S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

Chapter 1

Introduction: Outline and Synopsis

Closing the Gap: Robust Distributed Data Processing in Heterogeneous
Networked Environments and Sensor Networks with Self-organizing
Multi-Agent Systems

Outline and Introduction 2
Data Processing in Sensor Networks with Multi-Agent Systems 8
The Agent Behaviour Model 11
Agent Programming Languages and AAPL 14
Agent Processing Platforms 17
AAPL MAS and Mobile Processes: The P-Calculus 27
High-Level Synthesis of Agents and Agent Platforms 27
High-level Synthesis of SoC Designs 30
Simulation Techniques and Framework 32
Event-based Sensor Data Processing and Distribution with MAS 34
Selforganizing Systems and MAS 35
From Embedded Sensing to the Internet-of-Things and Sensor Clouds 36
Use-Case: Structural Monitoring with MAS 37
Use-Case: Smart Energy Management with MAS and Al 41
Novelty and Summary 43
Structure of the Book 45

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

m Chapter 1. Introduction: Outline and Synopsis

1.1 Outline and Introduction

The growing complexity of computer networks and their heterogeneous
composition with devices ranging from servers with high computational
power and high-resource requirements down to low-resource mobile devices
with low computational power demands unified and scalable new data pro-
cessing paradigms and methodologies.

The Internet-of-Things (IoT) is one major example and use-case rising in the
past decade, strongly correlated with Cloud Computing and Big Data con-
cepts, and extending the Internet Cloud domain with distributed autonomous
sensor networks consisting of miniaturized low-power smart sensors. These
smart sensors, for example, embedded in technical structures, are pushed by
new trends emerging in engineering and micro-system applications [LAN11].
Sensor nodes equipped with computation and communication capabilities
can be scaled down to the cubic millimetre range (e.g., the Smart Dust Project,
[WARO1]), leading to loosely coupled networks of thousands up to millions
network nodes. These sensor networks are used for sensorial perception or
structural monitoring (load- and health monitoring), deployed, for example, in
Cyber-Physical-Systems (CPS), shown in Figure 7.7, and perform the monitor-
ing and control of complex physical processes using applications running on
dedicated execution platforms in a resource-constrained manner under real-
time processing and technical failure constraints. Ambient Intelligence using
agents demands for such platforms, too. [VIL14]

Distributed material-embedded sensor networks used in technical struc-
tures and systems require new data processing and communication
paradigms, supporting fundamental different architectures. Traditionally dis-
tributed operating systems (DOS), for example, the Amoeba DOS, were used
to connect and compose computers in heterogeneous networks to one virtual
machine [BOS06A]. Main fields of application of such sensor networks are
Load Monitoring (LM), Structural Health Monitoring (SHM), or Tactile Sensing
(TS). Reliability and robustness of the entire heterogeneous environment in
the presence of node, sensor, link, data processing, and communication fail-
ures must be offered, especially concerning the limited service capabilities of
material-embedded systems after manufacturing.

Smart and distributed sensing systems are one of the technological corner-
stones of the Internet-of-Things, wearable electronic devices, future
transportation, environmental monitoring and smart cities.

Today, one of the major challenges of using smart wireless sensors in real
deployments is related to energy consumption and guaranteeing adequate
lifetime.

Technical aspects of Multi-agent Systems (MAS) and the required Agent Pro-
cessing Platforms (APP) are rarely addressed in the current scientific work.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.1 Outline and Introduction

Sensor Network
Sensor Node

e | €

Agent @ (<

Sensor

\\\
S~

AN sEnsoRr ,, ////////m

\ 7/INTERCONNEC

N WM//

Robot Sensorial Material

Fig. 1.1 Sensorial Material: Technical Structure + Material-embedded Sensor Network

Most agent architectures still assume traditional and powerful underlying
data processors and operating systems, which make the processing of mobile
agents with mobile processes more difficult.

Mobile Multi-Agent systems represent a well-known parallel and distributed
computing paradigm, and can be closely related to the communicating mobile
process paradigm [MIL99]. The deployment and programming of MAS means
programming of distributed systems, and the programming of distributed
systems is a combination of computation and co-ordination. Mobile processes
represented by program code and a program state that are capable of migrat-
ing in networks between different execution platforms goes back to research
work in the 1980s to 1990s and the rising field of Distributed Operating Sys-
tems (DOS), for example, considering the prominent Amoeba DOS [MUL90]
introducing new communication and process interaction paradigms that con-
sider a heterogeneous computer network environment as one big virtual
machine.

Agents are characterised by autonomous and reactive data processing
units, which are able to adapt and to be mobile. A MAS can be considered as a
society of multiple, coexisting, and interacting agents. Rules are required to
co-ordinate and control the behaviour of individual agents, especially con-
cerning interaction. A MAS has a "global" goal that must be achieved by the
individual agents by creating organization and societies [FER99], that can
address the autonomous and reliable distributed computing that is carried
out in Pervasive and Ubiquitous Computing environments.

The deployment of mobile agents in distributed system enables a shift of
traditional operating system services like higher-level messaging or resource
management to the application level, which can be fully covered by different
agents. In pure MAS environments an operating system can be omitted.

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

m Chapter 1. Introduction: Outline and Synopsis

Furthermore, the deployment of agents can overcome interface barriers
and closes the gap arising between platforms and environments differing con-
siderably in computational and communication capabilities, enabling the
integration of sensor networks in large-scale World-Wide-Web (WWW) appli-
cations and providing Internet connectivity, shown in Figure 7.2. This is
addressed by using a unified agent-based programming and interaction
model, independent of the underlying processing platform. For the following
proposed advanced agent processing platform architecture there are suitable
hardware, software, and simulation model implementations, which can be
interconnected in networks, including a JavaScript implementation with an
advanced broker and DOS service suitable for the WEB browser and node.js
processing. All platform implementations are compatible on the operational
and execution level, thus, agents can migrate between these different plat-
form implementations.

The agent mobility crossing different execution platforms, synchronized
agent interaction by using tuple-space databases, and global signal propaga-
tion aid solving data distribution and synchronisation issues in the design of
distributed sensor networks.

In this work Multi-agent systems with state-based mobile agents are used
for computing in unreliable networks consisting of generic and embedded
computational nodes (e.g., sensor nodes), sometimes consisting only of a sin-
gle microchip. A novel and unified design approach for reliable distributed
and parallel data processing is introduced that can be deployed in embedded
systems having static resource constraints and the Internet domain. There is
currently still a large gap between agent behaviour models and technological
implementations of such resource-constrained processing platforms, which is
addressed in this work significantly. Self-organizing Agent Systems (SoS) are
one major agent organization structure class, which is considered in this work
for solving robustness and distribution problems in general and for solving
inherent distributed problems, especially concerning computation with
incomplete world models, e.g., mechanical models.

Designing complex distributed systems and processing platforms is a chal-
lenge. Therefore, besides unified agent models a unified design framework is
required, covering the design of agent processing platforms and agent imple-
mentations with different architecture models and different implementation
target classes (hardware, software, simulation).

For this purpose, an advanced database driven high-level synthesis
approach is used to map the agent behaviour on hardware (Agent-on-Chip
processing architecture, AoC), software, and simulation platforms.

The agent behaviour, their interaction, and the mobility behaviour can be
fully integrated on the microchip level with a single System-on-Chip (SoC) or
System-on-Programmable-Chip (SoPC/FPGA) design.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.1 Outline and Introduction

c&

Off-line Data Monltormg

Processing

\\‘J-IJ

()

f,f‘ On-llne Sensor
Processing

't
DL

@c

v
)

F‘ 7genT . ﬁ Mobile Device
| (0 SensorNode 2 Computer
B server & User

Fig. 1.2 Deployment of Agents in Sensor Clouds and Internet Applications

The agent behaviour is modelled with Activity-Transition Graphs (ATG) and
a new ATG-based Agent Programming Language (AAPL).

The AAPL/ATG programming model offers sub- and super agent classifica-
tion that can be used for run-time adaptation of the agents. The ATG can be
modified at run-time by agents, i.e., reconfiguration of transitions and activi-
ties composing new ATG behaviour.

The AAPL agent behaviour model uses tuple-space and signal communica-
tion for the "social" coupling of agents. The replication model bases on forking
of loosely bounded parent-child agent groups or instantiation of unbounded
MAS.

Three different agent processing platform (APP) classes were investigated
and compared differing in resource complexity, computational latency, and
flexibility. The first one (PCSP) is the static pipelined finite-state machine based
architecture offering resource and computational latency optimization with
predictable real-time capabilities. The second one (PAVM) is the dynamic pro-
gram code based architecture offering run-time programmability and a high
degree of computational independence of the agents from the platform (that

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

n Chapter 1. Introduction: Outline and Synopsis

are only loosely coupled). The third one (JAM) is an agent platform entirely
programmed in JavaScript.

Traditional LM/SHM/TS algorithms like inverse numerical approaches,
supervised machine learning, correlation analysis, and pattern recognition,
are characterised by a high computational complexity and high memory
requirements. Usually these high-level computations are performed off-line
(outside the network and not in real-time).

Originally software and multi-agent systems are executed on computers
with high computational power and memory capacity, shown in Figure 7.3.
The integration of computing and agents in technical structures or devices
requires the downscaling of algorithms and methodologies towards distrib-
uted processing networks with low-resource platforms.

The technical miniaturization of data processing nodes leads to a decrease
in the computational power that can be compensated only by using efficient
parallel and distributed data processing approaches and platforms. One
example is the Smart Dust Mote [WARO1], integrating a full sensor node
including energy harvesting and optical communication in a cube smaller than
10mm?3.

It can be shown that agent-based computing can be used to partition these
computations in off-line and on-line (in network and real-time) parts resulting
in an increased overall system efficiency (performance and energy demands)
and a unified programming interface between off- and on-line parts.

The agent model is also capable of providing a programming model for dis-
tributed heterogeneous systems crossing different network boundaries. The
deployment of MAS in heterogeneous environments is often addressed on
the organizational layer, e.g. in [JAYO7]. Multi-agent systems are used to ena-
ble a paradigm shift from traditionally continuous-data-stream based to
event-driven sensor data processing, resulting in increased robustness, per-
formance, and efficiency.

Event-based sensor data processing and self-organizing systems reduce the
communication and processing complexity significantly without a loss of
Quality-of-Service (QoS), which can be vital in low-resource networks.

Autonomy oriented computation, respectively self-organizing MAS with
directed diffusion, replication, exploration, and voting behaviour are used to
implement model-free sensor-to-information mapping, suitable for informa-
tion extraction in sensor networks and LM/SHM/TS applications based on
pattern recognition and data-centric algorithms. Smart learning agents based
on decision trees are used to distribute and deliver information in unreliable
and changing sensor networks.

