
DOI:10.5220/0004817500690080 Proc. of the ICAART 2014

Stefan B
Design of Material-integrated Distributed Data Processing Platforms
with Mobile Multi-Agent Systems in Heterogeneous Networks

Stefan Bosse
University of Bremen, Department of Computer Science,

ISIS Sensorial Materials Scientific Centre, Germany

Keywords: Multi-Agent Platform, Sensor Network, Mobile Agent, Heterogeneous Networks, Embedded Systems

Abstract: An agent processing platform suitable for distributed computing in sensor networks consisting of low-re-
source (e.g., material-integrated) nodes is presented, providing a unique distributed programming model and
enhanced robustness of the entire heterogeneous environment in the presence of node, sensor, link, data pro-
cessing, and communication failures. In this work multi-agent systems with mobile activity-based agents are
used for sensor data processing in unreliable mesh-like networks of nodes, consisting of a single microchip
with limited low computational resources. The agent behaviour, interaction, and mobility (between nodes)
can be efficiently integrated on the microchip using a configurable pipelined multi-process architecture based
on Petri-Nets. Additionally, software implementations and simulation models with equal functional behav-
iour can be derived from the same source model. Hardware and software platforms can be directly connected
in heterogeneous networks. Agent interaction and communication is provided by a simple tuple-space data-
base and signals providing remote inter-node level communication and interaction. A reconfiguration mech-
anism of the agent processing system offers activity graph changes at run-time.

1. INTRODUCTION
Trends are recently emerging in engineering and mi-
cro-system applications such as the development of
sensorial materials (Lang, 2011) show a growing de-
mand for distributed autonomous sensor networks of
miniaturized low-power smart sensors embedded in
technical structures (Pantke, 2011). These sensor net-
works are used for sensorial perception or structural
health monitoring, employed, for example in Cyber-
Physical-Systems (CPS), and perform the monitoring
and control of complex physical processes using ap-
plications running on dedicated execution platforms in
a resource-constrained manner under real-time pro-
cessing and technical failure constraints.
To reduce the impact of such embedded sensorial sys-
tems on mechanical structure properties, single micro-
chip sensor nodes (in mm3 range) are preferred. Real-
time constraints require parallel data processing inade-
quately provided by software based systems.
Multi-agent systems can be used for a decentralized
and self-organizing approach of data processing in a
distributed system like a sensor network (Guijarro,
2008), enabling information extraction, for example
based on pattern recognition (Zhao, 2008), and by de-
composing complex tasks in simpler cooperative
agents.
Hardware (microchip level) designs have advantages
compared with microcontroller approaches concern-
ing power consumption, performance, and chip re-
sources by exploiting parallel data processing
(covered by the agent model) and enhanced resource
sharing (Bosse, 2011), which will be applied in this
work.
Usually sensor networks are a part of and connected to
a larger heterogeneous computational network (Gui-
jarro, 2008). Employing of agents can overcome inter-

face barriers arising between platforms differing
considerably in computational and communication ca-
pabilities. That's why agent specification models and
languages must be independent of the underlying run-
time platform. On the other hand, some level of re-
source and processing control must be available to
support the efficient design of hardware platforms.
Hardware implementations of multi-agent systems are
still limited to single or a few and immobile agents
(Meng, 2005, Naji, 2004), and were originally pro-
posed for low level tasks, for example in (Ebrahimi,
2011) using agents to negotiate network resources.
Coarse grained reconfiguration is enabled by using
FPGA technologies (Meng, 2005). Most current work
uses hardware-software co-design methodologies and
code generators, like in (Jamont, 2008). This work
provides more fine-grained agent reconfiguration and
true agent mobility without relying on a specific tech-
nology and employs high-level synthesis to create
standalone hardware and software platforms deliver-
ing the same functional and reactive behaviour.
There is related work concerning agent programming
languages and processing architectures, like APRIL
(McCabe, 1995) providing tuple-space like agent
communication, and widely used FIPA ACL, and
KQGML (Kone, 2000) focusing on high-level knowl-
edge representations and exchange by speech acts, or
model-driven engineering (e.g. INGENIAS, Sansores,
2008). But the above required resource and processing
control is missing, which is addressed in this work.
There are actually four major issues related to the scal-
ing of traditional software-based multi-agents systems
to the hardware level and their design:
Ï limited static processing, storage, and communica-

tion resources, real-time processing,
Ï unreliable communication,
osse - 1 - 2014

DOI:10.5220/0004817500690080 Proc. of the ICAART 2014

Stefan B
Ï suitable simplified agent-oriented programming
models and processing architectures qualified for
hardware designs with finite state machines (FSM)
and resource sharing for parallel agent execution,

Ï and appropriate high-level design tools.
Traditionally agent programs are interpreted, leading
to a significant decrease in performance. In the ap-
proach presented here, the agent processing is directly
implemented in standalone hardware nodes without
intermediate processing levels and without the neces-
sity of an operating system.
This work introduces some novelties compared to oth-
er data processing and agent platform approaches:
Ï One common agent behaviour model, which is im-

plementable on different processing platforms
(hardware, software, simulation).

Ï Agent mobility crossing different platforms in
mesh-like networks and agent interaction by using
tuple-space databases and global signal propaga-
tion aid solving data distribution and synchroniza-
tion issues in the design of distributed sensor
networks.

Ï Support for heterogeneous networks and platforms
covered by one design and synthesis flow includ-
ing functional behavioural simulation.

