocks can be used in AgentJS activity functions handled by the
AIOS scheduler. Blocking AgentJS functions returning a value
use common callback functions to handle function results, e.g.,
inp(pat,function(tup){..}).

A scheduling block consists of an array of functions, i.e.,
B(block) = B([function(){..}, func‐
tion(){..},...])., executed one-by-one by the AIOS
scheduler. Each function may contain a blocking statement at
the end of the body. The this object inside each function ref-
erences always the agent object. To simplify iteration, there is
a scheduling loop constructor L(init, cond, next,
block, finalize) and an object iterator constructor
I(obj, next, block, finalize), used, e.g., for array
iteration.
E. AgentJS-AAPL Relationship

AgentJS is a modified and restricted JS programming and
object model, which can be directly executed by any JS VM
using the AIOS execution layer. The AAPL model can be
directly mapped on this AgentJS model without further trans-
formation steps, shown in Ex. 1.. The only exception is the
decomposition of activities in scheduling blocks if they contain
blocking statements (e.g., line 12), except one blocking tail-
statement at the end of an activity, that do not require an an

encapsulation in a scheduling block. Transition functions may
not block, otherwise an exception is raised.

There is a significant difference between AgentJS and com-
mon JS programs: The this object inside AgentJS activity,
transition, callback, and first-order function calls of AIOS pro-
vided functions is always bound to the agent object self
reference! Due to the JSON+ code-text transformation, there
cannot be any free variables inside an agent object (the refer-
ences would be lost on transformation and migration),
including the commonly used self variable.
F. Agent Roles

Security is another major challenge in distributed systems,
especially concerning mobile agent processes. Each agent plat-
form node (i.e, one physical VM, with multiple JAM VMs
operating on the same network node) can receive agents origi-
nating either from inside trusting node networks or coming
from untrusting networks not known by the VM. Generally, the
VMs have no information about other network nodes except a
sub-set of network connectivity used to receive and propagate
agent code. To distinguish at least trusting and untrusting
agents, different agent privilege levels were introduces, provid-
ing different AIOS API sets. Privilege level 0 is the lowest level
and grants agents only computational and tuple-space IO state-
ments. Level 0 agents are not allowed to replicate, to create or
kill other agents, to send signals, and to modify their code.
Level 1 agents can access the common AIOS API operations
and capabilities, including agent replication, creation, killing,
sending of signals, and code morphing. Level 2 agents - the
most privileged - are additionally capable to negotiate (set)
their desired resources on the current platform, i.e., CPU time
Stefan Bosse - 6 - 2016

DOI: 10.1109/FiCloud.2016.43 Proc. of the 4th IEEE FICLOUD
and memory limits. An agent of level n may only create agents
up to level n. Level-2 agents can initially only be created inside
the JAM. They can fork level-2 agents, but after a migration
the destination node decides about the privilege level and can
lower it, e.g., considering the agent source being not trustful. A
migrated agent can get a higher privilege level by negotiation,
requiring a valid platform capability (see Sec. IV.) with the
appropriate rights. After migration, the privilege is lost and
must be re-negotiated on a new platform using capabilities.
G. The Execution Platform and Networking

The JAM execution platform consists of different virtualiza-
tion layers. Each physical JAM node (a program executed on a
host platform, e.g., a smart phone or server) has a logical world
consisting of logical nodes (at least one). Agent processes are
bound to and executed on one logical node at any time. Logical
nodes can be connected by using virtual circuit links (queues),
and physical .nodes can be connected by using peer-to-peer net-
work connections (sockets, IP links, UART serial links, and so
on) or the DOS layer introduced in the next section. Agents can
migrate between logical and physical nodes. The entire JAM
(excluding DOS) platform requires about 600kB JS text code
only.
H. Agent Process Mobility and Migration

