
S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Chapter 2

Agent Behaviour and Programming 
Model
Modelling and Programming Multi-Agent Systems
The Agent Computation and Interaction Model 50
Activity-Transition Graphs 52
Dynamic Activity-Transition Graphs (DATG) 53
Agent Classes 54
Communication and Interaction of Agents 55
Multi-Agent Systems and Networked Processing 56
The Big Thing: Domains, Networks, and Mobile Agent Processing 58
Distributed Process Calculus 62
AAPL Programming Model and Language 67
AAPL Agents, Platforms, Bigraphs, and Mobile Processes 92
AAPL Agents and Societies 95
AAPL Agents and the BDI Architecture 96
Further Reading 99
epubli, ISBN 9783746752228 (2018)



 Chapter 2. Agent Behaviour and Programming Model48

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
The growing complexity of computer networks and their heterogeneous
composition of devices ranging from high-resources server to low-resource
mobile devices demands for unified and standardized new data processing
paradigms and methodologies, which can be solved by using the distributed
Multi-agent computing paradigm. The Internet-of-Things is one major exam-
ple rising in the past decade, strongly correlated with Cloud Computing and
Big Data concepts. One of the early vision (i.e., Mark Weiser 1994) stated the
population of the human living environment with distributed and widely con-
nected computing systems performing tasks that support the people but
which should be largely unaware of them. The integration of sensor networks
providing perception is just an extension of this vision.

There are basically three different layers of data processing in sensing
applications, which require processing platforms with different computational
power and storage capacity:
Sensing

Localized Acquisition and Pre-processing of Sensor Data, Sensor Data Fu-
sion

Aggregation
Distribution and Collection of Sensor Data, globalized Sensor Information
Mapping and Sensor Data Fusion

Application
Presentation of condensed Sensor Information, Storage, Visualization, In-
teraction.

These different layers can be scattered in different network domains. The
sensing layer is usually located in sensor networks, for example, body area
networks, the aggregation layer can be found in personal and ambient area
networks (PAN/AAN), and finally the application layer can be found in ambient
area and wide area networks (WAN).

The characterization of sensor network features and their operational capa-
bilities can be further divided into the following classes and terms, handled by
all three layers of the sensing application, shown in Figure 2.1:

 Processing
 Communication
 Messaging
 Storage
 Ontologies and Data Models
 Manageability
 Security
epubli, ISBN 9783746752228 (2018)
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The deployment of Mobile Multi-Agent systems offers a unified service
capability covering all functional layers and sub-levels, ranging from sensing
to application.

In this chapter, an activity- and state-based agent behaviour and multi-
agent interaction model is introduced, finally leading to the Activity-Transi-
tion-Graph Agent Programming Model and Language AAPL. The AAPL model
bases on dynamic activity-transition graphs. One of the main advantage of
this behaviour model is the low dependency on the infrastructure where the
agents are deployed and being processed, enabling the modelling and imple-
mentation of complex MAS with a unified and suitable programming language
independent of the underlying agent process platform. The AAPL model sup-
ports traditional imperative computation, instantiation, mobility, behaviour
modification, and inter-agent communication. 

Furthermore, in this chapter the AAPL model is expressed by common cal-
culi of mobile processes and graphical representations of the deployment of
agents in arbitrary networked environments by using the Bigraph model. The
relation of AAPL and the mapping of common agent models like BDI on AAPL is
explained, showing that AAPL is the foundation for higher level agent and
interaction models.

Fig. 2.1 A heterogeneous network environment with PAN, AAN, and WAN domains (on
network level) and sensing, aggregation, and application domains on the use-
case level
epubli, ISBN 9783746752228 (2018)
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2.1 The Agent Computation and Interaction Model

An agent can be considered as a computational unit situated in an environ-
ment and world, which performs computation, basically hidden for the
environment, and interacts with the environment to exchange basically data.
A common computer is specialized to the task of calculation, and interaction
with other machines is encapsulated by calculation and performed tradition-
ally by using messages. An agent behaviour can be reactive or proactive, and
it has a social ability to communicate, cooperate, and negotiate with other
agents. Pro-activeness is closely related to goal-directed behaviour including
estimation and intentional capabilities.

Agents record information about an environment state e E and history
h:e0e1e2... Let I=SD be the set of all internal states of the agent con-
sisting of the set of control states S related to activities and internal data D. An
agent's decision-making process is based on this information. There is a per-
ception function see mapping environment states on perceptions, a function
next mapping internal states and perceptions p  Per to internal states (state
transition), and the action-selection function action, which maps internal
states on actions a  Act, shown in Definition 2.1. 

Actions of agent modify the environment, which is seen by the agent, thus
the agent is part of the environment. Learning agents can improve their per-
formance to solve a given task if they analyse the effect of their action on the
environment. After an action was performed the agent gets a feedback in
form of a reward r(t)=r(et, at). There are strategies : EA that map environ-
ment states on actions. The goal of learning is to find optimal strategies *
that is a subset of .