Ï A token-based pipelined multi-process agent pro-
cessing architecture suitable for hardware plat-
forms with Register-Transfer Level Logic offering
optimized computational resources and speed.

Ï A Petri-Net representation is used to derive a spec-
ification of the hardware process and communica-
tion network, and performing advanced analysis
like deadlock detection. Timed Petri-Nets can be
used to calculate computational time bounds to
support real-time processing.

The next sections introduce the activity based agent
processing model, available mobility and interaction,
and the proposed agent platform architecture related to
the programming model. Finally, a case study shows
the suitability of the proposed design approach.

2. STATE-BASED MOBILE AGENTS
The implementation of mobile multi-agent systems for
resource constrained embedded systems with a partic-
ular focus on microchip level is a complex design
challenge. High-level agent programming and behav-
iour modelling languages can aid to solve this design
issue. To carry out multi-agent systems on hardware
platforms, the activity-based agent-orientated pro-
gramming language AAPL was designed. Though the
imperative programming model is quite simple and
closer to a traditional PL it can be used as a common
source and intermediate representation for different
agent processing platform implementations (hard-
ware, software, simulation) by using a high-level syn-

thesis approach, shown in Figure 1. Commonly used
agent behaviour models based on PRS/BDI architec-
tures with a declarative paradigm (2APL, Agent-
Speak/Jason), communication models (e.g. FIPA
ACL, KQML), and adaptive agent models can be im-
plemented with AAPL providing primitives for the
representation of beliefs or plans (discussed later).
Agent mobility, interaction, and replication including
inheritance are central multi-agent-orientated behav-
iours provided by AAPL.

Figure 1. From AAPL level to heterogeneous
distributed networks (RTL: Register-Transfer
Level, MT: Multi-Threading, CSP: Communi-
cating Sequential Processes

Definition: There is a multi-agent system (MAS) consisting
of a set of individual agents {A1,A2,..}. There is a set of dif-
ferent agent behaviours, called classes C={AC1, AC2,..}. An
agent belongs to one class. In a specific situation an agent Ai
is bound to and processed on a network node Nm,n (e.g. mi-
crochip, computer, virtual simulation node) at a unique spa-
tial location (m,n). There is a set of different nodes N={N1,
N2,..} arranged in a mesh-like network with peer-to-peer
neighbour connectivity (e.g. two-dimensional grid). Each
node is capable to process a number of agents ni(ACi) be-
longing to one agent behaviour class ACi, and supporting at
least a subset of C’ ⊆ C. An agent (or at least its state) can
migrate to a neighbour node where it continues working.

2.1. AAPL Programming Model
The agent behaviour is partitioned and modelled with
an activity graph, with activities representing the con-
trol state of the agent reasoning engine, and condi-
tional transitions connecting and enabling activities,.
Activities provide a procedural agent processing by
sequential execution of imperative data processing
and control statements.
osse - 2 - 2014

DOI:10.5220/0004817500690080 Proc. of the ICAART 2014

Stefan B
Figure 2. Agent behaviour programming level with activities and transitions (AAPL, left); agent class
model and activity-transition graphs (middle); agent instantiation, processing, and agent interaction on
the network node level (right).

The activity-graph based agent model is attractive due
to the proximity to the finite-state machine model,
which simplifies the hardware implementation.
An activity is activated by a transition depending on
the evaluation of (private) agent data (conditional
transition) related to a part of the agents belief in terms
of BDI architectures, or using unconditional transi-
tions (providing sequential composition), shown in
Figure 2. An agent belongs to a specific parameteriz-
able agent class AC, specifying local agent data (only
visible for the agent itself), types, signals, activities,
signal handlers, and transitions.
Plans are related to AAPL activities and transitions
close to conditional triggering of plans. Definition 1
summarizes the available language statements.
Instantiation: New agents of a specific class can be
created at runtime by agents using the new AC(v1,v2,..)
statement returning a node unique agent identifier. An
agent can create multiple living copies of itself with a
fork mechanism, creating child agents of the same
class with inherited data and control state but with dif-
ferent parameter initialization, done by using the
fork(v1,v2,..) statement. Agents can be destroyed by
using the kill(ID) statement.
Each agent has private data (body variables), defined
by the var and var* statements. Variables in the latter
statement will not be inherited or migrated! Agent
body variables in conjunction with transition condi-
tions represent the mobile data part of the agents be-
liefs database.
Statements inside an activity are processed sequential-
ly and consist of data assignments (x := ε) operating
on agent’s private data, control flow statements (con-
ditional branches and loops), and special agent control
and interaction statements.
Agent interaction and synchronization is provided by
a tuple-space database server available on each node
(based on McCabe, 1995). An agent can store an n-di-