The run-time behaviour and the requirements of computational, communi-
cation, and energy resources in different MAS are analysed using simulation
and real-time monitoring techniques in a technical demonstrator.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.1 Outline and Introduction

A
g
AR | .
‘:9 . . Network
K]
T
5
o
S mbedded PC
Thick-film battery (.)
P—tem== =] System-on-Chip ASIC Size
-
Smart Dust Sensor Mote mm cm m

Fig. 1.3 (Left) Smart Dust Mote [WARO1] (Right) Scaling and Miniaturization of Data
Processing: from centralised to distributed parallel systems

Load monitoring based on supervised machine learning and inverse
numeric computation are two different use cases for the proposed MAS data
processing and off/on-line partitioning approach. The sensor data preproc-
essing is event-based and uses SoS to detect regions of interest (local
significant change of sensors caused by a change of load).

Additionally, negotiated energy management (EM) by using a self-organiz-
ing MAS is deployed in self-powering sensor networks. Energy management in
autonomous low-power and self- or semi-self-supplying sensor networks is a
vital part of robustness, and is the third application case evaluated in this
work.

All the different modules and parts considered and handled in this work
contributing to the design of intelligent sensing, aggregation, and application
systems have a close relationship, as illustrated in Figure 7.4, that are
primarily:

e Distributed Sensor Networks

e Agent Process Platforms

e Agent Programming Languages

e Multi-agent Systems

e Self-organizing and self-adapting systems

e Distributed (agent-based) Machine Learning

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

Chapter 1. Introduction: Outline and Synopsis

MAS DML

APP
e
- {

{ HLS {5
Q’x SoC A

ar a
R %5;1

LM DSN EM

Fig. 1.4 All modules of this work contributing to the design of intelligent sensing sys-
tems: Multi-Agent Systems (MAS), Agent Processing Platforms (APP), System-
on-Chip Design (SOC) and High-level Synthesis (HLS), Agent Programming
Model and Language (APL), Self-organizing Systems (SOS), Load Monitoring
(LM), Energy Management (EM), Distributed Sensor Networks (DSN), Distrib-
uted Machine Learning (DML)

1.2 Data Processing in Sensor Networks with Multi-Agent
Systems

1.2.1 Distributed Micro-scale Data Processing in Materials

Guided by the Moore law, the data processing capabilities of single micro-
chips increased dramatically in the last decades based on a transistor density
increase, leading to complex System-on-Chip (SoC) designs with more than
100 million transistors. On one hand this leads to a growing gap between
transistor density and suitable design tools. On the other hand, such complex
SoC circuits enable stand-alone data processing and computing, originally
performed by large computer and servers. Therefore, scaling of algorithms to
microchip level is one major challenge in the design of future computing envi-
ronments, including distributed and parallel computation. Data processing
migrates from generic computers to technical devices, used in our daily life,
i.e., mobile devices. The principal goal of a generic computer is just to perform

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.2 Data Processing in Sensor Networks with Multi-Agent Systems n

data processing only, but a technical device has to perform a specific job, usu-
ally under energy and size constraints, and uses data processing only as a tool
in the background invisible to the user to achieve the expected goal. New pro-
duction technologies like printed electronics and the integration of thinned
silicon or printed electronics in sheets using system-in-foil processes
[VANT4][STE12] introduce a new shift of data processing into a material, e.g.,
used for perception in robotics, shown already in Figure 7.7, or structural
monitoring. This final step introduces new challenges for the design of suita-
ble data processing architectures satisfying the energy and resource
constraints, requires new programming paradigms for distributed program-
ming in environments with a high risk of failure, suitable communication
interfaces and paradigms for heterogeneous networks, and finally a rigorous
selection and scaling of suitable algorithms for sensor processing
applications.

To reduce the impact of material-embedded sensorial systems on mechan-
ical structure properties, single microchip sensor nodes (in mm? scale) are
preferred [BOS14A]. Real-time constraints require parallel data processing
usually not provided by microcontrollers. Hence, with increasing miniaturiza-
tion and node density, new decentralised network and robust data processing
architectures are required, exposed in the next sections.

1.2.2 Multi-Agent Systems

Multi-Agent systems (MAS) can be used for a decentralised and self-organiz-
ing approach of data processing in a distributed system like a sensor network
[GUIT1] enabling the mapping of local sensor data to condensed global infor-
mation, for example based on pattern recognition [ZHAO8][LIUOT]. Multi-
Agent systems can be used to decompose complex tasks in simpler co-opera-
tive agents. MAS-based data processing approaches can aid the material-
integration of Structural-Health-Monitoring applications, with agent process-
ing platforms scaled to microchip level that offer material-integrated real-time
sensor processing. Agent mobility crossing different execution platforms in
mesh-like networks and agent interaction by using, e.g., tuple-space data-
bases and global signal propagation aid solving data distribution and
synchronization issues in the design of distributed sensor networks. The
deployment of mobile agents enables a shift from traditional operating sys-
tem services like higher-level messaging or resource management to the
application level, which can be fully covered by different agents. Pure MAS
environments do not require an operating system, in consequence this can be
omitted.

In [GUIT1], the agent-based architecture considers sensors as devices used
by an upper layer of controller agents. Agents are organised according to
roles related to the different aspects to integrate, mainly sensor management,
communication and data processing. This organization isolates and uncou-

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

n Chapter 1. Introduction: Outline and Synopsis

ples the data management from the changing network, while encouraging a
reuse of solutions.

The successful deployment of mobile Multi-Agent Systems in sensor net-
works was reported in [TYNO5] and [MULO8]. But the sensor nodes, called
motes and consisting of generic microcontrollers, had still extended physical
dimensions beyond the microchip scale (about 50 cm3 volume), and there was
no unified agent processing model supporting heterogeneous networks, i.e.,
connecting sensor networks with traditional computer networks and the
Internet.

There are actually six major issues related to the scaling of traditional soft-
ware-based multi-agents systems to microchip level implementations, low-
power sensor networks, and heterogeneous networks [BOS14B][BOS13A]:

1. Scaling to limited static processing, storage, and communication
resources;

2. Real-time processing capabilities;
3. Robustness in the presence of unreliable communication, platform,
and processing failures;

4. Suitable simplified agent processing architectures and platforms offer-
ing hardware designs with optimized resource sharing and efficient
parallel agent execution, also efficient and embedded software plat-
forms, and finally simulation models;

5. Unified agent behaviour and processing models suitable for heteroge-
neous environments with a high degree of diversity;

6. A unified high-level synthesis design approach covering the design of
MAS on specification, programming, communication, and platform
level including SoC hardware designs.

1.2.3 Heterogeneous Environments

Usually sensor networks are a part of and connected to a larger heteroge-
neous computational network [GUI11]. Employing of agents can overcome
interface barriers arising between platforms differing considerably in compu-
tational and communication capabilities. That's why agent specification
models and languages must be independent of the underlying run-time plat-
form. The adaptive and learning behaviour of MAS, central to the agent
model, can aid to overcome technical unreliability and limitations [SANO&].

Distributed material-integrated Sensor Networks (DSN) require increased
reliability and robustness of the entire heterogeneous environment in the
presence of node, sensor, link, data processing, and communication failures.
First considerations of heterogeneous network environments and the deploy-
ment of MAS were presented in [BOST5A]. It can be shown that the agent

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.3 The Agent Behaviour Model “

behaviour model and the agent processing platforms investigated in this work
are suitable to overcome barriers in heterogeneous networks, offering con-
nectivity of sensor networks with the Internet-of-Things, and finally the WWW.

Current work primarily addresses organizational aspects of MAS in hetero-
geneous environments using existing agent platforms (e.g., eHermes in
[JAYO7]), rather aspects concerning the platforms that are investigated in this
work.

1.3 The Agent Behaviour Model

The agent behaviour model presented and used in this work is associated to the
reactive and procedural model class with state-based reactive agents. Such a
reactive agent is specified by its state, composed of the values of all data vari-
ables and the control state denoting the current activity, and a reasoning
engine, implementing the behaviour and actions performed by the agent.
Details can be found in Chapter 2 referring to [BOS14B], [BOS14E], and
[BOS13A].

Agents record information about an environment state eeE and history
h:eg— e;—»ey—.., and so on. Let I=SxD be the set of all internal states of the
agent consisting of the set of control states S related to activities and internal
data D. An agent's decision-making process is based on this information.
There is a perception function see mapping environment states to percep-
tions, a function next mapping internal states and perceptions pePer on
internal states (state transition), and the action-selection function action that
maps internal states on actions a €Act.

Actions performed by agents that are part of their behaviour modify the
environment, which is seen by the agent, thus, the agent is part of the envi-
ronment. Learning agents can improve their performance to solve a given
task if they analyse the effect of their action on the environment. After an
action was performed the agent gets a feedback in form of a reward r(t)=r(e,,
a,). There are strategies n:E—A that map environment states on actions. The
goal of learning is to find optimal strategies n* that is a subset of =. The strate-
gies can be used to modify the agent behaviour. Rewarded behaviour learning
was addressed in [JUN12], for example, based on Q-learning.

This reactive behaviour can be summarised with the following operational
semantics:

e The programming model is basically related to procedural data pro-
cessing with activities computing and changing private and global data.

e Transitions between activities represent the progress and the external
visible change of the control state of an agent. Transitions can be con-
ditional depending on the evaluation of agent data.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

Chapter 1. Introduction: Outline and Synopsis

e Body variables of an agent are private data only visible for this specific
agent. The data content of body variables is mobile and be inherited by
forked child agents.

e There are agent parameters that are initialised during agent creation
to distinguish agents instantiated from the same behaviour class.

¢ Global data is exchanged and coordinated by using a tuple database
with synchronised and atomic read, test, remove, and write opera-
tions.

e Agents can migrate between different physical and spatially distin-
guished execution platforms by preserving and transferring the con-
trol and data state of the agent.

e The agent behaviour can be either implemented directly by the pro-
cessing platform (application specific and static platform class), or can
be implemented with program code executed by a generic agent pro-
cessing platform (dynamic platform class).

e Agents can be created at run-time, regardless of the platform class.
Agents can inherit the control and data state from parent agents (fork-
ing behaviour), enabling bounded parent-child agent groups. The
agents can be parametrized during the instantiation, enabling the dis-
tinction and variation of agents.

e Agents can synchronise and communicate peer-to-peer by using sig-
nals, which can be delivered to remote agent processing nodes, too.
This communication feature is primarily used by parent-child agent
groups that know from each other.

Definition: There is a Multi-Agent System consisting of a set of individual agents
{a4,0,,..}. There is a set of different agent behaviours, called classes C={AC;, AC,,..}.
An agent belongs to one class. In a specific situation an agent a; is bound to and
processed on a network node N, , (e.g. microchip, computer, virtual simulation
node) at a unique spatial location (m,n). There is a set of different nodes N={N;,
N,,..} arranged in a mesh-like network with peer-to-peer neighbour connectivity
(e.g. two-dimensional grid). The node connectivity may be dynamic and changing
over time. Each node is capable to process a number of agents ni(AC;) belonging to
one agent behaviour class AC;, and supporting at least a subset of C' < C. An
agent (or at least its state) can migrate to a neighbour node where it continues
working. Each agent class is specified by the tuple AC = A, T,F,S,H,V). A is the set of
activities (graph nodes), T is the set of transitions connecting activities (relations,
graph edges), F is the set of computational functions, S is the set of signals, H is the
set of signal handlers, and V is the set of body variables used by the agent class.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.3 The Agent Behaviour Model m

Therefore, the agent behaviour and the action on the environment are
encapsulated in agent classes, with activities representing the control state of
the agent reasoning engine, and conditional transitions connecting and ena-
bling activities. Activities provide a procedural agent processing by a
sequential execution of imperative data processing and control statements.
The agents can be instantiated from a specific class at run-time. A Multi-Agent
System is composed of different agent classes that enables the factorisation
of an overall global task in sub-tasks, with the objective of decomposing the
resolution of a large problem into agents in that they communicate and co-
operate with one other. The ATG agent behaviour model is discussed in Chap-
ter 2.