Def. 2.1 Agent processing and state change by applying three basic functions in a ser-
vice loop

see : E  Per
next : I  Per  I
action : I  Act
reward: E  A
epubli, ISBN 9783746752228 (2018)
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The strategies can be used to modify the agent behaviour. Rewarded
behaviour learning was addressed in [JUN12], for example, based on Q-
learning.

The actions of agents modify the environment, which is seen by the agent,
thus the agent is part of the environment. The change of the environment due
to the agent actions can be effective immediately or delayed, evaluating the
history and past. The actions of pure reactive agents base only on the current
perception, and usually an action has an effect on the environment
immediately.

An agent behaviour model can be partitioned into the following tasks,
which must be reflected by an agent programming language model by provid-
ing suitable statements, types, and structures:
Computation

One of the main tasks and the basic action is computation of output data
from input data and stored data (history). Principally functional and proce-
dural (or object-orientated) programming models are suitable, but history
incorporating computed data and storage is handled only by the procedur-
al programming model consequently.

Communication
Communication as the main action serves two canonical goal tuples: (data
exchange and synchronization), (interaction with the environment and with
other agents). The latter goal tuple can be reduced to agent interaction only
if the environment is handled by an agent, too. Communication between
agents can link single agents to a Multi-agent system, by using peer-to-peer
or group communication paradigms.

Mobility
Mobility of agents increases the perception and interaction environment
significantly. Mobile agents can migrate from one computing environment
to another finally continuing there their processing. The state of an agent,
consisting of the control and data state, must be preserved on migration.

Reconfiguration
Traditional computing systems get a fixed behaviour and operational set at
design time. Adaptation in the sense of behavioural reconfiguration of a
system at run-time can significantly increase the reliability and efficiency of
the tasks performed.

Replication
These are the methods to create new agents, either created from tem-
plates or by forking child agents, which inherit the behaviour and state of
the parent agent, finally executing in parallel. Replication is one of the ma-
epubli, ISBN 9783746752228 (2018)
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jor agent behaviours to compose distributed computational and reactive
systems.

Agents and Objects
Modern data processing is often modelled based on object-orientated pro-
gramming paradigms. But there is a significant difference between agents
and objects. Objects are computational units encapsulating some state and
are able to perform actions (by applying methods) and communicate com-
monly by message passing. Objects are related to object-orientated pro-
gramming and are not (or less) autonomous in contrast to agents, and they
are commonly immobile. The common object model has nothing common
with proactive and social behaviour. But agents can be implemented on top
of the object model with methods acting on objects. The modification of the
behaviour engine is basically not supported by the object programming
model. Agents decide for themselves, in contrast objects require external
computational units, like operating systems or users, for the decision-mak-
ing process. Though object-orientated programming can be extended by
parallel and concurrent processing (multi-threading), multi-agent systems
are inherently multi-threaded.

To summarize, agents are characterized by their autonomy (without or less
intervention of users), reactivity, social ability, and pro-activeness.

2.2 Activity-Transition Graphs

The behaviour of an activity-based agent is characterized by an agent state,
which is changed by activities. Activities perform perception, plan actions, and
execute actions modifying the control and data state of the agent. Activities
and transitions between activities are represented by an activity-transition
graph (ATG). The transitions start activities commonly depending on the eval-
uation of agent data (body variables), representing the data state of the agent,
as shown in Figure 2.2.

An activity-transition graph, related to the agent classes, discussed later,
consists of a set of activities A={A1,A2,..}, and a set of transitions T={T1(C1),T2
(C2),..}, which represent the edges of the directed graph. The execution of an
activity, composed itself of a sequence of actions and computations, is related
to achieving a sub-goal or a satisfying a prerequisite to achieve a particular
goal, e.g., sensor data processing and distributions. 

Usually agents are used to decompose complex tasks is simpler ones,
based on the composition of MAS. Agents can change their behaviour based
on learning and environmental changes, or by executing a particular sub-task
with only a sub-set of the original agent behaviour.
epubli, ISBN 9783746752228 (2018)
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Fig. 2.2 (Left) Agent behaviour given by an Activity-Transition Graph and the interac-
tion with the environment performed by actions executed within activities
(Right) Agent Characteristics

The ATG behaviour model is closely related to the interaction of agents with
the environment, here mainly by exchanging data by using a tuple space data-
base, and migration. Message passing between agents is available by passing
signals that execute signal handler on the destination agent asynchronously. 

The execution of signal handlers changes the agent data and hence has an
impact on activity transitions.

The characteristics of agents can be classified in autonomy, social ability
and social interaction, reactivity with respect to changes of the environment
and learning based on history and rewards, and finally pro-activeness by mak-
ing assumptions about the estimated change of the environment resulting
from actions performed by the agent.

2.3 Dynamic Activity-Transition Graphs (DATG)

An ATG describes the complete agent behaviour. Any sub-graph and part of
the ATG can be assigned to a sub-class behaviour of an agent. Therefore,
modifying the set of activities A and transitions T of the original ATG intro-
duces several sub-behaviours implementing algorithms to satisfy a diversity
of different goals. 