mensional data tuple (v1,v2,..) in the database by us-
ing the out(v1,v2,..) statement (commonly the first
value is treated as a key). A data tuple can be removed
or read from the database by using the in(v1,p2?,v3,..)
or rd(v1,p2?,v3,..) statements with a pattern template
based on a set of formal (variable,?) and actual (con-
stant) parameters. These operations block the agent
processing until a matching tuple was found/stored in
the database. These simple operations solve the mutu-
al exclusion problem in concurrent systems easily.
Only agents processed on the same network node can
exchange data in this way. Simplified the expression
of beliefs of agents is strongly based on AAPL tuple
database model. Tuple values have their origin in en-
vironmental perception and processing bound to a spe-
cific node location.
The existence of a tuple can be checked by using the
exist? function or with atomic test-and-read behav-
iour using the try_in/rd functions. A tuple with a lim-
ited lifetime (a marking) can be stored in the database
by using the mark statement. Tuples with exhausted
lifetime are removed automatically (by a garbage col-
lector). Tuples matching a specific pattern can be re-
moved with the rm statement.
Remote interaction between agents is provided by
signals carrying optional parameters (they can be used
locally, too). A signal can be raised by an agent using
the send(ID,S,V) statement specifying the ID of the
target agent, the signal name S, and an optional argu-
ment value V propagated with the signal. The receiv-
ing agent must provide a signal handler (like an
activity) to handle signals asynchronously. Alterna-
tively, a signal can be sent to a group of agents belong-
ing to the same class AC within a bounded region
using the broadcast(AC,DX,DY,S,V) statement. Sig-
nals implement remote procedure calls. Within a sig-
nal handler a reply can be sent back to the initial
sender by using the reply(S,V) statement.
osse - 3 - 2014

DOI:10.5220/0004817500690080 Proc. of the ICAART 2014

Stefan B
Timers can be installed for temporal agent control us-
ing (private) signal handlers, too. Agent processing
can be suspended with the sleep and resumed with the
wakeup statements.
Migration of agents (preserving the local data and
processing state) to a neighbour node is performed by
using the moveto(DIR) statement, assuming the ar-
rangement of network nodes in a mesh- or cube-like
network. To test if a neighbour node is reachable (test-
ing connection liveliness), the link?(DIR) statement
returning a Boolean result can be used.
Reconfiguration: Agents are capable to change their
transitional network (initially specified in the transi-
tion section) by changing, deleting, or adding (condi-
tional) transitions using the transitionΞ(S1,S2,cond)
statements (with Ξ=’+’:add, ’-’: remove, and ’*’:
change transition). This behaviour allows the modifi-
cation of the activity graph, i. e., based on learning or
environmental changes, which can be inherited by
child agents.

Definition 1. Summary of the AAPL Language
(.. x .. means x is part of an expression ε, and ;
terminates procedural statements)

Agent Class Definition
 agent class (arguments) = definitions end;
Activity Definition
 activity name = statements end;
Data Statements
 var x,y,z:type; var* a,b,c: type;
 x := ε(variable,value,constant);
Conditional Statements
 if cond then statements else statements end;
 case ε of | v1 -> statements | .. end;
Loop Statements
 for i := range do statements end;
 while cond do statements end;
Transition Network Definition
 transitions = transitions end;
 a1 -> a2: cond ;
Tuple Database Statements
 out(v1,v2,..); .. exist?(v1,?,..) ..
 in(v1,x1?,v2,x2?,...); rd(v1,x1?,v2,x2?,...);
 try_in(timeout,v1,..); try_rd(timeout,v1,..);
 mark(timeout,v1,v2,..); rm(v1,?,..);
Signals
 signal S:datatype;
 handler S(x) = statements end;
 send(ID,S,v); reply(S,v);
 broadcast(AC,DX,DY,S,v);
 timer+(timeout,S); timer-(S); sleep; wakeup;
Exceptions
 exception E; raise E;
 try statements except E -> statements end;
Mobility, Creation, and Replication
 moveto(direction);
 .. link?(direction) ..
 id := new class (arguments);
 id := fork(arguments);
 kill(id);
Transitional Reconfiguration

 transition+(a1,a2,cond);transition*(a1,a2,cond);
 transition-(a1,a2);

2.2. Agent Communication
Agent communication can be achieved basically by
three different methods: 1. signal propagation (similar
to commitment messages in AGENT0, Shoham,
1991), 2. tuple database exchange, and 3. by using
agents with a composition of methods 1 & 2. These
basic methods can be used to realize common higher-
level agent communication languages like ACL or
KQML (tuple patterns correspond to message content
entries). Signal propagation implements light-weight-
ed asynchronous peer-to-peer remote-procedure calls,
executed on target agents with appropriate signal han-
dlers, which must not necessarily belong to the same
agent class, whereas pattern matching based tuple da-
tabase access can be performed by any group of agents
having a common understanding of the meaning of da-
ta and which are actually processed on the same plat-
form node.
For example, a simple FIPA ACL based request from
agent A (initiator) to B (participant), which ask for a
database tuple on B can be created with the following
AAPL code pattern using signals:

FIPA ACL: (request :sender IDA
 :receiver IDB :content (p ?) :ontology TS2)
AAPL:
signal REQ1,REQ2,INFR,FAIL;
-- Agent A --
var pv,ps;
handler INFR(v) = pv := v; ps := true; wakeup
..
handler FAIL = ps := false; wakeup ..
function request(AID,p) =
 send(AID,REQ1,p); timer+(100,FAIL);
 sleep;
 if ps then return pv else raise FAILED end ..
-- Agent B --
handler REQ1(arg) =
 var v;
 if exist?(p,?) then
 in(p,?v); reply(INFR,v)
 else reply(FAIL) ...