1.3.1 Dynamic Activity-Transition Graphs

The behaviour of an activity-based agent is characterised by an agent state,
which is changed by activities. Activities perform perception, plan actions, and
execute actions modifying the control and data state of the agent. Activities
and transitions between activities are represented by an Activity-Transition
Graph (ATG). Transitions start activities based on the evaluation of agent data.
An ATG relies on an event-based model.

Usually agents are used to decompose complex tasks in simpler ones.
Agents can change their behaviour based on learning and environmental
changes, or by executing a particular sub-task with only a sub-set of the origi-
nal agent behaviour. The case studies in Chapter 9 show examples for Self-
organizing Multi-Agent Systems (SOMAS) with different agent behaviour and
goals forked from one original root agent class. An ATG describes the com-
plete agent behaviour. Any sub-graph and part of the ATG can be assigned to
a sub-class behaviour of an agent. Therefore, modifying the set of activities A
and transitions T of the original ATG introduces several sub-behaviours imple-
menting algorithms to satisfy a diversity of different goals. The
reconfiguration of activities A’={A; c A, A, c 4, ..} derived from the original set
A and the modification or reconfiguration of transitions T'={T,,T,,..} enable
dynamic ATGs (DATG) and agent sub-classing at run-time.

Learning agents can improve their performance to solve a given task if they
analyse the effect of their action on the environment by getting a feedback in
form of a reward. This reward learning approach can be applied to the DATG
model modifying the agent behaviour at run-time based on the learning
results to find optimal strategies n* that are subsets of the original strategy
set «.

1.3.2 The Agent Interaction with a Tuple Space

A tuple space is basically a shared memory database used for synchronised
data exchange among a collection of individual agents, which was already

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

n Chapter 1. Introduction: Outline and Synopsis

proposed in [QIN10] as a suitable MAS interaction paradigm. One well-known
tuple-space organization and co-ordination paradigm is Linda [GEL85]. The
tuple-space organization and access model offers generative communication,
i.e., data objects can be stored in a space by processes with a lifetime beyond
the end of the generating process. The scope and visibility of a tuple space
database can be unlimited and visible and distributed in the whole network,
or limited to a local scope, e.g., the network node level. A tuple space provides
abstraction from the underlying platform architecture, i.e., it is a virtualized
resource, and offers a high degree of platform independence, that is vital in a
heterogeneous network environment.

In [CHUO2] a Java based mobile processing and co-ordination platform was
introduced, offering agent co-ordination by tuple spaces, too. An XML model
approach is used to encapsulate and exchange tuples that introduces super-
fluous communication overhead.

A tuple database stores a set of n-ary (arity of n) data tuples, t,=(v;, vj,.., v,)
that are n-dimensional values. The tuple space is organised and partitioned in
sets of n-ary tuple sets V={TS,,TS,,..,TS,}. A tuple is identified by its dimension
and the data type signature. Commonly the first data element of a tuple is
treated as a key. The agents can add new tuples (using the output operation)
and read or remove tuples (using the input operations) based on tuple pat-
tern templates and pattern matching, p,=(v;, ps? .. Visens P’ Vy), @ n-
dimensional tuple template with actual and formal parameters. Formal
parameters are wild-card place-holders, which are replaced with values from
a matching tuple. The input operations can suspend the agent processing if
there is actually no matching tuple available. After a matching tuple was
stored, blocked agents are resumed and can continue processing. Therefore,
tuple databases provide inter-agent synchronisation, too. This tuple-space
approach can be used to build distributed data structures and the atomicity of
tuple operations provides data structure locking. The tuple spaces represent
the knowledge of agents. The tuple-space co-ordination and communication
model is discussed in Chapter 3.

1.4 Agent Programming Languages and AAPL

There are multiple existing agent programming languages and processing
architectures, like APRIL [MCC95] providing tuple-space like agent communica-
tion, and widely used FIPA ACL, and KQGML [KONOO] focusing on high-level
knowledge representations and exchange by speech acts, or model-driven
engineering (e.g. INGENIAS, [SANO8]). But required resource and processing
control, independence of the processing architecture, and a unified approach
for the deployment of MAS in strong heterogeneous networks are missing,
which is addressed in this work with AAPL, the Activity-Transition-Graph based
Agent Programming Language. This language enables the design of heteroge-

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.4 Agent Programming Languages and AAPL “

neous MAS with a unified agent interaction paradigm on different processing
platforms. The processing of AAPL agents is independent of any particular
technology or architecture.

The implementation of mobile multi-agent systems for resource con-
strained embedded systems with a particular focus on microchip level is a
complex design challenge. High-level agent programming and behaviour
modelling languages can aid to solve this design issue. Though the imperative
programming model of AAPL is quite simple and closer to a traditional pro-
gramming language it can be used as a common source and intermediate
representation for different agent processing platform implementations
(hardware, software, simulation) by using a high-level synthesis approach
[BOS14B].

Commonly used agent behaviour models base on the Procedural-Reason-
ing-System and Belief-Desire-Intention (PRS/BDI) architectures with a
declarative paradigm (2APL, AgentSpeak/jason), communication models (e.g.
FIPA ACL, KQML), and adaptive agent models can be implemented with AAPL
providing primitives for the representation of beliefs or plans (discussed
later). Agent mobility, interaction, and replication including inheritance are
central multi-agent-orientated behaviours provided by AAPL.

On one hand the AAPL approach is simple enough to enable hardware
design synthesis, on the other hand powerful enough to model the agent
behaviour of complex distributed systems, which is demonstrated in several
case studies in Chapters 9 and 74.

The agent programming model is close to the previously introduced
Dynamic Activity-Transition Graphs (DATG). An agent is composed of activities
performing actions, e.g., the modification of internal data and the external
environment (data). Based on the state of the agent, which is given primarily
by the values of the body variables of the agent, there are transitions between
activities, representing a change in the control state of the agent. The Activity-
based Agent Programming Language AAPL offers a textual representation of
the DATG model. Agents specified with AAPL can be synthesized to and be pro-
cessed on both the application-specific and the programmable agent
processing platforms, which is summarized in Figure 7.5, having a common
source for the development of heterogeneous environments.

The AAPL programming language (introduced in [BOST4A], extended in
[BOS14B]) offers statements for parametrizable agent instantiation, like the
parametrizable creation of new agents and the forking of child agents inherit-
ing the control and data state of the parent agent (creating bounded parent-
child agents group).

Multi-Agent and group interaction is offered with synchronised Linda-like
tuple database space access and peer-to-peer interaction using signal propa-
gation carrying simple data delivered to and processed by signal handlers of
agents. Signals, which can carry additional scalar data values, can be used for

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

n Chapter 1. Introduction: Outline and Synopsis

local (in terms of node scope) and global (in terms of network scope) agent
interaction. In contrast to the anonymous tuple-space interaction, signals are
directly addressed to a specific agent or a group of agents.

Agent mobility is offered by a simple move operation that migrates the
agent to a node in the neighbourhood, assuming mesh-like networks, not nec-
essarily with static topologies and connectivity.

Agent classes are defined by their parameters, variables, activities, and
transition definitions reflecting the ATG model. Optionally an agent class can
define additional functions for computation and signal handlers. There are
several statements for ATG transformations and composition. Transitions and
activities can be added, removed, or changed at run-time.

There are different levels of organization in MAS [FER99], which can be
related to the AAPL behaviour and interaction model in the following ways:

1. The micro-social level characterized by a tight bounding of agents, sup-
ported by AAPL parent-child groups with forking of the control and data
state.

2. The group level characterized by a composition of larger structures
and organizations, supported by AAPL mobility and tuple-space coordi-
nation.

3. The global society level characterized by the dynamics of numerous
agents with specialisation of some agents, supported by AAPL mobility
and ATG/class composition.

The AAPL agent behaviour model and the programming language are dis-
cussed in Chapter 2. There is a AAPL short notation used throughout this book,
which is summarized in Appendix A.3.7.

The Belief-Desire-Intention (BDI) architecture is a well-known agent behav-
iour and interaction model capable of rational behaviour and practical
reasoning [RAO95] [WOO99], in contrast to, for example, procedural reason-
ing architectures (like PRS). Although the AAPL model is closer to the
procedural processing model, it can be related to the BDI architecture, and
BDI agents can be implemented with AAPL, discussed in Section 2.72.

The relationship of the AAPL model with the mobile process model and pro-
cess algebra, i.e., the n-Calculus, is discussed in Section 2.8, using a modified
distributed T1-Calculus (based on the original aD/F-Calculus [HENO7]), moving
the view of point from spatially located agents in a distributed inter-connected
system to one unified concurrent system with dynamic virtual communication
channels.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.5 Agent Processing Platforms

CSP/FSM ATG PAVM
‘ Process%’ Graph E‘ ‘ Code %’ @ Model Level

Programming
ALl ® Level

HWS [> | SWS B HWS O o Synthesis

Level
Agent Platform
PCSP o PAVM ®Architecture Level
® Implementation
Architecture Level
-)
SoC PC PSIM BSIM WEB SoC PC PSIM

Fig. 1.5 Different low-resource agent processing platform architectures and imple-
mentations, but a common agent behaviour model and programming source.
(PCSP: Pipelined Communicating Sequential Processes - static, PAVM: Pipe-
lined Agent Forth Virtual Machine - dynamic, ATG: Activity-Transition Graph,
AAPL: Agent Programming Language, HWS: Hardware Synthesis, SWS: Soft-
ware Synthesis, PSIM: Platform Simulation, BSIM: Behavioural Agent
Simulation, WEB: JavaScript, SoC: System-on-Chip)

1.5 Agent Processing Platforms

Microchip level implementations of Multi-Agent Systems were originally
proposed for low level tasks, for example in [EBR11] using agents to negotiate
network resources and for high-level tasks using agents to support human
beings in ambient-intelligence environments [CAM12]. The first work imple-
ments the agent behaviour directly in hardware, the second uses still a
(configurable) microcontroller approach with optimized parallel computa-
tional blocks providing instruction set extension. A more general and
reconfigurable implementation of agents on microchip level is reported in
[MENO5], providing a closed-loop design flow especially focussing on commu-
nication and interaction, though still assuming and applying to program
controlled data processing machines and architectures. Hardware implemen-
tations of multi-agent systems are still limited to single or a few and non-
mobile agents ([MENO5][NAJO4]). A first attempt can be found in the PANGEA

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

m Chapter 1. Introduction: Outline and Synopsis

platform [VIL14] that embeds agents in resource limited devices. But it does
not provide the concept of mobile processes thoroughly addressed in this
work. The PANGEA platform addresses different levels of organization aspects
of MAS accurately, which is considered here as a higher level task not directly
supported by the platform itself, though the investigated new platform archi-
tectures are closely related to the AAPL behaviour model, and hence provide
the necessary atoms for the agent organization. In [ZHOO08] the virtual
machine CAVM is presented, targeting the agent-oriented CAOPLE program-
ming language for distributed systems. The CAVM is a high-level language
virtual machine addressing the caste centric agent programming paradigm
based on the encapsulation of state, action, behaviour rules, and environmen-
tal description, which is comparable to AAPL. One important feature of the
CAVM is the separation of computation and communication, a requirement for
mobile code platforms. This is addressed by the agent platforms investigated
in this work, too. But the CAVM approach is not scalable to low-.resource
embedded platforms and relies on traditional microprocessor architectures;
the code is inefficiently encoded with an XML textual representation.