The reconfiguration of activities A={A1  A, A2  A,  ..} derived from the
original set A and the modification or reconfiguration of transitions T={T1, T2,
..} enables dynamic ATG composition and agent sub-classing at run-time,
shown in Figure 2.3.
epubli, ISBN 9783746752228 (2018)
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Fig. 2.3 Dynamic ATG: Transformation and Composition

AAPL: The Activity-based Agent Programming Language
The Activity-based Agent Programming Language (AAPL) implements the DATG
agent model programmatically with a set of operations and a pre-defined
structure of the agent class template. Though AAPL has a concrete syntax,
it is still more a meta language used to implement agents with different ex-
isting programming languages. A detailed discussion of AAPL can be found
in Sec. 2.9.

2.4 Agent Classes

Behaviour. A particular agent class ACi is related to the previously introduced
ATG that defines the run-time behaviour and the computational action per-
formed by agents.

Perception. An agent interacts with its environment by performing data trans-
fer using a unified tuple-space with a coordinated database-like interface.
Data from the environment influences the following behaviour and action of
an agent. Data passed to the environment (e.g., the database) influences the
behaviour of other agents.

Memory. State-based agents perform computation by modifying data. Since
agents can be considered as autonomous data processing units, they will pri-
marily modify private data, and a computational outcome using this data will
be transferred to the environment. Therefore, each agent and agent class will
include a set of body variables V={v1:DT, v2:DT, .. }, which are modified by
actions in activities and read in activities and transitional expressions (with
DT: set of supported data types).
epubli, ISBN 9783746752228 (2018)
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Parameter. Agents can be instantiated at run-time from a specific agent class
creating agents with equal initial control- and data states. To distinguish indi-
vidual agents (creating individuals), an external visible parameter set
P={p1:DT, p2:DT, .. ) is added, which get argument values on instantiation, ena-
bling the creation of different agents regarding the data state. Inside an agent
class, parameters are handled like variables.

To summarize, an agent class is fully defined by the tuple:

(2.1)

2.5 Communication and Interaction of Agents

Communication and interaction is discussed in detail in Section 3. In the
agent behaviour model used in this work the agents interact with each other
by exchanging data using a tuple database as a shared object supporting syn-
chronized and atomic read, test, remove, and write operations. Agents can
communicate and synchronize peer-to-peer by using signals, which can be
delivered to remote execution nodes, too.

A tuple space is basically a shared memory database used for synchronized
data exchange among a collection of individual agents providing an essential
MAS interaction paradigm. The scope and visibility of a tuple space database
can be unlimited and visible and distributed in the whole network, or limited
to a local scope, e.g., network node level. A tuple space provides abstraction
from the underlying platform architecture, and offers a high degree of plat-
form independence, vital in a heterogeneous network environment.

A tuple database stores a set of n-ary data tuples, tpn=(v1, v2,.., vn), a n-
dimensional value tuple. The tuple space is organized and partitioned in sets
of n-ary tuple sets ={TS1,TS2,..,TSn}. A tuple is identified by its dimension and
the data type signature. Commonly the first data element of a tuple is treated
as a key. Agents can add new tuples (output operation) and read or remove
tuples (input operations) based on tuple pattern templates and pattern
matching, patn=(v1, x2?, .., vj,.., xj?,., vn), a n-dimensional tuple with actual and
formal parameters. Formal parameters are wild-card place-holders, which are
replaced with values from a matching tuple and assigned to agent variables.
The input operations can suspend the agent processing if there is actually no
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matching tuple is available. After a matching tuple was stored, blocked agents
are resumed and can continue processing. Therefore, tuple databases pro-
vide inter-agent synchronization, too. This tuple-space approach can be used
to build distributed data structures and the atomicity of tuple operations pro-
vides data structure locking. The tuple spaces represents the knowledge of
agents.

2.6 Multi-Agent Systems and Networked Processing

Almost every agent-based system consists of multiple agents. Multi-agent
systems emphasize on multiple commonly distributed agents and the com-
munication amongst them. 

There is a multi-agent system (MAS) consisting of a set of individual agents
AG={ag1, ag2, ..}. Each agent of the MAS belongs to a specific agent behaviour
class AC={AC1, AC2, ..} from which it was instantiated. Agents initially belong-
ing to a super class ACi can change their behaviour at run-time by composing
different sub-classes {ACi,1, ACi,2, ..}, sharing activities and transitions of the
super class. 
Distributed Networks. In a specific situation an agent agi is located at and pro-
cessed on a network node NDm,n (e.g. microchip, computer, virtual simulation
node) at a unique spatial location (m,n). There is a set of different nodes
NW={ND1, ND2, ..} arranged in a mesh-like network NW with peer-to-peer
neighbour connectivity (e.g. two-dimensional grid), shown in Figure 2.4. 

Fig. 2.4 Network of agent processing nodes
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Each node is capable to process a number of agents ni(ACi) belonging to
one agent behaviour (super) class ACi, and supporting at least a subset of AC’
AC. An agent (or at least its state) can migrate to a neighbour node where it
continues working. The agent processing platform available on each network
node is capable to modify the agent behaviour based on the DATG paradigm.