3. AGENT PLATFORM SYNTHESIS
The AAPL model is a common source for the imple-
mentation of agent processing on hardware, software,
and simulation processing platforms. A database driv-
en high-level synthesis approach (Bosse, 2013) is used
to map the agent behaviour to these different plat-
forms. The agent processing architecture required on
each network node must implement different agent
classes and must be scalable to the microchip level to
enable material-integrated embedded system design,
which represents a central design issue, further focus-
sing on parallel agent processing and optimized re-
source sharing.
osse - 4 - 2014

DOI:10.5220/0004817500690080 Proc. of the ICAART 2014

Stefan B
3.1. Hardware Platform
This microchip-level processing platform implements
the agent behaviour with reconfigurable pipelined
communicating processes (PCSP) related to the Com-
municating Sequential Process model (CSP) proposed
by Hoare (1985). The activities and transitions of the
AAPL programming model are merged in a first inter-
mediate representation by using state-transition Petri
Nets (PN), shown in Figure 3. This PN representation
allows the following CSP derivation specifying the
process and communication network, and advanced
analysis like deadlock detection. Timed Petri-Nets can
be used to calculate computational time bounds to
support real-time processing.
Keeping the PN representation in mind, the set of ac-
tivities {Ai} is mapped to a set of sequential processes
{Pi} executed concurrently. Each subset of transitions
{Ti,j} activating one common activity process Pj is
mapped to a synchronous N:1 queue Qj providing in-
ter-activity-process communication, and the computa-
tional part for transitions embedded in all contributing
processes {Pi}, shown in Fig. 3. Changes (reconfigu-
ration) of the transition network at run-time are sup-
ported by transition path selectors.
Each sequential process is mapped (by synthesis) to a
finite-state machine and a datapath using a register-
transfer architecture (RTL) with mutual exclusive
guarded access of shared objects, all implemented in
hardware.
Agents are represented by tokens (natural numbers
equal to the agent identifier, unique at node level),
which are transferred by the queues between activity
processes depending on the specified transition condi-
tions. This multi-process model is directly mappable

to register-transfer level RTL hardware. Each process
Pi is mapped to a finite state machine FSMi controlling
process execution and a register-transfer data path.
Local agent data is stored in a region of a memory
module assigned to each individual agent. There is on-
ly one incoming transition queue for each process con-
suming tokens, performing processing, and finally
passing tokens to outgoing queues, which can depend
on conditional expressions. There are computational
and IO/event-based activity statements. The latter
ones can block the agent processing until an event oc-
curs (for example, the availability of a data tuple in the
database). Blocking statements {sj,i} of an activity Ai
are assigned to separate intermediate IO processes
{Pi,j} handling only IO events or additional post com-
putations, as shown on the bottom of Fig. 3. Agents in
different activity states can be processed concurrently.
Thus, activity processes that are shared by several
agents may not block. To prevent blocking of IO pro-
cesses, not-ready processes pass the agent token back
to the input queue. An IO process either processes un-
processed agent tokens or waits for the happening of
events, controlled by the agent manager.
This pipeline architecture offers advanced resource
sharing and parallelized agent processing with only
one activity process chain implementation required
for each agent class. The hardware resource require-
ment (digital logic) is divided into a control and a data
part. The control part is proportional to the number of
supported different agent classes. The data part de-
pends on the maximal number of agents executed by
the platform and the storage requirement for each
agent.

Figure 3. Pipelined Communicating Sequential Process Architecture derived from a Petri-Net specifica-
tion and relationship to the activity graph. Signals ar handled asynchronously.
osse - 5 - 2014

DOI:10.5220/0004817500690080 Proc. of the ICAART 2014

Stefan B
3.2. Software Platform
There are two different architectures for the imple-
mentation of the agent processing on programmable
platforms: 1. by using the already introduced PCSP ar-
chitecture, or 2. by using a direct procedural composi-
tion of the activity graph and its transitions. In the first
case, the activity processes are implemented with light
weighted processes (threads) and queues, providing
token based agent processing. In the second case, each
agent is assigned to and processed by one thread creat-
ed at run-time. Activities are one-to-one mapped to
procedures called by a transition scheduler (as in the
simulation platform case). Blocking of agent process-
ing is handled by the thread implementation itself. In
any case further software modules implement the
agent manager, tuple space databases, and network-
ing. A software platform can be directly connected to
hardware nodes and vice versa.

3.3. Simulation Platform
In addition to real hardware and software implement-
ed agent processing platforms there is the capability of
the simulation of the agent behaviour, mobility, and
interaction on a functional level. The SeSAm simula-
tion framework (Klügel, 2009) offers a platform for
the modelling, simulation, and visualization of mobile
multi-agent systems employed in a two-dimensional
world. The behaviours of agents are modelled with ac-
tivity graphs (specifying the agent reasoning machine)
close to the AAPL model. Activity transitions depend
on the evaluation of conditional expressions using
agent variables. Agent variables can have a private or
global (shared) scope. Basically SeSAm agent interac-
tion is performed by modification and access of shared
variables and resources (static agents). In addition to
the agent reasoning specification there are global visi-
ble feature packages that define variables and function
operating on these variables. Features can be added to
each agent class. Agents can change their position in
the two-dimensional world map enabling mobility,
and new agents can be created at run-time by other
agents. The SeSAm framework was chosen due to the
activity-based agent behaviour and the data model
which can be immediately synthesized from the com-
mon AAPL source and can be imported by the simula-
tor from a text based file stored in XML format. This
model exchange feature allows the tight coupling of
the simulator to the synthesis framework.
In principle, AAPL activity graphs can be directly
mapped on the SeSAm agent reasoning model. But
there are limitations which inhibit the direct mapping.
First of all, AAPL activities (IO/event-based) can
block (suspend) the agent processing until an event
occurs. Blocking agent behaviour is not provided di-
rectly by SeSAm. Secondly, the transition network
can change during run-time. Finally, the handling of