Two different microchip-scalable agent processing platforms were investi-
gated and evaluated:

1. A non-programmable (application-specific)
[BOS14A][BOS14B][BOS13A];

2. A programmable (application-independent, generic) agent processing
architecture [BOS14C][BOS14D][BOS12B].

Both agent processing platform architectures can be implemented in hard-
ware, software, and simulation with a multi-model synthesis, shown in Figure
1.5. The synthesis process is discussed in Section 7.7 and Chapter 72.

The non-programmable architecture bases on finite-state machines imple-
menting the agent behaviour purely application-specific with a multi-process
token-based pipeline architecture, based on a reconfigurable Petri-Net model.
The programmable architecture uses a stack machine supporting a zero-oper-
and instruction set with code-morphing capabilities. They differ in resource
complexity (gate count/chip area, memory, and power demands), computa-
tional latency (the parallelization degree), and run-time flexibility
(optimization contrary to programmability). Both approaches focus on hard-
ware implementations, but offer optimized software implementations and
simulation models, too.

All implementations of one platform architecture class can be deployed and
connected in a heterogeneous network environment. They are compatible on
operational and interface level. That means agents can migrate between dif-
ferent platform implementations and different host environments. Inter-class
compatibility can be achieved by using transformation and wrapper modules.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.5 Agent Processing Platforms “

1.5.1 The Non-Programmable Application-specific Agent Processing Plat-
form PCSP

The non-programmable approach implements multi-agent systems with
mobile activity-based agents capable of sensor data processing in unreliable
mesh-like networks of nodes, consisting of a single microchip with limited low
computational resources. The agent behaviour, interaction, and mobility can
be efficiently integrated on the microchip using a configurable pipelined
multi-process architecture with token-based agent processing, offering tem-
poral and spatial fine-grained parallelization and optimized resource sharing.
A reconfiguration mechanism of the agent processing system offers activity
graph changes at run-time. Agent activities are mapped on communicating
sequential processes (finite-state machine model) with one input port and
one or several output ports, and transitions are mapped to queues connect-
ing activity processes.

Token-based Processing. Token-based execution of programs was in last
decades originally introduced for data-flow computing, e.g., the tagged token-
based data-flow processor from MIT [ARV90], offering a MIMD processor
class. Here the agent processing architecture is related to Petri Net token pro-
cessing, with tokens passed between activity processes (states) using queues
(representing transitions). A token is associated with a specific agent (i.e.,
agent identifier). The token based agent processing model enables advanced
timed Petri-Net analysis. Mobility of agents between network nodes is pro-
vided by transferring the state of an agent (mainly consisting of the private
data space and the control state giving an activity entry point after migration)
encapsulated in messages.

Beside hardware implementations, efficient software implementations and
simulation models with equal functional behaviour can be derived from the
same source model. Hardware and software platforms are compatible on
execution level and can be directly connected in heterogeneous networks.
The agent behaviour, reasoning, interaction, and mobility are modelled and
specified with the programming language AAPL related to the ATG model. A
database driven high-level synthesis approach is used to map the agent
behavioural model to multi-agent systems on hardware, software, and simu-
lation platforms. The hardware synthesis is based on the ConPro HLS tool
[BOSTTA][BOST0A], which offers the SoC and SoPC design from programming
level with communicating sequential processes and Inter-process communi-
cation by using shared synchronization objects like semaphores. Competition
and concurrence is resolved by using atomic guarded access of shared
resources, resulting in rigorous serialization of parallel access. Agent interac-
tion and communication is provided by a simple tuple-space database
implemented on node level and signals providing remote inter-node level

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

m Chapter 1. Introduction: Outline and Synopsis

communication and interaction. Access of the tuple-space introduces inter-
agent synchronization, which is based on tuple-pattern matching.

Real-time Processing. Full data path parallelism provided by the hardware
implementation [BOS11A] and the fine-grained activity-based partitioning of
the computation can offer real-time capable low-latency agent data process-
ing within estimated or constrained time bounds by analysing the activities at
design time with a closed loop design flow. Though resource sharing always
limits a hard real-time constraint satisfaction at run-time, the presented
approach can relax time-bounded computation significantly compared with
traditional software and operating system controlled systems offering only
coarse-grained task scheduling. Agent tokens can be assigned an additional
time bound in which the agent must be processed. An activity process transi-
tion queue can be extended with a scheduler selecting agents using time line
priorities. Timed Petri-Nets can be used to analyse the temporal behaviour of
agents and the estimation of time bounds depending on the activity computa-
tions [BOS14B] in conjunction with platform simulation [BOS14E].

1.5.2 The Programmable Agent Processing Platform PAVM

There is only few related work regarding programmable agent platforms
supporting mobile processes. In [CHUO2] a Java based VM approach is used to
implement and process mobile agents (the JMAP platform), with some con-
cepts addressed in this work, too. But Java programs and the Java VM (though
stack based) rely on a random access memory model and memory refer-
ences, which is not well suited for register-based data processing platforms
exploiting parallelism on data and control path level that are applied to micro-
chip level SoC architectures. The JMAP platform is implemented on the top of
the Java VM and incorporates an agent, coordination, and security manager,
basically part of both agent processing platforms (application-specific and
programmable) that are presented in this work. In the JMAP platform the
agents are related to threads, in the PCSP and PAVM platforms with tokens
executed by shared processing blocks.

Application-specific platforms offers the best performance and lowest
resource requirements, but lack of flexibility. For this reason, a second pro-
grammable platform was investigated. The requirements for this agent
processing platform can be summarized to:

1. Being suitable for microchip level (SoC) implementations;
2. Supporting a stand-alone platform without any operating system;
3. Performing efficient parallel processing of numerous different agents;

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.5 Agent Processing Platforms

4. Being scalable regarding the number of agents processed concur-
rently;

5. Providing the capability to create, modify, and migrate agents at run-
time.

Migration of agents requires the transfer of the data and control state of
the agent between different virtual machines (at different node locations). To
simplify this operation, the agent behaviour based on the activity-transition
graph model is implemented with program code. This embeds the (private)
agent data as well as the activities, the transition network, and the current
control state [BOS14B][BOS15B], based on early work in [BOS12B] introducing
code morphing for agent modification at run-time. The program code can be
considered as a self-contained execution unit. The execution of the program
by a virtual machine (VM) is handled by a task. The program instruction set
consists of zero-operand instructions, mainly operating on the stacks. The VM
platform and the supported machine instruction set implement traditional
operating system services, too, offering a full operational and autonomous
platform with a hybrid RISC and CISC architecture approach. No boot code is
required at start-up time. The hardware implementation of the platform is
capable to operate after few clock cycles, which can be vital in autonomous
sensor nodes with local energy supply from energy harvesting. An ASIC tech-
nology platform requires about 500-1000 k gates (16 bit word size), and can
be realized with a single SoC design.

The virtual machine executing tasks is based on a traditional FORTH proces-
sor architecture and an extended zero-operand word instruction set
(aFORTH), discussed in Chapter 7. Most instructions directly operate on a data
and a control stack. A code segment stores the program code with embedded
data. There is no separate data segment. Temporary data is stored only on
the stacks. The program is mainly organized by a composition of words (func-
tions). A word is executed by transferring the program control to the entry
point in the code segment; arguments and computation results are passed
only by the stack(s). There are multiple virtual machines with each attached to
(private) stack and code segments. There is one global code segment with a
word dictionary storing global available functions and code templates that
can be accessed by all programs. A dictionary is used to resolve code
addresses of global functions and templates. This multi-segment architecture
ensures high-speed program execution. The local code segment can be imple-
mented with (asynchronous) dual-port RAM (the other side is accessed by the
agent manager, discussed below), the stacks with simple single-port RAM. The
global code segment requires a Mutual Exclusion scheduler to resolve compe-
tition by different VMs.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

Chapter 1. Introduction: Outline and Synopsis

The program code frame of an agent consists basically of four parts:

1. Alookup table and embedded agent body variable definitions;

2. Word definitions defining agent activities and signal handlers (proce-
dures without arguments and return values) and generic functions;

3. Bootstrap instructions that are responsible to set up the agent in a
new environment (e.g., after migration or at first run);

4. The transition table calling activity words (defined above) and branch-
ing to succeeding activity transition rows depending on the evaluation
of conditional computations with private data (variables).

The transition table section can be modified by the agent using special
instructions.

Commonly the number of agent tasks N executed on a node is much
larger than the number of available virtual machines Ny. Thus, efficient and
well-balanced multi-task scheduling is required to get proper response times
of individual agents. To provide fine-grained granularity of task scheduling, a
token based pipelined task processing architecture was chosen. A task of an
agent program is assigned to a token holding the task identifier of the agent
program to be executed. The token is stored in a queue and consumed by the
virtual machine from the queue. After a (top-level) word was executed, leaving
an empty data and return stack, the token is either passed back to the pro-
cessing queue or to another queue (e.g., of the agent manager).

The agents can reconfigure at run-time by modifying their program code
using code morphing techniques provided by special instruction of the VM.
Self-reconfiguration is mainly acting on the transition table of an agent by
enabling or disabling of activity transitions. Code morphing is also used to
save the state of an agent during process suspending (due blocked 10) or
upon migration. Furthermore, recomposing of new agents with existing agent
activity words and functions is a suitable tool to create sub-classed or newly
composed agents.

1.5.3 JAVM: The JavaScript PAVM

The previous subsection outlined the programmable stand-alone platform
that can be implemented in hardware, software, and simulation models. This
platform architecture was primarily designed for peer-to-peer networks.
Recent work extended the deployment of this platform to the Internet domain
by encapsulating the platform VM in a Distributed Co-ordination Layer (DCL)
supporting capability-based RPC, distributed file and directory services
[BOST5A]. The directory service enables the grouping of nodes in domains
published in directories. The agent processing platform and the DCL were
implemented in JavaScript (JS) that can be executed in any WEB browser or a

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.5 Agent Processing Platforms m

dedicated node.js VM. A broker service is used to enable bidirectional RPC
communication for client-side-only applications, i.e., executed by a WEB
browser that cannot expose an IP service. This extended JS platform can be
connected to sensor networks and is compatible to the stand-alone PAVM
platform on operational level enabling migration of agents between dedicated
sensing networks and the Internet, discussed later in the context of cloud-
based manufacturing (see Section 7.72).