The control state of an agent is stored in a reserved agent
body variable next, pointing to the next activity to be exe-
cuted. The data state of an AgentJS agent consists only of the
body variables. There are no references to variables outside the
agent process context. Migration requires a snapshot of the
agent process, in this case the agent itself, a code-to-text trans-
formation, transportation of the text code to another logical or
physical node, and a back text-to-code conversion with a new
sandbox environment. The agent object is finally passed to the
new node scheduler and can continue execution. Text code
sizes of medium complex agents (with respect to data and con-
trol space) are reasonable low about 10kB, simpler agents tend
to 1kB, that can be significantly reduced by using LZ compres-
sion. One drawback of this method raises with pending
scheduling blocks existing still in the snapshot. They must be
entirely saved in the migrated snapshot, too, and back con-
verted to code on the new node. Pending scheduling blocks
contain function code and hence can increase the snapshot size
significantly. Therefore, migration (using the moveto opera-
tion) requests should not be embedded in a scheduling block.
I. SEJAM: The JavaScript Agent Simulator Environment

Commonly, execution and simulation platforms are com-
pletely different environments, and simulators are significantly
slower in the agent execution compared to real-world agent
processing on optimized processing platforms. SEJAM is a
MAS AgentJS simulator implemented on top of the JAM plat-
form layer, executing agents with the same VM as a standalone
agent platform would do. This capability leads to a high-speed
simulator, only slowed down by visualization tasks and user
interaction. Furthermore, multiple simulators can be connected
via a stream link (sockets, IP links, etc.), improving the simula-
tion performance by supporting parallel agent processing.
Furthermore, the simulator can be directly connected to any
other JAM node.

IV.SECURITY BY CAPABILITY-BASED AUTHORIZATION AND A
LIGHTWEIGHT DISTRIBUTED ORGANIZATION SYSTEM LAYER

In the simplest case JAM nodes are connected by peer-to-
peer network links. But large-scale network environments like
the Internet are organized in hierarchical graph-like structures
with changing and transparent connectivity. To organize JAM
nodes in such large-scale and heterogeneous networks, an addi-
tional Distributed Organization System (DOS) layer is
required. Furthermore, large-scale networks introduce new
issues in privacy, security, and trust, which must be addressed
by the DOS.

The fundamental communication concept of the DOS - that
is entirely implemented in JS (see [7] for details) - are Object-
orientated Remote Procedure Calls (ORPC). They are initiated
by a client process with a transaction operation, and serviced by
a server process by a pair of get-request and put-reply opera-
tions, based on the Amoeba DOS [13]. Transactions are
encapsulated in messages and can be transferred between a net-
work nodes. The server is specified by a unique port, and the
object to be accessed by a private structure containing the
object number (managed by the server), a right permission field
specifying authorized operations on the object, and a second
port protecting the rights field against manipulation (see [13]
for details) using one-way encryption with a private port. All
parts are merged in a capability structure [srvport]
obj(rights)[protport]. Capabilities are also used in this
work for agent-agent platform negotiation, with a server port
designating a platform or platform network. The rights field can
only changed with the original secret protection port (otherwise
protport is invalid).

The integration and network connectivity of client-side
application programs like Web browsers as an active agent
processing platform requires client-to-client communication
capabilities, which is offered in this work by a broker server
that is visible in the Internet or Intranet domain. To provide
compatibility with and among all existing browser, node.js
server-side, and client-side applications, a RPC based inter-
process communication encapsulated in HTTP messages
exchanged with the broker server operating as a router was
invented. Client applications communicate with the broker by
using the generic HTTP client protocol and the GET and PUT
operations. RPC messages are encapsulated in HTTP requests.
If there is a RPC server request passed to the broker, the broker
will cache the request until another client-side host performs a
matching transaction to this server port. The transaction is
passed to the original RPC server host in the reply of a HTTP
GET operation.

There is a Directory and Name Server (DNS) providing a
mapping of names (strings) on capability sets, organized in
directories. A directory is a capability-related object, too, and
hence can be organized in graph structures. DNS server can be
distributed and chained in graphs, too. A capability set binds
multiple capabilities associated with the same semantic object,
e.g., a file that is replicated on multiple file servers. Each direc-
tory contains rows and a set of columns for each row with
different restricted row capabilities enabling rights restriction
and selection of objects and authorization key, e.g., used for
agent role negotiation, privilege granting, code dictionary
access. Column selection can base on the agent privilege level.
Stefan Bosse - 7 - 2016