Communication. In parallel and distributed systems the communication, syn-
chronization, and data exchange of a collection of data processing units
(processes or agents) gains significant importance. A common approach for
parallel systems is a shared memory based communication paradigm, but
which generates a high computational dependency of the processing units
among themselves and regarding the platform. Loosely coupled distributed
systems like MAS require a different communication strategy. One well-
known and common distributed interaction model is the tuple-space. Agents
can communicate with each other by accessing a tuple space database service
available on each network node and which is provided by the agent process-
ing platform. A tuple space is a logically shared memory and is used for
synchronized data exchange between producer and consumer, a common
approach for solving communication problems of loosely coupled autono-
mous or semi-autonomous processing units. 

A tuple space is basically a shared memory database used for synchronized
data exchange among a collection of individual agents, which was proposed in
[CHU02] and [QIN10] as a suitable MAS interaction and coordination para-
digm. The scope and visibility of a tuple space database can be unlimited and
visible and distributed in the whole network, or limited to a local scope, e.g.,
network node level. A tuple space provides abstraction from the underlying
platform architecture, and offers a high degree of platform independence,
vital in a heterogeneous network environment.

For the sake of simplicity the scope of a tuple space can be limited to the node
boundary, such that there are multiple tuple spaces distributed in the net-
work. Information can be carried by mobile agents between nodes. A tuple
space communication model has the advantage of shielding the underlying
node and agent processing platform. Access of tuple spaces require only a
small set of simple operations {OUT, IN, RD}, which transfer tuples between
producer or consumer and the database. They are discussed in detail in the
next section. Since tuples consist of type-tagged values and patterns the tuple
space communication is type-safe and strong computational bindings can be
avoided.
epubli, ISBN 9783746752228 (2018)
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2.7 The Big Thing: Domains, Networks, and Mobile Agent 
Processing

The previous section introduced a unified agent behaviour and program-
ming model offering computation, instantiation of agents, mobility, and multi-
agent interaction, and which can be implemented on a diversity of processing
platforms. One major goal of the deployment of MAS is overcoming heteroge-
neous platform and network barriers arising in large scale hierarchical and
nested network structures, consisting and connecting, e.g., the Internet, sen-
sor networks, body networks, production and manufacturing Cyber-Physical
System (CPS) networks, shown in Figure 2.5 on the left. 

The large diversity of execution platforms, network topologies, services pro-
vided by network nodes, and the programming environments require a
unified and abstract behavioural and structural representation model. The
Bigraphical model proposed by Robin Milner models the entire "computing"
environment with place and link graphs, composing finally bigraphs [MIL09],
shown on the right of Figure 2.5. They include agents, and they are offering an
unified model and platform for ubiquitous systems and the foundation for an
Ubiquitous Abstract Machine, and supporting reconfigurable spaces (dynamic
topologies). Bigraphs virtualize communicating processes (agents) and infor-
mation objects (tuple-spaces),

Fig. 2.5 From physical maps (left) to unified logical maps: link (right, bottom) and
structure place (middle, bottom) graphs composing bigraphs (right, top) [S:
Sensor, T: Technical Structure, M: Mobile Device, N: Net. Router, B: Building, R:
Room, C: Computer, A: Agent]
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They originate in process calculi for concurrent systems, especially the pi-
calculus [MIL99] and the calculus of mobile ambient environments [CAR00A]
for modelling spatial configurations of networks with a dynamic topology.

The environment consists of places where computation occurs, e.g., com-
puters, agents, rooms, buildings, machines, technical structures, and so on.
The links are abstract, providing the possibility of interaction between differ-
ent places, i.e., transferring of agents and their mobile processes. Agents are
treated as active computational units (subjects). Places introduce spatial and
logical bindings. Bigraphs allow the nesting of nodes and places, natural for
many real-world computing environments, and they can be applied for wide
reactive systems. All nodes have a fixed number of ports, providing an end-
point for links. Agents have two ports: a processing port link and an
interaction (communication) link. Bigraphs, which represents the system
state, can be modified by the application of reaction rules, which changes the
linking and place relations. Bigraphs can be composed of other bigraphs
matching inner and outer interfaces.

A link is a hyper-edge connection that connects nodes, outer, and inner
names, where names are open linkings that support additional connectivity,
i.e., used for the dynamic composition of bigraphs at "run-time". Connectivity
not only provides the platform for agent migration between different places, it
provides information exchange, which is provided here by location place-
bounded tuple-spaces and signals. Migration of mobile processes is just
another form of interaction with and the modification of the environment.

2.7.1 AAPL Agents in the Bigraph Model
To adapt this Bigraphical Reactive System (BRS) model to MAS it is neces-

sary to distinguish subjects (entities that can perform actions, the agents) and
objects (here data, tuples, tuple-spaces, signals, and processing platforms
themselves).