1.5.4 Comparison of the Agent Processing Platforms

Table 7.7 provides a taxonomy and shows the comparison of the character-
istics and the advantages/disadvantages for two hardware capable agent
processing platform architectures and their different implementations (PCSP:
Pipelined Communicating Sequential Processes, PAVM: Pipelined Agent Forth
Virtual Machine).

Both platforms differ with respect to their agent processing approach, but
bases basically on the same agent programming model. Among hardware
implementations there are distinct software implementations providing oper-
ational compatibility.

1.5.5 JAM: The JavaScript Agent Machine

Table 7.2 gives a taxonomy of another pure software-based JavaScript
Agent Platform JAM, introduced and used in this book, too, which is discussed
below.

In contrast to the JAVM platform that implements the PAVM in JavaScript still
executing machine FORTH code, the recent development of the JAM platform
enables the execution of mobile agents entirely programmed in JavaScript.
The JAM platform enables the deployment of large-scale MAS in strong hetero-
geneous environments, primarily targeting the Internet and Clouds. JAM is
capable of handling thousands of agents per node, supporting virtualization
and resource management. Depending on the used underlying JS VM, agent
processes can be executed with nearly native code speed. JAM provides
Machine Learning as a service that can be used by agents. Different algo-
rithms can be selected by agents.

JAM can be executed on any JavaScript VM engine, including browser
engines (Mozilla's SpiderMonkey), or from command line using node.js (based
on V8) or jxcore (V8 or SpiderMonkey), and finally the low-resource engine JVM
based on jerryscript. In contrast to V8-based engines that compile JS at run-
time to native machine code (Just-in-time compiler), JVM is a Bytecode engine
that compiles JS directly to Bytecode from a parsed AST. JAM is available also
as an embeddable library (JAMLIB) that can be integrated in any JS/HTML appli-
cation including mobile APPs.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

Approach

Hardware

Implem.

Tab. 1.1

Chapter 1. Introduction: Outline and Synopsis

Programmable PAVM

Program code based
approach

Zero-operand instruction for-
mat

Stack memory centric data
processing model

Platform is generic

Code embeds instructions,
configuration (control state),
and data

Migration: code transfer

Optimized Multi Stack
Machine

Each stack processor has a
local code segment and two
stacks shared by all agents.
There is no data segment!

Single SoC Design

Multiprocessor architecture
with distributed and global
shared code memory

Multi-FSM RTL hardware
architecture

Automatic Token-based
agent process scheduling
and processing

Code morphing capability to
modify agent behaviour and
program code (ATG modifica-
tion)

Data- and code word sizes
can be parametrized

Non-programmable PCSP

Application-specific approach
Platform is application-specific

Activities of the ATG are
mapped to processes

Token-based agent processing

Migration: data and control
state transfer

Pipelined Communicating Pro-
cesses Architecture composi-
tion implementing ATG and
token-based agent processing

Single SoC Design

Optimized resource sharing -
only one PCSP for each agent
class implementation required

Activity process replication for
enhanced parallel agent pro-
cessing

For each agent class there is
one PCSP with attached data
memory (agent data).

Single SoC Design

LUT configuration matrix
approach for ATG reconfigura-
tion

Comparison of two hardware- and software capable platform architectures
and their implementations (PAVM PCSP)

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.5 Agent Processing Platforms

Software

Implem.

Simulation
Model

Programmable PAVM

Multi-Threading or Multi-Pro-
cess software architecture

Inter-process-communica-
tion: queues

Software model independ-
ent from programming lan-
guage

VM sources for various pro-
gramming languages: C, ML,
JavaScript, ...

Can be embedded in existing
software

Platform memory require-
ments: Code 1MB, Data 0.5-
10MB

JavaScript platform offers
WEB application integration

Agent-based Platform simu-
lation

Generic simulation model -
can execute machine code
directly

Processor components and
managers are simulated with
agents

Non-programmable PCSP

Multi-Threading software archi-

tecture
Optimization: Functional com-

position and implementation of

ATG behaviour instead PCSP

Inter-process-communication:
queues

Software model independent
from programming language
Source code for various pro-
gramming languages: C, ML, ...
Can be embedded in existing
software

Platform memory require-
ments: Code 1-100kB, Data 10-
500kB

Agent-based platform simula-
tion

Application-specific simulation
model

ATG activity processes are sim-
ulated with agents

Tab. 1.1 Comparison of two hardware- and software capable platform architectures

and their implementations (PAVM PCSP)

The agent behaviour is modelled exactly according to the Activity-Transition
Graph (ATG) and AAPL model. The ATG is entirely programmed in JavaScript
(Agent)S). JAM agents are executed in a sand-boxed environment isolating
agents from each other and the computer system by the JAM Agent Input/Out-
put System (AIOS). JAM agents are mobile, i.e., a snapshot of an agent process
containing the entire data and control state including the behaviour program,
can migrate to another JAM platform. JAM provides a broad variety of connec-
tivity, including the Distributed Organization layer (DOS).

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

Approach

Hardware

Implem.

Software

Implem.

Simulation
Model

Tab. 1.2

Chapter 1. Introduction: Outline and Synopsis

Programmable JAM

Mobile JavaScript text-code based approach

JAM Platform is generic and can be executed on any JS VM
engine, e.g., node.js, jxcore (V8 + Spidermonkey), jxcore+, jvm,
WEB Browser

Agent program code embeds instructions (activities), configura-
tion (transitions, control state), and data (body variables)

Migration: text transfer in JSON+ format

None

Single-Threaded software architecture with asynchronous I/0
Advanced agent process scheduling

Software model: JavaScript

Platform: JavaScript

Can be embedded in existing software

JavaScript platform offers WEB (Browser) application integration
Platform memory requirements: JS code: 1MB, Data 5-50MB
(depends on JS VM)

No platform simulation required by using JAM directly and SeJAM
(Simulation and visualization environment on the top of JAM)
Simulation model: JavaScript

Implemented with node-webkit (nw.js)

Hardware-in-the-loop support: SeJAM can be integrated in real
world networks

A pure software-based agent platform: JAM

The JAM platform introduces a new security concept by assigning a role
level to agents. A role grants or denies access to A/OS operations, e.g., the cre-
ation of new agents or the sending of signals. Higher role levels are only
granted trustful agents. Agents operate with limited resources (CPU time,
memory, ..), which can be negotiated between agents and the platform.

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.6 AAPL MAS and Mobile Processes: The TT-Calculus

1.6 AAPL MAS and Mobile Processes: The I1-Calculus

The AAPL mobility, agent instantiation, and the tuple-space agent interac-
tion have a close relation to mobile processes and the II-Calculus with
channel-based communication, which is discussed in Chapter 3. Furthermore,
it can be shown that the unified Bigraph representation [MIL09] is a suitable
model to cover heterogeneous network environments populated with a diver-
sity of agents [BOST15A].

The n-Calculus introduced by Milner [MIL99] and the extended asynchro-
nous distributed n-Calculus introduced by Hennessy [HENO7] (aDII) are
common formal languages for concurrent and distributed systems, suitable
for studying the behaviour and reaction of distributed and concurrent sys-
tems including dynamic changes caused by mobility. In the following sub-
section the relationship of the AAPL/DATG behaviour and interaction model
with the I1-Calculus is pointed out, moving the view of point from spatially
located agents in a distributed interconnected system to one unified concur-
rent system with dynamic virtual communication channels. The TI-Calculus
used here extends the r-Calculus with the concept of (structural) domains,
locations, resources associated with domains and locations, and migration of
processes, close to the MAS paradigm, introduced in Section 2.8.

1.7 High-Level Synthesis of Agents and Agent Platforms

Designing and implementing MAS for multiple significantly different plat-
forms deployed in heterogeneous network environments is still a superior
challenge. A unified High-level synthesis framework should enable the design
and simulation of MAS for such a heterogeneous processing environment
including and most important hardware SoC designs (discussed in the next
section) using application-specific digital logic meeting the goal of miniaturiza-
tion and material-integration.

Currently the agent architectures are addressed primarily, and rather the
synthesis approaches themselves. One example for a high-level agent frame-
work is SPARK [MORO04], addressing the need for the synthesis of MAS that can
be deployed in real-world applications. This framework relies on the high-level
BDI agent model. The framework is limited to software implementations, and
primarily falls back on existing Java platforms. Another example can be found
in [BELO1]. It proposes the today widely used Java Agent Development Envi-
ronment (JADE), based on FIPA ACL compliant agent communication and Java
VM platforms. This agent and synthesis framework is still limited to generic
computers connected in IP-based networks. It seems only chemistry deals
with agent synthesis and processes [KED12].

In this work, an important key feature is given by the common agent pro-
gramming model AAPL that can be used for the different platform
approaches, effecting both the programming and synthesis architecture mod-

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

m Chapter 1. Introduction: Outline and Synopsis

els. The central parts of the synthesis framework are the Agent Behaviour and
Agent Platform compiler [BOST4A][BOS15B], discussed in Chapter 72 and that
are closely coupled.

Application-specific agent synthesis embeds the agent behaviour directly in
the platform, therefore the AAPL MAS behaviour is entirely synthesized to plat-
form processing blocks, whereas the application-independent agent synthesis
flow creates the platform (virtual machine) and the agent behaviour unit (pro-
gram) separately, similar to a traditional hardware-software co-design.

The Synthesis Development Kit (SynDK) was investigated to handle the syn-
thesis of such complex systems and to address different platform
architectures and implementations. A graph-based virtual database (VDB)
driven hardware and software synthesis approach should overcome limita-
tions in traditional compiler designs and enables common synthesis from a
set of source programming models and languages to a set of destination
models and languages like hardware behaviour models with parsers translat-
ing text to graph structured database content and printers creating text from
database content, shown in Figure 7.6. The Agent Behaviour, Agent Platform,
and the Hardware Compiler ConPro are coupled by the VDB. The database is
used to store parsed syntax trees (i.e., the input data in AST structure) of vari-
ous input languages, symbol tables used by various compiler blocks,
generated output data (output languages), and compiler block script code that
are interpreted by the Virtual Database Programming Language Machine
(VPM).

The VDB organizes database elements (so-called i-nodes) with generic
graph-like structures, enabling the mapping of any kind of data structure on
the database model.