DOI: 10.1109/FiCloud.2016.43 Proc. of the 4th IEEE FICLOUD
V.PLATFORM EVALUATION

The JAM platform was evaluated with different benchmark
tests executed on different host platforms (A & B), in terms of
Clouds low-resource, in terms of IoT mid-resource systems.
Please note that the measurement results depend on the JS VM
garbage collector algorithm and action at run-time.
Test host platform A: Embedded System, Intel(R) Celeron(R)
CPU 743 @ 1.30GHz, 2GB DRAM, node.js v0.10.36, Sun
Solaris-11 OS, One physical JAM with a JAM world consisting
of four logical (virtual) nodes, connected in a grid (ring) with
virtual circuit links (queues).
Test host platform B: Smartphone, Toughshield R500+, 1GB
DRAM, Android 4.1.2, quad-core Arm Cortex A5, ARMv7-A,
1.2GHz, jxcore v.0.10.40

The creation (instantiation) or forking of new agents
involves always a code-to-text and text-to-code transformation
using the sandbox environment. The performance of this opera-
tion is shown in Tab. I and II, for a small and a complex agent
class. Below 1000 agents/physical JAM an agent creation
requires about 1-5ms, and the memory overhead is reasonable
small. Migration requires the same code transformation, result-
ing in similar results, shown in Tab. III. The ARMv7 host
platform under performs significantly compared with the x86
platform. This has two reasons: The ARMv7 processor has
smaller code/data caches (L1:32 vs. 64kB, L2:512kB vs. 1MB),
and the node.js/jxcore VM is optimized for x86 architectures.
Tab. IV shows the agent context switch performance of the
JAM scheduler, which is very fast. Again. the ARMv7 platform
under performs, but is still fast enough for mobile devices.
Tuple space I/O adds only a small overhead, as shown in Tab.
V. Finally, Tab. VI poses the minimal memory requirement for
a JAM node with a typical agent population. Commonly, less
than 32MB is required, confirming the suitability of JAM for
low-resource embedded systems.

The test agent classes used in this performance evaluation
are explained in Sec. VI..

VI.USE CASE: EVENT-BASED SENSING AND LEARNING WITH
MULTI-AGENT SYSTEMS

Large scale perceptive and ubiquitous systems with hun-
dreds and thousands of devices require data processing
concepts far beyond the traditional centralized approaches.
Multi-Agent systems can be used to implement smart and opti-
mized sensor data processing in these distributed sensor
networks. In the following use case of a sensor network used
for structural monitoring (e.g., of buildings, bridges, wind
energy wings), different data processing and distribution
approaches are implemented with agents, shown in Fig. 3, lead-
ing to a significant decrease of network communication activity
and a significant increase of reliability and Quality-of-Service.

Creation of Agents Time/Agent +Memory/Agent
100 A:0.7ms, B: 1.7ms A:2.0kB, B: 17.9kB
1000 A:0.7ms, B: 2.4ms A:2.9kB, B: 21.7kB
10000 A:23ms, B: 10.6ms A:18.2kB, B: 17.5kB

Table I. Test Case 1: Agent creation on a logical (virtual) node, simple agent
(text code size 0.9kB, five activities each with two statements, two variables
and two parameters), memory: VM overhead/agent (heap+stack)

Creation of Agents Time/Agent +Memory/Agent
100 A:1.6ms, B:4.5ms A:11.5kB, B:131kB
1000 A:1.6ms, B: 5.1ms A:91kB, B: 83.8kB
10000 A:3.1ms, B:- A:80.8kB, B: -

Table II. Test Case 2: Agent creation on one logical (virtual) node, complex
learner agent (agent text code size 10.4kB, two sub-classes: explorer, voter,
total 20 activities, each with about 10 statements, 33 variables, and two param-
eters), memory: VM overhead/agent (heap+stack)

Initial Agents /
logical node

(total)

Migrations/
Agent (total)

Migration+ Execu-
tion Time/Agent

+Memory/Physi-
cal node

1 (4) 1000 (4000) A:1.3ms, B: 4ms A:28MB, B:16MB
10 (40) 1000 (40000) A:1.0ms, B: 3.7ms A:26MB, B:17MB
100 (400) 1000 (400000) A:1.1ms, B: 3.3ms A:70MB, B:28MB