Fig. 2.6 AAPL agents in the Bigraph Model with a bottom port for the APP link and top
port for tuple space and signal link ports. Shown are two connected nodes.[A:
Agent, APP: Agent Processing Platform, TS: Tuple Space]
epubli, ISBN 9783746752228 (2018)
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AAPL agents have different ports in terms of the Bigraph model. One static
port is the platform link, required to execute an agent process. Another port is
used for the linking of an agent with a tuple-space, with #=1. An AAPL agent
can have only one tuple-space access and link at any time maximal. 

The propagation of signals introduce further ports and dynamic links to
other agents, with #=0..n, shown in Figure 2.6.

The communication links create virtual domains, in Figure 2.6 these are the
agent group sets {Ag2, Ag3, A4} and {A5, A6}. These virtual domains are
dynamic, regarding the spatial location and extension, and the agents that are
part of the virtual domain. Often agent parent-child trees spawn the virtual
domains using signal interaction, but agents of initially different virtual
domains can interact by using the tuple-spaces, extending and merging differ-
ent virtual domains. The spatial extension of virtual MAS domains is
constrained by the connectivity graph of the processing nodes. Signal propa-
gation from a source to a destination agent requires the connectivity of nodes
if the agents are executed on spatially different nodes. Tuples stored in tuple-
spaces are persistent. That means a tuple t, which was produced by an agent
Ag1 and stored in a tuple-space TS1, and agent Ag1 is finally migrating to
another node location, can be consumed by a different agent Ag2, now having
a historical relation and link to the other agent Ag1.

2.7.2 Heterogeneous Sensor Networks in the Bigraph Model
Sensor networks consists of multiple sensor nodes connected in mesh-like

network topologies. Commonly sensing applications are partitioned in on-line
and off-line parts, spatially resulting in different networks, and temporarily
resulting in computations performed in real-time and not-real-time. An exam-
ple is shown in Figure 2.7, where a material-integrated sensor network with
sensor nodes capable of measuring strain in a technical structure is con-
nected to an external computation network performing inverse numerical
computations for deriving the mechanical load information from the sensor
data. Mobile agents are used to distributed data within and between these
networks. 

All sub-networks and the mobile agents passing network boundaries are
treated unified in the Bigraph model.
epubli, ISBN 9783746752228 (2018)
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Fig. 2.7 Top: A Sensorial Material with a material-embedded sensor network con-
nected to a computational network, partitioning sensing and computation in
on-line and off-line domains. Agents can migrate between different networks
and hosts (sensor nodes, computers, servers, mobile devices). Bottom:
Bigraph of the environment [sn/pn: Sensor/Computational Node, cn: Commu-
nication Channel, N: Network, C: Computer, SIM: Agent Simulator, MAT:
Matlab]
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2.8 Distributed Process Calculus

Up to here, the deployment and execution of mobile agents in a network is
considered as being a dynamic distributed system, with static and spatially
fixed nodes and their resources, and dynamic agents regarding their control
and location state.

The -Calculus introduced by Milner (1992) and the extended asynchronous
distributed -Calculus introduced by Hennessy [HEN07] (aD) are common
formal languages for concurrent and distributed systems, suitable for study-
ing the behaviour and reaction of distributed and concurrent systems
including dynamic changes caused by mobility. The -Calculus bases on the
Calculus of Communicating Systems (CCS), partial related to the CSP model by
Hoare, which is introduced in Chapter 5. In the CCS model the connection
topology is static and cannot change while the system evolves. But most dis-
tributed systems, especially in the context of sensorial systems, are highly
dynamic. The -Calculus introduces dynamic aspects, i.e., the dynamic crea-
tion of communication channels, which enable dynamic changing structures
of the topology of networks. The aD-Calculus extends the -Calculus with
the concept of (structural) domains, resources associated with domains, and
migration of processes, close to the MAS paradigm.

Basically all distributed systems can be abstracted by decomposing the sys-
tem in mobile processes. Though mobile processes are closely related to the
agent model, there were several non-agent related distributed systems inves-
tigated in the past, e.g., the distributed operating system (DOS) Amoeba
[MUL90].

In the following the relationship of the AAPL/DATG behaviour and interac-
tion model with the modified distributed -Calculus is pointed out (based on
the original aD-Calculus), moving the view of point from spatially located
agents in a distributed inter-connected system to one unified concurrent sys-
tem with dynamic virtual communication channels. 

Processes are the main execution units, synchronizing by communicating
using channels, which are shared objects supporting read and write opera-
tions. A channel is related to a name and values, to be communicated i.e.,
names, which can be channel names, too. The application of the channel
operations results in a behavioural transition of processes. In the aD-Calcu-
lus channels are global and can be created dynamically at run-time. A created
channel can be bound to a particular set of processes.

Figure 2.8 shows the transformation of a distributed network populated
with mobile agents to one unified asynchronous and concurrent communicat-
ing process system, consisting only of processes and virtual communication
channels. Agents are represented by communicating processes.