The database element structure is constrained and defined by Structure
Type Definitions STD with an extended DTD model. This unified database
approach eases the design of complex multi-stage and multi-language compil-
ers significantly towards Agent Synthesis.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.7 High-Level Synthesis of Agents and Agent Platforms

>
v
-

AAPL Behaviour Compiler AFL FORTH Compiler

[P

>
h)
-

[

>
v
-

[

@ AFL f AML

i ConPro T VHDL

AAPL Paltform Compiler ConPro Hardware Compiler

Virtual Machine VPM
i

P

[+
) et

P |

P |

S einer 1 | I

Compiler CM1! cM2
Specification = VPL @
> VPL| P
Compiler

g Input ProgramOutput
Analysis g’ D E

gLibrary 1 >
i} B

gLibrary 2 \
Synthesis =)

P - — BRI

‘B st

AST - _/

-zl

‘D DB Node Graph / AST

Structure De

finitions |

(
D\ DB Interface i |
gVPL Source Code Programming i | - | | - | | - | i
N Langauge [|
Source i Symbols Symbols Syn’]bols E
Target i #;g;bsutes ?;g;l;utes $§t£;l;utes E
-\ :

Fig. 1.6 Heart of the Synthesis Development Kit (SynDK) architecture is the Virtual

Database (VDB) used for graph-based structuring of any kind of data involved
in compiling and synthesis processes, implementing parser and formatted
printer for a set of languages L, and a set of compilers C performing opera-
tions on abstract syntax trees AST (analysis, optimization, synthesis). The
Agent Behaviour, Agent Platform, and the Hardware Compiler ConPro are
coupled by the VDB.

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

m Chapter 1. Introduction: Outline and Synopsis

1.8 High-level Synthesis of SoC Designs

Embedded systems used for control, for example, in Cyber-Physical-Sys-
tems, or data processing in sensor networks, perform the monitoring and
control of complex physical processes using applications running on dedi-
cated execution platforms in a resource-constrained manner. System-On-
Chip designs are preferred for high miniaturization and low-power applica-
tions. Traditionally, program-controlled multi-processor architectures are
used to provide the execution platform, but application-specific digital logic
circuits gains more importance.

Currently High-level Synthesis (HLS) design flows are closely related to Sys-
temC or derivatives of C [COU09], well suited for the hardware-software co-
design synthesis, but not very well matching the requirements for massive
parallel RTL based architectures. Although there are suitable synthesis flows
generating application-specific RTL designs, e.g. Cynthesizer, they all suffer by
the constraints and restrictions of the C programming language used to
model the behaviour of the data processing system. The C/SystemC approach
does not provide any higher level of synchronization objects, like mutual
exclusion locks, semaphores, or guarded shared objects. Furthermore, the
programming paradigm of C is memory centric, binding all variables of a pro-
gram and prevent the extensive exploitation of data path parallelism.

Concurrency has a great impact on system and data processing behaviour
concerning latency, data throughput, and power consumption. Stream-based
and functional data processing requires fine-grained concurrency (on data
path level). However, reactive control systems (for example, communication
controller) require coarse-grained concurrency (on control path level).

The structural level decomposes a SoC into independent sub-modules
interacting with each other using centralized or distributed networks and
communication protocols, mainly program-controlled multi-processor
architectures.

The behavioural level usually describes the functional behaviour of the full
design interacting with the environment. Most applications and data process-
ing are modelled on algorithmic behavioural level using some kind of
imperative programming languages.

The ConPro High-level Synthesis tool [BOS10A][BOS11A] was designed for
the development of complex SoC designs beyond the millions gates, which
uses a behavioural multi-process programming language based on the Con-
current Communicating Sequential Processes (CCSP) model, providing an
extensive set of inter-process communication and synchronization primitives
and guarded atomic actions for shared resource access, with a compiler-
based synthesis approach, mapping the algorithmic programming level to
Register-Transfer level (concurrent multi-FSM approach) that can be imple-
mented directly with digital logic, shown in Figure 7.7.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.8 High-level Synthesis of SoC Designs “

Alternatively, software implementations with the same functional and oper-
ational behaviour can be synthesized from the same program source, too.

This capability eases the development of heterogeneous data processing
environments and networks consisting of single application-specific micro-
chips and generic computers significantly.

The ConPro programming model is not fixed on memory-centric data pro-
cessing architectures, granting a great choice of freedom for the selection of
processing architectures and synthesis processes.

The HLS followed by the gate level synthesis targeting different technolo-
gies: FPGA and a standard cell library enabling ASIC technology mapping, or
alternatively gate-level simulation using an event-based gate-level simulator
(based on the ASIMUT simulator that is part of the LIP6 Alliance ASIC design
tool-kit).

The design of digital circuits with a complexity up to ten million of logic
gates can be reached using this advanced CCSP-based programming language
model and the HL synthesis tool. Protocol stacks (i.e., [BOS11A]), agent pro-
cessing platforms [BOS13A][BOS14A], sensors processing nodes [BOS10B],
and robot joint controllers [BOS13D] were successfully implemented with this
tool.

CONPRO
HW Lib.
————————— -
\
B
VHDL FPGA

Gatelevel

EMI
| Library
—
SeUiEE J_l Synthesis

/
!
1
|
|
|
|
|
| |
| |
[i
Standard ! }
ConPro HW or Cell > > Gatelevel
HLS SW Gatelevel ! ! Simluation
Synthesis '
|
|
|
|
i
|
—P-
|
\
\¥

\ 4
\ 4

ConPro
Source

Y
Y

Source Sl
Compiler

’
CONPRO
SW Lib.

Fig. 1.7 Complete SoC Design flow using the high-level synthesis framework ConPro
that maps the parallel CCSP programming model on SoC-RTL hardware and,
alternatively, software targets

4

\ 4

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

m Chapter 1. Introduction: Outline and Synopsis

1.9 Simulation Techniques and Framework

In addition to real hardware and software implemented agent processing
platforms there is the capability of the simulation of the agent behaviour,
mobility, and interaction on a functional level. The "Shell for Simulated Agent
Systems" (SeSAm) simulation framework [KLUO9] offers a platform for the
modelling, simulation, and visualization of mobile multi-agent systems
employed in a two-dimensional world. The behaviour of agents are modelled
with activity graphs (specifying the agent reasoning machine) close to the AAPL
model. Activity transitions depend on the evaluation of conditional expres-
sions using agent variables. Agent variables can have a private or global
(shared) scope. Basically SeSAm agent interaction is performed by modifica-
tion and access of shared variables and resources (static agents).

Simulation aspects of MAS are presented and discussed in Chapter 77,
introducing the textual SeSAm Simulation Programming Language SEM used to
specify the simulation models in textual form (SeSAm has only a GUI
modeller).

1.9.1 Behavioural Simulation

In behavioural simulation, the AAPL/ATG model is mapped basically one-to-
one on SeSAm agents. But for signal handling a shadow agent is required to
handle concurrently incoming signals for the parent agent. Furthermore, the
SeSAM agent model does not support agent blocking within an activity. There-
fore, an AAPL activity must be split into computational and I0/event related
parts, which may block the agent processing [BOS14B]. Several MAS were sim-
ulated, profiled, and evaluated using this simulation level (e.g., event-based
and self-organizing sensor processing in [BOS14B][BOS14C]).

1.9.2 Platform Simulation

In contrast to behavioural agent simulation, the platform simulation uses
agents to simulate the processing of agents on a fine-grained level on a spe-
cific platform architecture, e.g., PCSP or PAVM. The agent processing platform
is simulated with the agent-based SeSAm simulation framework. This simula-
tion technique provides the testing and profiling of the proposed processing
platform architectures in a distributed network and world environment under
different constraints, i.e., resource constraints or connectivity loss. The PCSP
platform was simulated and evaluated in [BOS14E], and the PAVM platform in
[BOS15B].

1.9.3 Simulation of Real-world Sensor Networks

The simulation of the operation of entire sensor networks deploying MAS
commonly requires real data from the environmental world, which does not
exist.

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.9 Simulation Techniques and Framework

saL
D Node . Node %:%
[Agent Manager [Virtual Machine
[Z] Network Manager @ Network Connection MATLAB Computation
B Signal Manager M Virtual Agent Process Data Exchange
& RPC
SESAM MAS Simulator | y— G« e
D [- N — 3
R

- | Jem Y
- |0 Y em— RPC
Manager « — « AFC Compiler
— S | e S

saLp @»

'Y
Simulation Control D D
13

B

SHELL Socrees

5

SEM Compiler

Fig. 1.8 Simulation Framework with a Database approach (Left: SeSAm, middle:
SQL+RPC database server; Right: compiler and additional Numerical/ FEM
simulation tools)

To overcome this limitation, the SeSAm agent simulator was embedded in a
database centric unified simulation environment. This simulation environ-
ment connects the MAS simulator with FEM and numerical computation
programs (e.g., MATLAB), exchanging data and synchronizing using a SQL
database server, which provides an RPC interface for synchronization, too,
shown in Figure 7.8. This approach introduces multi-domain and multi-scale
simulation capabilities. Details are discussed in Section 77.3. Additionally, this
approach offers connectivity to real sensor networks.

1.9.4 RTL Simulation

Hardware agent processing platforms based on SoC and RTL designs can
be simulated and tested on a behavioural or platform architecture level as
explained in the previous sub-sections. A more fine-grained simulation tech-
nique for digital logic systems deploys gate-level simulation of pre-
synthesized circuits and digital stimuli patterns applied to the circuit for differ-
ent test cases. The hardware behaviour model (VHDL) is synthesized to a
standard-cell library target technology resulting in a netlist of standard cell

epubli, ISBN 9783746752228 (2018)

5 gppr B G 8 _

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

m Chapter 1. Introduction: Outline and Synopsis

gates taken from the library, which is simulated with an efficient event-based
simulator. The simulator ASIMUT from the Alliance VLSI CAD tool framework
(details can be found in [ALCAD] and [GRE92]) was extended and used for this
purpose. The simulator computes the output signal pattern from an input sig-
nal pattern stimuli (commonly generated by a pattern stimuli compiler) based
on internal signal changes and gate activity (events). Testing and simulating of
complete agent platform hardware implementations, consisting of about
500k-TM equivalent gates [BOS14A], is beyond the capabilities of this
approach. Instead, gate-level simulation was used to test components and
parts of the circuit, i.e.,, communication modules or synchronization objects,
especially for the development of the ConPro HLS framework [BOS11A]. Fur-
thermore, this low-level simulation technique was used to study the power
consumption and the algorithmic correlation as an input for Al-based energy
management by using an advanced version of ASIMUT and the SiCa compiler
[BOS11B], and further pointed out in Chapter 73.

1.10 Event-based Sensor Data Processing and Distribution with
MAS

Large scale sensor networks with hundreds and thousands of sensor nodes
require smart data processing concepts far beyond the traditional centralized
approaches. Multi-Agent systems can be used to implement smart and opti-
mized sensor data processing in these distributed sensor networks.

Event-based sensor data distribution and pre-computation with agents
reduce communication and overall network activity resulting in reduced
energy consumption of single nodes and the entire network.

Different sensor data processing and distribution approaches are used and
implemented with agents, leading to a significant decrease of network pro-
cessing and communication activity and a significant increase of reliability and
the Quality of Service (QoS) [BOST4C]:

1. An event-based sensor distribution behaviour is used to deliver sensor
information from sensor (source) to computation (sink) nodes.

2. Adaptive path finding (routing) supports agent migration in unreliable
networks with missing links or nodes by using a hybrid approach of
random and attractive walk behaviour.