Table III. Test Case 3: Agent migration from one logical (virtual) node to a
neighbour node, physical node with four logical nodes connected in a ring,
explorer agent (agent text code size 4.3kB), n agents on each logical node, N
circular migrations in the ring network two activity executions/agent/migra-
tion, memory: VM overhead/agent (heap+stack)

Agents / logical
node (total)

Scheduled Activi-
ties/Agent (total)

Scheduling +
Execution

Time/Agent

+Memory/Physi-
cal node

1 (4) 20000 (80000) A:16μs, B:67μs A:5MB, B:7 MB
10 (40) 20000 (800000) A;8μs, B:33μs A:6MB., B: 9MB
100 (400) 20000 (8000000) A:8μs, B:29μs A:20M,B :9MB

Table IV. Test case 4: Agent scheduling on four logical (virtual) nodes, simple
agent (text code size 1kB, five activities each with one statement, two variables,
and two parameters), memory: VM overhead/physical node (heap+stack)

Agents / logical
node (total)

Scheduled
Activities/

Agent (total)

Scheduling + IO
Execution Time/

Agent

+Memory/Physical
node

1 (4) 2000 (8000) A:31μs, B:151μs A:4MB, B: 7MB
10 (40) 2000 (80000) A28μs, B:119 μs A:6MB, B: 7MB
100 (400) 2000 (800000) A:64μs, B: 217 μs A:26MB, B: 16MB

Table V. Test case 5: Agent scheduling on four logical (virtual) nodes, sim-
ple agent with Tuple Space I/O (pairwise out/in in different activities) (text
code size 1kB, five activities each with one statement, two variables, and two
parameters), memory: VM overhead/physical node (heap+stack)

Agents / physical node VM Memory / physical node
1 A:23.2MB, B: 25 MB
10 A:23.7MB, B:25 MB
100 A:31.1MB, B: 38 MB
1000 A:104MB, B: 107 MB

Table VI. Test case 6: Lowest memory requirements in minimal JAM configu-
ration (1 world, 1 node), agent creation on one logical (virtual) node, complex
machine learner agent (text code size 10.4kB, LZ compressed size 2.1kB, two
sub-classes: explorer, voter, total 20 activities, each with about 10 statements,
33 variables, and two parameters), with VM parameter --max-new-space-
size=1024, total VM memory=heap+stack, after agent creation.
Stefan Bosse - 8 - 2016

DOI: 10.1109/FiCloud.2016.43 Proc. of the 4th IEEE FICLOUD
An event-based sensing behaviour is used to collect sensor
information from sensing devices (nodes). Adaptive path find-
ing (routing) supports agent migration in unreliable networks
with missing links or nodes by using a hybrid approach of ran-
dom and attractive walk behaviour. Self-organizing agent
systems with exploration, distribution, replication, and voting
behaviours are used to identify a region of interest (ROI, a col-
lection of stimulated sensors) and to distinguish sensor failures
(noise) from correlated sensor activity within this ROI.

It is assumed in this Ex. that sensor nodes are arranged in a
two-dimensional grid network (as shown in Fig. 3) providing
spatially resolved and distributed sensing information of the
surrounding technical structure, e.g., a metal plate (based on
previous work in [3]), or composite material.

Fig. 3. The logical view of a sensor network with a two-dimensional mesh-
grid topology integrated in a technical structure (Top) and examples of the
population with different mobile and immobile agents (Bottom): node ,learner,
explorer, and voting agents. The sensor network can contain missing or broken
links between neighbour nodes.

Usually a single sensor cannot provide any meaningful
information of the load of the mechanical structures. A con-
nected area of sensors (complete sensor matrix or a part of it) is
required to calculate the response of the material due to applied
forces.