The migration of agents creates new communication channels, enabling the
interaction with other agents. 
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Fig. 2.8 From a spatially distributed network populated with agents to a unified con-
current CSP model [N: Network node, A: agent, P: Process, C: Communication
Channel]

The scope, i.e., the boundary of the interaction domain spawned by chan-
nels, depends on the specific interaction object model. In the AAPL model
tuple-spaces and signals are used for inter-agent communication and syn-
chronization. These both communication paradigms can be mapped on
(global) channels in the sense of the -Calculus. The agent-related communi-
cation calculus is discussed in Section 3.5.

Definition 2.2 summarizes the distributed  syntax, which is inspired and
derived from the original mobile process aD and the KLAIM calculi [NIC98],
basing on the composition of process terms using channel-based communica-
tion, scoping procedures for variables and channels, local binding of
identifiers, parallel composition, conditional branching, and recursion. A local-
ity is a symbolic name for a site with a logical spatial location. A distributed
network consists of a set L={l1, l2, ..} of localities, here related to network
nodes in the context of the introduced Bigraphs. Programs can be structured
over distributed environments by using localities while ignoring their precise
allocations and spatial position. There is a distinguished locality self that pro-
grams can use to refer to their execution site. The local scope determines the
reduction of process terms, e.g., due to communication, which is explained in
Section 3.5.
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Def. 2.2 Distributed  Process Algebra Language Syntax (adapted from aD, KLAIM)

The following Definition 2.3 summarizes the simplified representation of
the AAPL/ATG agent behaviour model with the -Calculus. Each agent ATG is
related to one meta-process P, consisting of a set of transitional process rep-
resentations {P1, P2, ..} related to the activity processing, which changes by
activity transitions. Activities consist of computational parts and I/O and
event-based statements (communication and mobility). The I/O statements
can block the agent processing, which splits an activity process Pi in sub-pro-
cess states represented by sub-processes {Pi,1, Pi,2, ..} extensively discussed in
the platform Chapters 6 and 7.

Agents are bound to locations L={l1, l2, ..}, in the context of the AAPL model
these are the spatially different agent processing nodes of the network.
Nodes of a network belong to domains, for example, binding nodes with the
same agent process platform architecture. An agent can access resources that
are bound to a location, too. In the AAPL context these are the tuple-spaces,
which are the data resources, and the agent platform itself, which is an execu-
tion resource. 

P,R,B ::= Process Terms
  u   Communication channel identifier
  x   Variable identifier
  x@l u@l P@l  Identifier bound to location l
  x@d u@d P@d  Identifier bound to domain d
  a . P  Action prefixing (a: communication,..)
  u!<v>  Output of a value using channel u
  u?(x) . R  Input from a channel u 
  (new n) R  Channel name creation bound to R
  (new x,y,..) R  Variable name creation bound to R
  if e then R1 else R2   Conditional Branching
  match e0 with e1:R1 e2:R2 ..  Matching and Alternation
  R1 || R2  Parallel Composition
  R1 | R2  Choice (Alternation)
  rec x  B  Recursive process definition with

  recursion variable x and process body B
  *P  Iteration of P ( rec x  P(x) )
  P1;P2;P3;..  Sequence
  stop   Termination / Blocked process state
  P  P’  Reduction rule (Evolving of processes)
  goto(l) . P  Migration of process to location l
  P{v/x}  Replaces all occurrences of variable x

  in process P with value v
  Sig()  Type signature of expression
  vi     Data Assignment to variable vi
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The signal handlers introduced later are mapped on processes, too. The
interaction between the sending and the receiving agent, as well between the
receiving agent and the signal handler processes is performed by channels,
too. 

Def. 2.3 Simplified representation of the agent behaviour model (left) by the -Calcu-
lus (right) [Ag: Agent, P: Process]

The propagation of signals from one agent Aga@l1 to another agent Agb@l2,
which can be located on different node, create virtual domains, primarily
spawned by agent parent-child tree relationships. Usually signals are used
only within this tree because the agent destination identifier must be pro-
vided, commonly known only by parent-child groups. 

The tuple-space access, which is limited to agents executed on the same
node only, creates polyadic channels, which are local resources (communica-
tion resources), too. Indeed, there is one channel for each common tuple
pattern exchanged by producers and consumers, explained in Section 3.5. 

The instantiation of agents creates new processes, either forked from a par-
ent process or created from a template. The parameters of the newly created
process are substituted by the argument values. Migration of agents results in
a process and location transition (i.e., after the migration the state of an agent
has changed), related to the goto statement. The body variables of an agent
are mobile resources.