concurrent asynchronous signals used in AAPL for in-
ter-agent communication cannot be established with
the generic activity processing in SeSAm (the provid-
ed exception handling is only used for exceptional ter-
mination of agents).
For this reason, the agent activity transitions including
the dynamic transition network capability are man-
aged by a special transition scheduler, shown in Figure
4. This transition scheduler handles signals and timers,
too, which are processed prioritized and passed to the
signal scheduler. Each agent activity is activated by
the transition scheduler. After a specific activity was
processed, the transition scheduler is activated and en-
tered again. An AAPL activity can be split in computa-
tional and IO/event-based sub-activities in the
presence of blocking statements (e.g. in and rd tuple
space interaction).
There is a special node agent implementing the tuple
database with lists (partitioned to different spaces for
each dimension), and managing agents and signals ac-
tually bound to this particular node. Concurrent ma-
nipulation of lists is non-atomic operations in SeSAm,
and hence requires mutual exclusion.
The AAPL mobility, interaction, configuration, and
replication statements are implemented by feature
packages.

3.4. Synthesis
The database driven synthesis flow (details in Bosse,
2013) consists of an AAPL front end, the core compil-
er, and several backends targeting different platforms.
The AAPL program is parsed and mapped to an ab-
stract syntax tree (AST). The first compiler stage ana-
lyzes, checks, and optimizes the agent specification
AST. The second stage is split in three parts: an activi-
ty to process mapper, a transition to queue mapper, a
transition (pipelined processing architecture) network
builder, and a message generator supporting agent and
signal migration. Different outputs can be produced: a
hardware description enabling SoC synthesis using
the ConPro high-level synthesis framework (details in
Bosse, 2011), a software description (C) which can be
embedded in application programs, and the SeSAm
simulation model (XML). The ConPro programming
model reflects an extended CSP with atomic guarded
actions on shared resources. Each process is imple-
mented with an FSM and an RT datapath.
All implementation models (HW/SW/SIM) provide
equal functional behaviour, and only differ in their
timing, resource requirements, and execution environ-
ments. Some more implementation and synthesis de-
tails follow.
Agent Manager
The agent manager provides a node level interface for
agents, and it is responsible for the creation, control
(including signals, events, and transition network con-
figuration), and migration of agents with network
osse - 6 - 2014

DOI:10.5220/0004817500690080 Proc. of the ICAART 2014

Stefan B
Figure 4. Simulation Model used in the SeSAm MAS Simulator

connectivity, implementing a main part of an operat-
ing system. The agent manager controls the tuple-
space database server and signals events required for
IO/event-based activity processes.
The agent manager uses agent tables and caches to
store information about created, migrated, and passed
through agents (req., for ex., for signal propagation).
Migration
Migration of agents requires the transfer of the agent
data and the control state of the agent together with a
unique global agent identifier (extending the local ID
with the agent class and the relative displacement of
its root node) encapsulated in messages.
Transition Network
A switched transition network offers support for agent
activity graph reconfiguration at run-time. Though the
possible reconfiguration and the conditional expres-
sions must be known at compile time (static resource
constraints), a reconfiguration can release the use of
some activity processes and enhances the utilization
for parallel processing of other agents. The transition
network is implemented with selector tables in case of
the HW implementation, and with dynamic transition
lists in case of the SW and SIM implementations.
Tuple-Space Database
Each n-dimensional tuple-space TSn (storing n-ary tu-
ples) is implemented with fixed size tables in case of
the hardware implementation, and with dynamic lists
in the case of the software and simulation model im-
plementations. The access of each tuple-space is han-
dled independently. Concurrent access of agents is
mutually exclusive. The HW implementation impli-
cates further type constraints, which must be known at
design time (e.g. limitation to integer values).
Signals
Signals must be processed asynchronously. Therefore,

agent signal handlers are implemented with a separate
activity process pipeline, one for each signal handler.
For each pending agent signal, the agent manager in-
jects an agent token in the respective handler process
pipeline independent of the processing state of the
agent. Remote signals are processed by the agent man-
ager, which encapsulate signals in messages sent to
the appropriate target node and agent.

4. CASE STUDY
A small example implementing a distributed feature
detection in an incompletely connected and unreliable
mesh-like sensor network using mobile agents should
demonstrate the suitability of the proposed agent pro-
cessing and design approach. The sensor network con-
sists of nodes with each node attached to a sensor
used, for example, in a structural health monitoring
system (e.g. strain-gauge sensors). The nodes can be
embedded in a mechanical structure, for example,
used in a robot arm. The goal of the MAS is to find ex-
tended correlated regions of increased sensor intensi-
ty (compared to the ne ighbourhood) due to
mechanical distortion resulting from externally ap-
plied load forces. A distributed directed diffusion be-
haviour and self-organization (see Figure 5) is used,
derived from the image feature extraction approach
(proposed by Liu, 2001). A single sporadic sensor ac-
tivity not correlated with the surrounding neighbour-
hood should be distinguished from an extended
correlated region, which is the feature to be detected.
There are three different agent classes: an exploration,
a deliver, and a node agent. A node agent is immobile
and is primarily responsible for sensor measurement,
observation, and creating of exploration agents.
osse - 7 - 2014

DOI:10.5220/0004817500690080 Proc. of the ICAART 2014

Stefan B
Figure 5. Distributed feature extraction in an unreliable and incomplete network by using distributed
agents with migration and self-organization behaviour (right: AAPL activity graph of the explorer agent)

The feature detection is performed by the mobile ex-
ploration agent, which supports two main different
behaviours: diffusion and reproduction. The diffusion
behaviour is used to move into a region, mainly limit-
ed by the lifetime of the agent, and to detect the fea-
ture, here the region with increased mechanical
distortion (more precisely the edge of such an area).
The detection of the feature enables the reproduction
behaviour, which induces the agent to stay at the cur-
rent node, setting a feature marking and sending out
more exploration agents in the neighbourhood. The
local stimuli H(i,j) for an exploration agent to stay at a
specific node with coordinate (i,j) is given by eq. 1.