The complete sensor data processing system is partitioned
into different agent classes. Some classes are super classes
composed of sub-classes (e.g. the learner with the explorer and

voter sub-classes). A sensor node is managed by a node agent,
which creates and manages a learner agent, responsible for
local sensor processing and prediction. If the node agent detects
a change of its sensor(s), it will notify the learner agent by
using a notification request tuple the learner is waiting for. This
selects either the learning or classification modus of the learner.
The learner agent will send out mobile explorer agents in a ROI
that collect sensor data of the surrounding neigbourhood deliv-
ered back to the learner using tuple and signal I/O. After the
data set is complete, either the learner uses the new data set for
regional learning by accessing the platform ML API, or it uses
the data set for a regional classification with the already learned
and stored model. Each activated learner that performed a clas-
sification will send a classification vote to the outside of the
network by creating voter agents (for redundancy four agents
send out in orthogonal directions). The votes are further passed
to the edge nodes and election agents, which collect all votes
and compute the major global voted classification result., e.g., a
specific detected load situation. A modified Decision tree learn-
ing model is used for load case classification, well suited due to
the compact model representation (requiring less than 1kB
storage). The event-based MAS behaviour and its temporal
agent population is shown in Fig. 4, retrieved from simulation.
Each peak represents a run. Most load situations can be
detected by this learning and major voting approach. Each
learning/classification run requires about 0.5-1MB communica-
tion costs (using code compression) in the entire network only,
and the agent population reaches up to 400 agents (peak value,
but executed in the simulation by one physical JAM node), and
a logical JAM node 10 agents.

Fig. 4. Temporal agent population in the example network during learning
(training) and classification phases (with 6 different load cases).

������

���

�	
��� ������

�����

����

�

�

�

�

�

�

�
�

� �����

����	
 �	��

���	
� �	������	�

��������	
������ �

����� �������

���	��� ���� ����������
�	��������
�����

����	��� ����
����������

�

�

�
����� � � �

�

�	�� �������

��
��� ������	�

����	
 �
	�������

������� ���
����

�	��
Stefan Bosse - 9 - 2016

DOI: 10.1109/FiCloud.2016.43 Proc. of the 4th IEEE FICLOUD
The structural monitoring learning approach as part of a sen-
sor network can be extended to more global applications. E.g.,
ubiquitous perception using consumer devices equipped with
sensors like smart phones, which can be used, e.g., for damage
detection after earthquakes. Mobile learners can carry learned
models for further processing on different nodes. Another case
is cloud-based manufacturing with back propagation of sensor
data gathered from products using AgentJS agents.

VII.CONCLUSIONS AND OUTLOOK

Large-scale distributed applications require a new process-
ing and communication paradigm, which addresses scalability,
adaptability, self-organization, robustness, and resource con-
straints. In this work, agents are represented by mobile
JavaScript code (AgentJS) that can be modified at run-time by
agents and that are processed by a modular and portable agent
platform JAM in a protected sandbox environment encapsulat-
ing agent processes. JAM provides ML as a service, splitting
algorithms (platform) from model data (agent), demonstrated
with a structural monitoring use-case. JAM is implemented
entirely in JS. The presented approach enables the development
of perceptive clouds and smart systems of the future integrated
in daily use computing environments and the Internet. Agents
can migrate between different host platforms including WEB
browsers by migrating the program code of the agent, embed-
ding the state and the data of an agent, too, in an extended
JSON+ format. Migration of agents create snapshots and code-
text-code transformations, which is executed with low latency
as shown. The design and platform approach is suitable to
cover the sensing, aggregation, and application layers of large-
scale and massively distributed information processing systems
efficiently. The Internet and WEB platform network is embed-
ded in a distributed co-ordination and management shell
providing an Object-Capability based RPC and global domain
naming and file services. The RPC communication is encapsu-
lated in generic IP/HTTP messages. A broker service is used to
connect IP client-side only applications like WEB browsers or
applications hidden in private networks, which are then fully
capable of client- and server-side RPC communication.

The evaluation of the JAM shows the performance metrics
and capability to process large-scale agent systems beyond the
1000 agent limit with low overhead, and confirm the suitability
of JAM for low-resource embedded and mobile devices. Each
JAM node is capable to execute up to 1000 agents with reason-
able speed. The entire JAM (excluding DOS) platform requires
about 600kB JS text code only, suitable for embedded systems.
REFERENCES

[1] M. Caridi and A. Sianesi, Multi-agent systems in production
planning and control: An application to the scheduling of
mixed-model assembly lines, Int. J. Production Economics, vol.
68, pp. 29–42, 2000.