3. Self-organizing agent systems with exploration, distribution, replica-
tion, and interval voting behaviour based on feature marking are used
to identify a region of correlated and stimulated sensors, introduced in
the next section. Detected features trigger the events for the above
described behaviour.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.11 Self-organizing Systems and MAS “

Simulations of such an event-based sensor processing shows a significant
decrease in communication performed by mobile agents that lead to an
improved scaling of large networks. The event-triggered agents, carrying the
information source, can reach their destinations, the information sinks, with a
high success rate in partially destroyed networks due to the adaptive path
finding, discussed in Section 9.3. The event-based adaptive MAS approach
introduces robustness and increases the reliability of the entire sensing sys-
tem [BOS14C], which can be vital and critical in SHM applications.

1.11 Self-organizing Systems and MAS

A common conceptual approach for building adaptive systems involves the
design of such systems by using elements that find by themselves the solution
to the problem to be solved [GERO7]. Mobile Agents that are capable of inter-
acting and of adapting based on perception are well suited for the
implementation of Self-organizing Systems (SoS).

Every dynamic and active system can be considered as populated with
agents that interact with each other and the agents are characterized by their
behaviour and their goals. The behaviour of agents has influence of the future
outcome of the behaviour of other agents and their aim to reach their goals
or the selection of goals.

An application example implementing a distributed feature detection in an
incompletely connected and unreliable mesh-like sensor network using
mobile agents demonstrates the suitability of self-organizing MAS for sensor
data processing in distributed sensor networks, presented in Section 9.2., and
bases on work published in [BOS13A] and [BOS14C], derived from an original
approach proposed by [LIUO1] for image processing feature recognition. The
goal of the MAS is to find the boundary of extended correlated regions of
increased sensor stimuli (compared to the neighbourhood), e.g., in a load
monitoring scenario due to mechanical deformation resulting from externally
applied load forces. The feature detection is performed by the mobile explora-
tion agent, which supports two main different behaviour: diffusion and
reproduction. The explorer agent can be composed of the root agent class
implementing diffusion and reproduction and an explorer child agent sub-
class with a reduced behaviour set used for the exploration of the immediate
neighbourhood relative to the current position of the explorer agent. The
exploration algorithm bases on the divide-and-conquer paradigm with nested
parent-child agent groups. The diffusion behaviour is used to move into a
region, mainly limited by the lifetime of the agent, and to detect the feature,
here the region with increased mechanical distortion (more precisely the edge
of such an area). The detection of the feature enables the reproduction
behaviour, which induces the agent to stay at the current node, setting a fea-
ture marking and sending out more exploration agents in the neighbourhood.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

m Chapter 1. Introduction: Outline and Synopsis

1.12 From Embedded Sensing to the Internet-of-Things and
Sensor Clouds

Deploying agents in very large scale areas with heterogeneous networks
ranging from dedicated sensor networks up to WEB-based applications is a
further challenge.

One example for WEB-based sensor processing using agents is the Agent
factory micro edition (AFME) [MULO7], which is an intelligent agent framework
for resource-constrained and mobile devices and is based on a declarative
agent programming language, in contrast to the reactive and imperative AAPL
approach introduced in this work.

Recent work [BOST5A][BOS15C] shows that the PAVM agent processing
platform is well suited for the implementation in JavaScript enabling agent
processing in client-side WEB browser applications or by using the node.js
server-side VM [TIL10]. The JAVM implementation is fully operational compati-
ble with the previously described standalone PAVM architecture, commonly
implemented on microchip level with RTL and SoC architectures.

In the JAVM approach network nodes (i.e., programs distributed on the
Internet and Intranet) communicate primarily by using the HTTP protocol,
attractive to be integrated in common computer networks. A broker service is
used to establish client-side applications (e.g., WEB browser) as communica-
tion endpoints visible in dynamic domains, which enables agent mobility
between these applications. Agent code can be executed on any node includ-
ing WEB browsers. The JAVM and broker service approach enables the
integration of sensor networks, for example, embedded in technical struc-
tures, in generic computer networks. The JAVM is encapsulated by a
Distributed Co-ordination Layer (DCL) that was added to connect application
programs on the Internet domain. The DCL bases on Object-orientated
Remote Procedure Calls derived from the Amoeba DOS [MUL90], and offers
distributed file- and directory services. The file service can be used to store
agent code, the directory service is used to create and publish virtual domains
of nodes, which are required for agent mobility and distribution.

The JAVM architecture is discussed in Section 7.8, and a significant use-case
scenario and the deployment in manufacturing processes is discussed in Sec-
tion 74.5. This MAS architecture is suitable for additive and adaptive
manufacturing based on a closed-loop sensor processing approach with data
mining concepts combined with Internet-of-thing architectures.

Agents are already deployed successfully for scheduling tasks in production
and manufacturing processes [CAROOB], and newer trends poses the suitabil-
ity of distributed agent-based systems for the control of manufacturing
processes [LEI15], facing not only manufacturing, but maintenance, evolvable
assembly systems, quality control, and energy management aspects, finally
introducing the paradigm of industrial agents meeting the requirements of

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.13 Use-Case: Structural Monitoring with MAS

modern industrial applications. The MAS paradigm offers a unified data pro-
cessing and communication model suitable to be employed in the design, the
manufacturing, logistics, and the products themselves.

The scalability of complex industrial applications using such large-scale
cloud-based and wide-area distributed networks deals with systems deploy-
ing thousands up to a million agents. But the majority of current laboratory
prototypes of MAS deal with less than 1000 agents [LEI15]. Currently, many
traditional processing platforms cannot yet handle big numbers with the
robustness and efficiency required by industry [MAROS5][PECO8]. In the past
decade the capabilities and the scalability of agent-based systems have
increased substantially, especially addressing efficient processing of mobile
agents. The JAVM platform can contribute to the solving of the scalability
problem in such environments. Cloud-based design and manufacturing is
composed of knowledge management, collaborative design, and distributed
manufacturing, incorporating finally the products in the cloud-based design
and manufacturing process.

1.13 Use-Case: Structural Monitoring with MAS

Figure 7.9 poses a conceptual overview for the monitoring of mechanical
structures using machine learning and inverse numerical approaches. The
MAS is the evident part of the distributed data processing in sensor networks,
which are suitable for reliable structural load monitoring in heterogeneous
network environments. Different algorithmic LM approaches (with and with-
out mechanical model) are used to derive the load (deformation) information
about structures from raw sensor data. The computation is temporally and
spatially partitioned into on-line and off-line parts by using one MAS offering
preprocessing, pre-computation, and distribution.

Different case studies presented in Chapter 74 address the above intro-
duced sensor and information processing approach, giving examples of the
deployment of MAS and Artificial Intelligence methods by providing percep-
tion either of the physical load of the environment acting on a technical
structure, e.g., a robot manipulator and its interaction with obstacles and
objects, or by providing the internal load of a structure, i.e., the deformation
of structure caused by loads. It will be demonstrated that Machine Learning
do not requiring any mechanical model and inverse numerical algorithms
using FEM models are suitable to calculate the load acting on technical struc-
tures from noisy and unreliable low-dimensional sensor input.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

Chapter 1. Introduction: Outline and Synopsis

Load Monitoring »I Structural Health
Monitoring
L I

-

- —_——

~

~
Without Y ,” With \
_ Structure Model _ __ Structure Model J
~ —— _—f’ \\‘_ _—//

SuperV|sed Inverse
Machine Learnlng Numerlc

—_——_——a

N
,——[>| On line)| | SOPC j=={ SOPC == SoPC

Sensor Data | 7

|
]
|
__ —— | !
Processing + I | | :
Propagation I | !
Fusion o : ! SOPC =l pC = pC |
I X I
| / \\ : |
- >{ Off-line) !
S -7 :
-~ |
: PC or PC or :
|

Workstation Workstationl

Fig. 1.9 Structure Monitoring with MAS in heterogeneous environments implementing
different algorithms.

1.13.1 Machine Learning and MAS

Intelligent behaviour of robot manipulators become important in unknown
and changing environments. Emergent behaviour of a machine arises intelli-
gence from the interactions of robots with its environment. Sensorial
materials equipped with networks of embedded miniaturized smart sensors
can support this behaviour.

Environmental perception can be provided by some elastic material cover-
ing extended surfaces of robotic structures, e.g., intersection elements or
body covers. An integrated autonomous decentralized sensor network can be
capable providing perception similar to an electronic skin. Each sensor net-
work is connected to strain gauge sensors mounted on a flexible polymer
surface, delivering spatial resolved information about external forces applied
to the robot arm, required for example for obstacle avoidance or for manipu-
lation of objects.

The first attempt of a perceptive material was a flat rubber sheet (based on
work in [BOS11C]), which was finally bent around a technical structure, pre-
sented in Section 74.2.

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.13 Use-Case: Structural Monitoring with MAS m

Each autonomous sensor node provides communication, data processing,
and energy management implemented on microchip level.

Commonly a high number of strain gauge sensors are used to satisfy a high
spatial resolution. The chosen approach uses advanced Artificial Intelligence
and Machine Learning methods for the mapping of only a few non-calibrated
and non-long-term stable noisy strain sensor signals to spatially resolved load
information and a decentralized data processing approach to improve robust-
ness. Robustness in the sensor network is provided by

1. Autonomy of sensor nodes;

2. Smart adaptive communication to overcome link failures and to reflect
changes in network topology;

3. Intelligent adaptive algorithms.

It is well-known that robust co-operation and distributed data processing is
achieved by using Mobile Agent systems [WANO3].

As outlined in this book, the agent behaviour and co-operation can be
implemented on microchip level.

The central aim is to derive useful information constrained by limited com-
putational power and noisy sensor signals unable to be captured by a
complete system model. Machine Learning (ML) methods are capable of map-
ping an initially unknown n-dimensional set of input signals on an m-
dimensional output set of information like the position and strength of
applied forces [MIT97].

Without any interaction and material model Machine Learning requires a
training phase. Additional material models and FEM simulation can reduce or
avoid the training phase [BOS11C].

The training set contains recorded load positions, masses and classification
results for different load cases determined via sensor measurement.

1.13.2 Hybrid approach of MAS and Inverse Numeric Methods

In [BOS14C] an initial guess for a hybrid approach with on-line sensor pro-
cessing in distributed sensor networks with MAS and off-line inverse
numerical methods used for load computation was proposed, profiled, and
validated.

The basic sensing environment is shown in Figure 7.70. One of the major
challenges in SHM and LM is the derivation of meaningful information from
the sensor input. The sensor output of an SHM or LM system reflects the low-
est level of information. Beside technical aspects of sensor integration the
main issue in those applications is the derivation of a mapping function F,(S),
which basically maps the raw sensor data input S, a n-dimensional vector con-
sisting of n sensor values, on the desired information /, a m-dimensional result
vector.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

Chapter 1. Introduction: Outline and Synopsis

F,
) Technical Structure & F1 Technical Structure
Technical Structure Sensor Network With Load & Deformation
Vi iy
P Mo
o L e
— A= e
- > - . "
Sensor Network &
On-line Data Processing —
Offine Data () Muti-Agent System ’ Hp- Losa stmun (?) ‘ L
Pmcess:ir\rg &LM ‘ |_ Strain Reaction '
Y N — ‘ (J \
€ Agent - - V ‘ 8 Sensor Processing (@ ' S
2 Sensor Node @— € o n
= Network Connection ﬁ [] = E {seliimanc \
i L=T(s, L
Server Client User Mobile Client (S) o

Fig. 1.10 Initially unknown external forces acting on a mechanical structure lead to a
deformation of the material resulting from the internal forces. A material-
integrated active sensor network integrating sensors, electronics, data pro-
cessing, and communication, together with mobile agents can be used to
monitor relevant sensor changes with an advanced event-based information
delivery behaviour. Inverse numerical methods can compute finally the mate-
rial response. The unknown system response for externally applied load L is
measured by the strain sensor stimuli response S, finally computing an
approximation of the response L.