(1)

The calculation of H at the current location (i,j) of the
agent requires the sensor values within the rectangular
area (the region of interest ROI) R around this loca-
tion. If a sensor value S(i+s,j+t) with i,j ∈ {-R,..,R} is
similar to the value S at the current position (diff. is
smaller than the parameter δ), H is incremented by
one.
If the H value is within a parameterized interval
Δ=[ε0,ε1], the exploration agent has detected the fea-
ture and will stay at the current node to reproduce new
exploration agents sent to the neighbourhood. If H is
outside this interval, the agent will migrate to a neigh-
bour different node and restarts exploration (diffu-
sion).
The calculation of H is performed by a distributed cal-
culation of partial sum terms by sending out child ex-
plorer agents to the neighbourhood, which itself can
send out more agents until the boundary of the region

R is reached. Each child agent returns to its origin
node and hands over the partial sum term to his parent
agent, shown in Figure 5. Because a node in the region
R can be visited by more than one child agent, the first
agent reaching a node sets a marking MARK. If another
agent finds this marking, it will immediately return to
the parent. This multi-path visiting has the advantage
of an increased probability of reaching nodes with
missing (non operating) communication links (see
Fig. 5). A deliver agent, created by the node agent, fi-
nally delivers exploration results to interested nodes
by using directed diffusion approaches, not discussed
here.

AAPL Specification
Example 1 shows the AAPL behaviour specification
for the exploration agent. The agent behaviour is parti-
tioned in nine activities and two signal handlers. If a
sensor node agent observes an increased sensor value,
it creates a new explorer agent that enters the start ac-
tivity (lines 8-19). Each explorer agent is initialized on
creation with two parameter arguments: a direction
and a radius value. The first agent created by the sen-
sor node has no specific direction. Child agents with a
specific direction are moved to the respective node
(line 11). In line 18, the transition move → percept
_neighbour is created (all existing transitions starting
from activity move are deleted first). The start activity
transitions to the perceptive activity, which creates
child agents (lines 44-46). Forked agents inherit all
parent data and the current transition network configu-
ration. Thus, in line 43 the transition percept → move
is established (and inherited), but after forking reset in
lines 47-50 for the parent agent behaviour, which
await the return of all child agents and a decision for
behaviour selection (reproduce/diffuse).

H i j S i s j t S i j

S

t R

R

s R

R

(,) { (,) (,) }

:

= + + − ≤
=−=−
∑∑ δ

 Sensor signal sttrength

 Rectangular region around (i,j)R :
osse - 8 - 2014

DOI:10.5220/0004817500690080 Proc. of the ICAART 2014

Stefan B
Fig. 6. Simulation results for two different sensor network situations (left: start, middle: exploration,
right: final result situation). Top row: sensor activity within clusters, bottom row: sensor activity scat-
tered over the network.

The child agents enter the move (lines 20-25) activity
after forking and will be migrated in the specific direc-
tion to the neighbour node.
Finally, the percept_neighbour activity is reached,
which performs the local calculation (line 52) if there
was no marking found, and stores the partial result in
the tuple database. Further child agents are sent out if
the boundary of the ROI is still not reached.
Otherwise the agent goes back to his origin (parent) by
entering the goback activity performing the migration
(lines 66-68), previously updating its h value of the tu-
ple database. If the returning agent has arrived, it will
deliver its h value by adding it to the local H value
stored in the database (lines 69-72) and raising the
WAKEUP signal to notify the parent, which causes the
entering of the parent’s signal handler (lines 77-79).
If there is enough input and all child agents had re-
turned (or a time-out has occurred handled by the sig-
nal handler TIMEOUT, lines 80-81), the exploration
agent either enters the diffuse or reproduce activity.
Diffusion and reproduction is limited by a lifetime
(decreased each time an explorer agent is replicated or
on migration, lines 27 & 36).
The agent behaviour specification was synthesized to
a digital logic hardware implementation (single SoC)
and a simulation model with equal functional behav-
iour suitable for the MAS simulator environment SeS-
Am (Klügel, 2009).

Simulation Results
Simulation results are shown in Figure 6 for two dif-
ferent sensor network situations, each consisting of a

network with autonomous sensor nodes arranged in 10
rows and 10 columns. One situation creates significant
sensor values arranged in a bounded cluster region, for
example, caused by mechanical forces applied to the
structure, and the other situation creates significant
sensor values scattered around the network without
any correlation, for example, caused by noisy or dam-
aged sensors.
In the first clustered situation, the explorer agents are
capable to detect the bounded region feature for the
two separated regions (indicated by the change of the
agent colour to black). Due to the reproduction behav-
iour there are several agents at one location, shown in
the right agent density contour plot. In the second not
clustered situation, the explorer agents did not find the
feature and vanish due to their limited lifetime behav-
iour.
The feature search is controlled by a set of parameters:
{δ, ε0, ε1, lifetime, search radius R}.