[2] M. Pechoucek, V. Marík, 2008. Industrial deployment of multi-
agent technologies: review and selected case studies. Auton.
Agent. Multi-Agent Syst. 17 (3), 397–431

[3] S. Bosse, A. Lechleiter, Structural Health and Load Monitor-
ing with Material-embedded Sensor Networks and Self-organ-
izing Multi-agent Systems, Procedia Technology, 2014, DOI:
10.1016/j.protcy.2014.09.039

[4] M. Guijarro, R. Fuentes-fernández, G. Pajares, A Multi-Agent
System Architecture for Sensor Networks, Multi-Agent Sys-

tems - Modeling, Control, Prog., Simulations and Applica-
tions, 2008.

[5] D. Lehmhus, T. Wuest, S. Wellsandt, S. Bosse, T. Kaihara, K.-
D. Thoben, and M. Busse, Cloud-Based Automated Design and
Additive Manufacturing: A Usage Data-Enabled Paradigm
Shift, Sensors MDPI, vol. 15, no. 12, pp. 32079–32122, 2015,
DOI 10.3390/s151229905.

[6] R. Milner, Communicating and mobile systems: the π-calcu-
lus, Cambridge University Press, Cambridge (1999)

[7] S. Bosse, Unified Distributed Computing and Co-ordination in
Pervasive/Ubiquitous Networks with Mobile Multi-Agent Sys-
tems using a Modular and Portable Agent Code Processing
Platform, in The 6th International Conference on Emerging
Ubiquitous Systems and Pervasive Networks (EUSPN 2015),
Procedia Computer Science, 2015.

[8] R. Milner, The space and motion of communicating agents.
Cambridge University Press, 2009.

[9] L. Chunlina, L. Zhengdinga, L. Layuanb, and Z. Shuzhia, A
mobile agent platform based on tuple space coordination, Ad-
vances in Engineering Software, vol. 33, no. 4, pp. 215–225,
2002

[10] Z. Qin, J. Xing, and J. Zhang, A Replication-Based Distribu-
tion Approach for Tuple Space-Based Collaboration of Het-
erogeneous Agents , Research Journal of Information
Technology, vol. 2, no. 4. pp. 201–214, 2010

[11] V. Di Lecce, M. Calabrese, and C. Martines, From Sensors to
Applications: A Proposal to Fill the Gap, Sensors & Trans-
ducers, vol. 18, no. Special Isse, pp. 5–13, 2013.

[12] S. Bosse, Design of Material-integrated Distributed Data Pro-
cessing Platforms with Mobile Multi-Agent Systems in Hetero-
geneous Networks, Proc. of the 6’th International Conference
on Agents and Artificial Intelligence ICAART 2014.
DOI:10.5220/0004817500690080

[13] S. J. Mullender and G. van Rossum, Amoeba: A Distributed
Operating System for the 1990s, IEEE Computer, vol. 23, no.
5, pp. 44–53, 1990
Stefan Bosse - 10 - 2016

	I. Introduction
	II. The Activity-Transition-Graph-based AAPL Agent Behaviour Model
	A. AAPL Agent Classes, Reconfiguration, and Instantiation
	B. AAPL Agent Interaction
	C. AAPL Agent Mobility.
	D. AAPL Machine Learning
	III. JAM: The JavaScript Agent Processing Machine Platform
	A. AgentJS: JavaScript Object and extended Code-to-Text JSON+ Representation
	B. AgentJS Sandbox Environment
	C. AIOS: The Agent Execution and IO Environment for AgentJS
	D. Agent Scheduling and Checkpointing
	E. AgentJS-AAPL Relationship
	F. Agent Roles
	G. The Execution Platform and Networking
	H. Agent Process Mobility and Migration
	I. SEJAM: The JavaScript Agent Simulator Environment
	IV. Security by Capability-based Authorization and a lightweight Distributed Organization System Layer
	V. Platform Evaluation
	VI. Use case: Event-based Sensing and Learning with Multi-Agent Systems
	VII. Conclusions and Outlook