In the AAPL context activity processes can be blocked related to I/O activi-
ties, i.e., waiting on available tuples or time-outs, which can be expressed by
channel actions. The transition from one outgoing to multiple incoming activi-

Agents ‐Calculus
Agent Agn := <A,T>          Pn  {Pn,1,Pn,2,..}

Transition AiAj|cij .Pn,i 
cij Pn,j

Mobility
Agn: moveto(DIR)              goto l2.P: Pn,i@l1  Pn,j@l2

Tuple‐Space Access
Aga: out(v1,v2,..)     (new cd,ca) req!<OUT,cd,ca>.cd!<v>.ca?().Pa,j 
Agb: in(v1,x1?,..)     (new cd,ca) req!<IN,cd,ca>.cd!<v>.ca?(x).Pb,j 

Signal Propagation
Agi: send(Agj,S,arg)         S!<arg>

Instantiation of Agents
Aga: fork(v1,..)               (new p1,..) (Pa || Pb{v1/p1,..})
Aga: new(v1,..)                (new p1,..) (Pa || Pb{v1/p1,..})
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ties Ai {Aj:cij, Ak:cik, ..} can be blocked if there is actually no condition c for the
respective transition that can be satisfied. Both reasons for blocking of the
agent processing and the evolving of the process is shown in Definition 2.4. If
the satisfaction of a transition condition depends on the processing of a signal
handler, serving a signal send by another agent and modifying agent data,
than an activity process transition can be considered as being I/O related by
using a channel invocation, too, discussed in Section 3.5.1. 

Def. 2.4 Evolving of agent processes and blocking of agent processing [Ag: Agent, P:
Process, Process index n,i,u: agent n, activity i, sub-state u]

Computation
Agent Agn : Pn,i,u . vi   . Pn,i,v

I/O Event
Agent Agn : Pn,i,u . ch?(..) . Pn,i,v

Activity Transition
Agent Agn : Pn,i  ( cij=true.Pn,j | cik=true.Pn,k | ..)
Agent Agn : Pn,i  ( cij=true.Pn,j | ch?(..).cik=true.Pn,k | ..)
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2.9 AAPL Programming Model and Language

2.9.1 Overview and Summary
The AAPL programming model should optimally match the requirements of

MAS deployed in unreliable sensor and generic distributed networks, keeping
low-resource nodes with low computational power in mind. On one hand,
AAPL should reflect the core concepts of agents, on the other hand AAPL
should provide core concepts of traditional programming language to ease
the programming of widely used algorithms.

The agent behaviour is partitioned and modelled with an activity graph, with
activities representing the control state of the agent reasoning engine, and
conditional transitions connecting and enabling activities, shown in Figure 2.9
Activities provide a procedural agent processing by sequential execution of
imperative data processing and control statements. 

The activity-graph based agent model is attractive due to the proximity to
the finite-state machine model, which simplifies the hardware implementa-
tion, but enables software implementations, too.

Fig. 2.9 Agent behaviour programming level with activities and transitions (AAPL, left);
agent class model and activity-transition graphs (top); agent instantiation,
processing, and agent interaction on the network node level (right) [BOS14B].
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An activity is activated by a transition, which can depend on a predicate as a
result of the evaluation of (private) agent data related to a part of the agent’s
belief in terms of BDI architectures. An agent belongs to a specific parametriz-
able agent class AC, specifying local agent data (only visible for the agent
itself), types, signals, activities, signal handlers, and transitions. The class AC
can be composed of sub-classes, which can be independently selected.

Multi-Agent Systems: There is a multi-agent system (MAS) consisting of a set of
individual agents {a1,a2,..}. There is a set of different agent behaviours, called
classes C={AC1, AC2,..}. An agent belongs to one class. In a specific situation an
agent ai is bound to and processed on a network node Nm,n (e.g. microchip, com-
puter, virtual simulation node) at a unique spatial location (m,n). There is a set of
different nodes N={N1, N2,..} arranged in a mesh-like network with peer-to-peer
neighbour connectivity (e.g. two-dimensional grid). The node connectivity may be
dynamic and changing over time. Each node is capable to process a number of
agents ni(ACi) belonging to one agent behaviour class ACi, and supporting at least a
subset of  C’ C. An agent (or at least its state) can migrate to a neighbour node
where it continues working. Each agent class is specified by the tuple AC =
A,T,F,S,H,V. A is the set of activities (graph nodes), T is the set of transitions con-
necting activities (relations, graph edges), F is the set of computational functions, S
is the set of signals, H is the set of signal handlers, and V is the set of body variables
used by the agent class.

Ex. 2.1 Example of a simple AAPL Agent class definition

AAPL                              Short Notation                                        

type TSKEY={ADC,SENSOR,SENSOREV};   : {ADC, SENSOR, SENSOREV}
agent mean_filter(thr:integer)            mean_filter: thr 
  var m:integer; var *x:integer;          : {x,m}
  activity A1 = in(ADC,x?); end;            A1 : {  ‐(ADC,x?) }
  activity A2 = m:=(m+x)/2;              A2 : {  m(m + x)/2; 
    out(SENSOR,m); end;              +(SENSOR,m) }
  activity A3 =          A3 : {  +(SENSOREV,m);
    out(SENSOREV,m);      ($self) }
    kill($self); end;
  transitions =                             : {
    A1 ‐> A2 : m < thr;        A1A2 | m<thr 
    A1 ‐> A3 : m >= thr;               A1A3 | mthr 
    A2 ‐> A1;                               A2A1 }
end;                                   }
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Plans are related to AAPL activities and transitions close to conditional trig-
gering of plans. Tables 2.1 and 2.2 at the end of this section summarize the
available language statements. Their effects on a multi-agent system is shown
in Figure 2.10. Beside the AAPL programming language there is a short nota-
tion, which has the same operational semantic, but offers a more compact
AAPL representation, which ease the understanding of more complex agent
behaviours.