It can be shown [BOS14C][BOS14F] that a hybrid data processing approach
for material-integrated SHM and LM systems by using self-organizing and
event-driven mobile multi-agent system (MAS) is suitable for this sensing sys-
tem class, with agent processing platforms scaled to microchip level (PAVM/
PCSP) which offer material-integrated real-time sensor systems, and inverse
numerical methods providing the spatially resolved load information from a
set of sensors embedded in the technical structure. Inverse numerical
approaches usually require a large amount of computational power and stor-
age resources, unsuitable for resource constrained sensor node
implementations. Instead, off-line computation is performed, with on-line
sensor processing by the agent system. Commonly off-line computation oper-
ates on a continuous data stream requested by the off-line processing system
delivering sensor data continuously in fixed acquisition intervals, resulting in
high communication and computational costs. Here the sensor preprocessing
MAS delivers sensor data event-based if a change of the load was detected
(feature extraction), reducing network activity and energy consumption of the
entire system significantly. The basic SOMAS behaviour is introduced in Chap-
ter 9.

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.14 Use-Case: Smart Energy Management with MAS and Al

1.14 Use-Case: Smart Energy Management with MAS and Al

Algorithmic Selection. In contrast to various other energy management
approaches targeting algorithms and architectures with high computational
effort, smart energy management can be performed spatially at run-time by
applying a dynamic selection from a set of different (implemented) algorithms
classified by their demand of computational power, the "accuracy" and Qual-
ity of Service (QoS), and temporally by varying data processing rates. The
smart energy management can be implemented with decision trees, based on
QoS and energy constraints. It can be shown [BOS11B] that the power and
energy consumption of an application-specific SoC design strongly depend on
the computational complexity of the used algorithms. Power analysis using
simulation techniques on digital gate-level provides input for the algorithmic
selection at run-time of the system leading to a closed-loop design flow. The
run-time energy management, which can be based on reinforcement learn-
ing, switches between different computational algorithms, varying the power
consumption and simultaneous the quality of service. Additionally, the signal-
flow approach enables power management by varying the signal flow rate.
Details can be found in Section 73.7.

Energy Distribution with MAS. Self-powered sensor nodes collect energy from
local sources, but can be supplied additionally by external energy sources.
Nodes in a sensor network can use communication links to transfer energy,
for example, optical links are capable of transferring energy using Laser or LE
diodes in conjunction with photo diodes on the destination side, with a data
signal modulated on an energy supply signal.

A decentralized sensor network architecture is assumed with nodes sup-
plied by:

1. Energy collected from a local source;

2. Energy collected from neighbour nodes using smart energy manage-
ment (SEM).

Nodes are arranged in a two-dimensional grid with connections to their
four direct neighbours. Each node can store collected energy and distribute
energy to neighbour nodes, for example, using electrical or optical links
[KEDOG].

Each autonomous node provides communication, data processing, and
energy management. There is a focus on single System-On-Chip (SoC) design
satisfying low-power and high miniaturization requirements.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

n Chapter 1. Introduction: Outline and Synopsis

Energy management is performed for:

1. The control of local energy consumption;

2. The collection and distribution of energy by using the data links to
transfer energy [BOS12E].

Typically, energy management is performed by a central controller in that a
program is implemented [LAG10], with limited fault robustness and the
requirement of a well-known environment world model for energy sources,
sinks, and storage. Energy management in a network involves the transfer of
energy. Recent work shows the benefit and suitability of multi-agent systems
used for energy management [LAG10].

Having the technical capability to transfer energy between nodes, it is possi-
ble to use active messaging for the energy transfer from good nodes having
enough energy towards bad nodes, requiring energy [BOS12E][BOS12A]. An
agent can be sent by a bad node to explore and exploit the near neighbour-
hood. The agent examines sensor nodes during path travel or passing a
region of interest (perception) and decides to send agents holding additional
energy back to the original requesting node (action). Additionally, a sensor
node is represented by a node agent, too. The node and the energy manage-
ment agents must negotiate the energy request.

Help agents with simple exploration and exploitation behaviour are suita-
ble to meet the goal of a regular energy distribution and a significant
reduction of bad nodes unable to contribute sensor information, and addi-
tional distribute agents can distribute energy proactive. The multi-agent
implementation offers a distributed management service rather than a cen-
tralized approach commonly used. The simple agent behaviour can be easily
implemented in digital logic hardware (using the application-specific platform
approach). Details can be found in Section 73.2.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.15 Novelty and Summary

1.15 Novelty and Summary

Multi-domain reactivity in heterogeneous networks provided by mobile
state-based agents capable of reconfiguration of their behaviour (activ-
ity-transition graph modification) for each particular agent at run-time,
including the inheritance of (modified) agent behaviour, which
increases the reliability and autonomy of multi-agent systems.

Agents are mobile by transferring the state only or the program code
embedding the state (data+control) of the agents.

Agents can reconfigure their behaviour engine based on learning or
sub-classification at run-time. Sub-classification reducing the agent
behaviour can save resources at run-time and migration.

Agent interaction and coordination offered by a tuple-space database
and global signal propagation aid solving data distribution and syn-
chronization issues in distributed systems design (machine-to-machine
communication), whereby tuple spaces represent the knowledge of
single and multiple agents (agent belief).

One common agent behaviour model and programming language AAPL
suitable for different processing architectures and platforms enables the
synthesis of stand-alone parallel hardware implementations, alterna-
tively stand-alone software implementations, WEB embedded Javas-
cript applications with an optional Distributed Co-ordination Layer, and
behavioural simulation models, enabling the design and test of large-
scale heterogeneous systems.

There are two different agent processing platform architectures imple-
menting the agent behaviour either application-specific or program-
mable with code. With respect to each class, hardware, software, WEB,
and simulation platforms are compatible on interface and operational
level enabling agents migration between these different platform
implementations.

AAPL provides powerful statements for computation, agent control,
agent interaction, and mobility with static and limited resources.
Optimized token-based pipelined agent processing architectures are
suitable for parallel hardware platform designs on Register-Transfer
Level with a SoC architecture offering optimized computational
resources and speed.

The processing platform is a stand-alone unit that does not require any
Operating System and boot code for initialization, leading to a low
start-up time latency, well suited for self-powered devices. All agent-

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

m Chapter 1. Introduction: Outline and Synopsis

specific actions like migration or communication are implemented on
VM machine level.

e Improved scaling in large network applications compared with full or
semi-centralized and pure message based processing architectures.

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

1.16 Structure of the Book

1.16 Structure of the Book

Chap.
Chap.
Chap.

Chap.

Chap.

Chap.

Chap.

Chap.

Chap.

Chap.

Chap.

Chap.

Chap.

2.

3.

4.

5.

10.

11.

12.

13.

14.

Agent Behaviour and Programming Model: Modelling and
Programming Multi-Agent Systems with AAPL

Agent Communication: Agent-Agent and Agent-World Com-
munication Models and the relationship to AAPL

Distributed Sensor Networks: Deployment of Multi-Agent
Systems in Distributed Sensor Networks

Concurrent Communicating Sequential Processes: The
extended Parallel Data Processing Model used to implement
the agent processing platforms.

PCSP: The Application-specific Agent Platform. Agent process-
ing platform based on a Parallel Pipelined Communicating
Sequential Processes Architecture

PAVM: The Programmable Agent Platform. Agent Processing
Platform based on a parallel and token-based Agent FORTH
Virtual Machine Architecture; JAVM: The JavaScript PAVM Plat-
form

JAM: The JavaScript Agent Machine- Agent Processing Plat-
form based on JavaScript

Self-Organizing Multi-Agent Systems: Event-based Sensor
Processing, Feature Recognition, and Energy Management
with self-organizing Multi-Agent Systems for Sensor Process-
ing

Machine Learning: Distributed and incremental techniques
with MAS

Simulation: Simulation of the AAPL Agent Behaviour Model,
the Agent Processing Platforms, and the Simulation of Sensor
Networks

Synthesis: From Programming Level to Hardware and Soft-
ware Implementations using a Unified Database driven Syn-
thesis Framework

Use-Case Energy Management: Low-power Design and Smart
Energy Management with MAS

Use-Cases Environmental Perception, Load Monitoring, and
Cloud-based Manufacturing: Load Monitoring with Multi-
Agent Systems, Machine Learning, and Inverse Numeric for
Structural Monitoring and Environmental Perception,
Deployment of agents in Cloud-based environments.

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

Chapter 1. Introduction: Outline and Synopsis

Chap. 15. Material-Integrated Sensing Systems: Integration of Sensing
and Multi-Agent Systems in Materials and Technical Struc-
tures: Technological Aspects and Integration Technologies

epubli, ISBN 9783746752228 (2018)

	Introduction: Outline and Synopsis
	1.1 Outline and Introduction
	1.2 Data Processing in Sensor Networks with Multi-Agent Systems
	1.2.1 Distributed Micro-scale Data Processing in Materials
	1.2.2 Multi-Agent Systems
	1.2.3 Heterogeneous Environments

	1.3 The Agent Behaviour Model
	1.3.1 Dynamic Activity-Transition Graphs
	1.3.2 The Agent Interaction with a Tuple Space

	1.4 Agent Programming Languages and AAPL
	1.5 Agent Processing Platforms
	1.5.1 The Non-Programmable Application-specific Agent Processing Platform PCSP
	1.5.2 The Programmable Agent Processing Platform PAVM
	1.5.3 JAVM: The JavaScript PAVM
	1.5.4 Comparison of the Agent Processing Platforms
	1.5.5 JAM: The JavaScript Agent Machine

	1.6 AAPL MAS and Mobile Processes: The P-Calculus
	1.7 High-Level Synthesis of Agents and Agent Platforms
	1.8 High-level Synthesis of SoC Designs
	1.9 Simulation Techniques and Framework
	1.9.1 Behavioural Simulation
	1.9.2 Platform Simulation
	1.9.3 Simulation of Real-world Sensor Networks
	1.9.4 RTL Simulation

	1.10 Event-based Sensor Data Processing and Distribution with MAS
	1.11 Self-organizing Systems and MAS
	1.12 From Embedded Sensing to the Internet-of-Things and Sensor Clouds
	1.13 Use-Case: Structural Monitoring with MAS
	1.13.1 Machine Learning and MAS
	1.13.2 Hybrid approach of MAS and Inverse Numeric Methods

	1.14 Use-Case: Smart Energy Management with MAS and AI
	1.15 Novelty and Summary
	1.16 Structure of the Book