Synthesis Results
The synthesis results of the hardware implementation
for one sensor node are shown in Fig. 7. The AAPL
specification was compiled to the ConPro program-
ming model and synthesized to an RTL implementa-
tion on VHDL level. Two different target technologies
were synthesized using gate-level synthesis: 1. FPGA,
Xilinx XC3S1000 device target using Xilinx ISE 9.2
software, 2. ASIC standard cell LIS10K library using
the Synopsys Design Compiler software. The agent
processing architecture consisted of the activity pro-
cess chain for the explorer and node agent, the agent

R
O

W

COLUMN

10

1

10

3

0

1

2

E
xp

l.
A

ge
nt

s

1

osse - 9 - 2014

DOI:10.5220/0004817500690080 Proc. of the ICAART 2014

Stefan B
manager, the tuple-space database (supporting two-
and three-dimensional tuples with integer type val-
ues), and the communication unit. The processing
time of an activity is in the order of 10 μs.
This case study showed 1. the suitability of agent-

based approaches for large scale sensor networks, for
example used for real-time structural health monitor-
ing, and 2. the suitability of the proposed agent model-
ling and synthesis approach for single System-on-
Chip microchip-level implementations.

Figure 7. High-level and gate-level synthesis results for one sensor node (FPGA: Xilinx XC3S100, ASIC:
LSI10K standard cell library, 180nm technology)

 Example 1. Shortened and simplified excerpt of the AAPL specification for agent class Explore
1 type keys = {ADC,FEATURE,H,MARK}; direction = {..}
2 signal WAKEUP,TIMEOUT; val RADIUS := 4; ...
3 agent explore(dir: direction,
4 radius: integer[1..16]) =
5 var dx,dy:integer[-100..100];
6 live:integer[0..15];
7 var* s: integer[0..1023];
8 activity start =
9 dx := 0; dy := 0; h:= 0;
10 if dir <> ORIGIN then
11 moveto(dir);
12 case dir of
13 | NORTH -> backdir := SOUTH
14 | SOUTH ->
15 else
16 live := MAXLIVE; backdir := ORIGIN
17 group := random(integer[0..1023]);
18 transition*(move,percept_neighbour);
19 out(H,id(self),0); rd(ADC,s0?)
20 activity move =
21 case dir of
22 | NORTH -> backdir := SOUTH; incr(dy)
23 | SOUTH -> backdir := NORTH; decr(dy)
24 | WEST ->
25 moveto(dir)
26 activity diffuse =
27 decr(live); rm(H,id(self),?);
28 if live > 0 then
29 case backdir of
30 | NORTH -> dir :=
31 random({SOUTH,EAST,WEST})
32 | SOUTH ->
33 else kill(ME)
34 activity reproduce =
35 var n:integer;
36 decr(live);
37 if live > 0 then
38 for nextdir in direction do

39 if nextdir <> backdir and link?(nextdir) then
40 fork(nextdir,radius)
41 transition*(reproduce,stay)
42 activity percept = -- Master perception --
43 enoughinput := 0; transition*(percept,move);
44 for nextdir in direction do
45 if nextdir <> backdir and link?(nextdir) then
46 incr(enoughinput); fork(nextdir,radius)
47 transition*(percept,diffuse, (h<ETAMIN or
48 h > ETAMAX) and enoughinput < 1);
49 transition+(percept,reproduce, h>=ETAMIN and
50 h <= ETAMAX and enoughinput < 1);
51 timer+(TMO,TIMEOUT)
52 activity percept_neighbour =
53 if not exist?(MARK,group) then
54 mark(TMO,MARK,group); enoughinput := 0;
55 rd(ADC,s?); out(H,id(self), calc());
56 transition*(percept_neighbour,move);
57 for nextdir in direction do
58 if nextdir <> backdir and inbound(nextdir) and
59 link?(nextdir) then
60 incr(enoughinput); fork(nextdir,radius)
61 transition*(percept_neighbour,goback,
62 enoughinput < 1);
63 timer+(TMO,TIMEOUT)
64 else
65 transition*(percept_neighbour,goback) end
66 activity goback =
67 h := 0; try_in(0,H,id(self),h?);
68 moveto(backdir);
69 activity deliver =
70 var v:integer;
71 in(H,id(parent),v?); out(H,id(parent),h+v);
72 send(id(parent),WAKEUP); kill(ME)
73 activity stay =
74 rm(H,id(self),?);
75 n :=0; try_in(0,FEATURE,n?);
76 out(FEATURE,n+1)
osse - 10 - 2014

DOI:10.5220/0004817500690080 Proc. of the ICAART 2014

Stefan B
77 handler WAKEUP =
78 decr(enoughinput); try_rd(0,H,id(self),h?);
79 if enoughinput < 1 then timer-(TIMEOUT) end
80 handler TIMEOUT =
81 enoughinput := 0; again := true
82 function calc():integer =
83 if abs(s-s0) <= DELTA then return 1
84 else return 0
85 function inbound(nextdir:direction):bool =
86 case nextdir of
87 | NORTH -> return (dy < RADIUS)
88 | SOUTH ->
89 transitions =
90 start -> percept; percept -> move;
91 move -> percept_neighbour;
92

5. CONCLUSIONS
A novel design approach using mobile agents for re-
liable distributed and parallel data processing in large
scale networks of low-resource nodes was introduced.
An agent-orientated programming language AAPL
provides computational statements and statements for
agent creation, inheritance, mobility, interaction, re-
configuration, and information exchange, based on
agent behaviour partitioning in an activity graph,
which can be directly synthesized to the microchip
level by using a high-level synthesis approach. The
high-level synthesis tool also enables the synthesis of
different processing platforms from a common pro-
gram source, including standalone hardware and soft-
ware platforms, as well as simulation models offering
functional and behavioural testing.
Agents of the same class share one virtual machine
consisting of a reconfigurable pipelined multi-process
chain based on the CSP model implementing the ac-
tivities and transitions, offering parallelized agent pro-
cessing with optimized resource sharing. Unique
identification of agents does not require unique abso-
lute node identifiers or network addresses, a prerequi-
site for loosely coupled and dynamic networks (due to
failures, reconfiguration, or expansion). The migration
of an agent to a neighbour node takes place by migrat-
ing the data and control state of an agent using mes-
sage transfers. Two different agent interaction
primitives are available: signals carrying data and tu-
ple-space database access with pattern templates.
Reconfiguration of the activity transition network of-
fers agent behaviour adaptation (which can be inherit-
ed by children) at runtime and improved resource
sharing for parallel agent processing. A case study
demonstrated the suitability of the proposed program-
ming model, processing architecture, and synthesis
approach. Migration of agents requires only the trans-
fer of the control and data space of an agent using
messages.

6. REFERENCES
Bosse, 2013S. Bosse, Intelligent Microchip Networks: An Agent-on-

Chip Synthesis Framework for the Design of Smart and
Robust Sensor Networks, Proceedings of the SPIE 2013
Microtechnologies Conference

Guijarro, 2008M. Guijarro, R. Fuentes-fernández, and G. Pajares, A Multi-
Agent System Architecture for Sensor Networks, Multi-
Agent Systems - Modeling, Control, Programming,
Simulations and Applications, 2008.

Zhao, 2008X. Zhao, S. Yuan, Z. Yu, W. Ye, J. Cao. (2008), Designing
strategy for multi-agent system based large structural
health monitoring, Expert Systems with Applications,
34(2), 1154–1168. doi:10.1016/j.eswa.2006.12.022

Pantke, 2011F. Pantke, S. Bosse, D. Lehmhus, and M. Lawo, An Artifi-
cial Intelligence Approach Towards Sensorial Materi-
als, Future Computing Conference, 2011

Klügel, 2009F. Klügel, SeSAm: Visual Programming and Participatory
Simulation for Agent-Based Models, In: Multi-Agent
Systems - Simulation and Applications, A. M. Uhrmach-
er, D. Weyns (ed.), CRC Press, 2009

Bosse, 2011S. Bosse, Hardware-Software-Co-Design of Parallel and
Distributed Systems Using a unique Behavioural Pro-
gramming and Multi-Process Model with High-Level
Synthesis, Proceedings of the SPIE Microtechnologies
2011 Conference, Session EMT 102

Kone, 2000Kone, M. T., Shimazu, A., & Nakajima, T. (2000). The State
of the Art in Agent Communication Languages. Knowl-
edge and Information Systems, 2(3), 259–284.
doi:10.1007/PL00013712

Ebrahimi, 2011M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, H.
Tenhunen, Agent-based on-chip network using efficient
selection method, 2011 IEEEIFIP 19th International
Conference on VLSI and SystemonChip (pp. 284-289)

Sansores, 2008C. Sansores and J. Pavón, “An Adaptive Agent Model for
Self-Organizing MAS ” in Proc. of 7th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS
2008), May, 12-16., 2008, Estoril, Portugal, 2008, pp.
1639–1642.

McCabe, 1995F. G. McCabe, K. L. Clark, APRIL - Agent Process Interac-
tion Language, 1995, (M. Wooldridge & N. R. Jen-
nings, Eds.) Intelligent Agents Theories Architectures
and Languages LNAI volume 890. Springer-Verlag.

Lang, 2011W. Lang, F. Jakobs, E. Tolstosheeva, H. Sturm, A. Ibragi-
mov, A. Kesel, D. Lehmhus, U. Dicke, From embedded
sensors to sensorial materials—The road to function
scale integration., Sensors and Actuators A: Physical,
Volume 171, Issue 1, 2011

Liu, 2001J. Liu, Autonomous Agents and Multi-Agent Systems, World
Scientific Publishing, 2001 (ISBN 981-02-4282-4)

Meng, 2005Y. Meng, An Agent-based Reconfigurable System-on-Chip
Architecture for Real-time Systems, in Proceeding
ICESS ’05 Proceedings of the Second International
Conference on Embedded Software and Systems, 2005,
pp. 166–173.

Jamont, 2008J.-P. Jamont and M. Occello, A multiagent method to design
hardware/software collaborative systems, 2008 12th In-
ternational Conference on Computer Supported Cooper-
ative Work in Design, 2008.

Naji, 2004H. Naji, “Creating an adaptive embedded system by apply-
osse - 11 - 2014

DOI:10.5220/0004817500690080 Proc. of the ICAART 2014

Stefan B
ing multi-agent techniques to reconfigurable hardware,”
Future Generation Computer Systems, vol. 20, no. 6, pp.
1055–1081, 2004.
osse - 12 - 2014

	1. Introduction
	2. State-based Mobile Agents
	2.1. AAPL Programming Model
	2.2. Agent Communication

	3. Agent Platform Synthesis
	3.1. Hardware Platform
	3.2. Software Platform
	3.3. Simulation Platform
	3.4. Synthesis

	4. Case Study
	5. Conclusions
	6. References