The following Example2.1 poses an agent class definition with a simple
agent that has the goal to collect sensor values (ADC), finally computes the
mean value (SENSOR) of all samples. If a threshold thr is reached, an event
tuple (SENSOREV) is generated.

Instantiation: Parametrizable new agents of a specific class AC can be created
at runtime by agents using the new AC(v1,v2,..) statement returning a node
unique agent identifier. An agent can create multiple living copies of itself with
a fork mechanism, creating child agents of the same class with inherited data
and control state but with different parameter initialization, done by using the
fork(v1,v2,..) statement, eventually specifying a subclass. Agents can be
destroyed by using the kill(id) statement. Additionally, sub-classes of an
agent super class can be selected by adding the sub-class identifier.

Each agent has private data - the body variables -, defined by the var and
var* statements. Variables from the latter definition will not be inherited or
migrated! Agent body variables, the current activity, and the transition table
represent the mobile data part of the agents beliefs database. 

Statements inside an activity are processed sequentially and consist of data
assignments (x  :=  ) operating on agent’s private data, control flow state-
ments (conditional branches and loops), and special agent control and
interaction statements, which can block agent processing until an event has
occurred.
Agent interaction and synchronization is provided by the previously intro-
duced tuple-space database server available on each node (related to
[CAB95]). An agent can store an n-dimensional data tuple (v1,v2,..) in the data-
base by using the out(v1,v2,..) statement (commonly the first value is
treated as a key). A data tuple can be removed or read from the database by
using the in(v1,p2?,v3,..) or rd(v1,p2?,v3,..) statements with a pattern
template based on a set of formal (variable,?) and actual (constant) parame-
ters. These operations block the agent processing until a matching tuple was
found/stored in the database. These simple operations solve the mutual
exclusion problem in concurrent systems easily. Only agents processed on
the same network node can exchange data in this way. Simplified the expres-
sion of beliefs of agents is strongly based on AAPL tuple database model.
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Tuple values have their origin in environmental perception and processing
bound to a specific node location.

The existence of a tuple can be checked by using the exist? function or
with atomic test-and-read behaviour using the in?/rd? functions. A tuple with
a limited lifetime (a marking) can be stored in the database by using the mark
statement. Tuples with exhausted lifetime are removed automatically (by a
garbage collector). Tuples matching a specific pattern can be removed with
the rm statement. A Remote Procedure Call operation is supported by the
eval(v1,p2?,v3,..) primitive that stores a partially evaluated tuple in the
database that is consumed by a service agent, processing it and returning the
fully evaluated tuple to the database again, which is finally passed to the orig-
inal client evaluation call.
Remote interaction between agents is provided by signals carrying optional
parameters (they can be used locally, too). A signal can be raised by an agent
using the send(ID,S,V) statement specifying the ID of the target agent, the
signal name S, and an optional argument value V propagated with the signal
(Agent-to-Agent communication). The receiving agent must provide a signal
handler (like an activity) to handle signals asynchronously. Alternatively, a sig-
nal can be sent to a group of agents belonging to the same class AC within a
bounded region using the broadcast(AC,DX,DY,S,V) statement. Signals
implement remote procedure calls. Within a signal handler a reply can be sent
back to the initial sender by using the reply(S,V) statement. Agents on a spe-
cific remote host handling a signal S can be signalled by using the
sendto(TO,S,V) operation (Agent-to-Node communication).

Timers can be installed for temporal agent control using (private) signal han-
dlers, too. Agent processing can be suspended with the sleep and resumed
with the wakeup statements.

Migration of agents to a neighbour node (preserving the body variables, the
processing, and configuration state) is performed by using the moveto(DIR)
statement, assuming the arrangement of network nodes in a mesh- or cube-
like network. To test if a neighbour node is reachable (testing connection live-
liness), the link?(DIR) statement returning a Boolean result can be used.

Reconfiguration: Agents are capable to change their transitional network (ini-
tially specified in the transition section) by changing, deleting, or adding
(conditional) transitions using the transition(Ai,Aj,predcond) state-
ments. This behaviour allows the modification of the activity graph, i. e., based on
learning or environmental changes, which can be inherited by child agents. The
modification can be restricted to a sub-class transition set, which is useful for
child agent generation. Additionally, the ATG can be transformed by adding or
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removing activities using the activity(Ai,Aj,...) statements, which is
only applicable for dynamic code-based agents not considered here.

Kind AAPL Statement Description 

Agent Class 
Definition

agent AC (parameters) =
  definitions 
  activities 
  transitions
  subclasses  
end;

Defines a new agent class AC 
with optional parameters. The 
class body consists of variable, 
activity, and transition defini-
tions.

Agent Subclass 
Definition

subclass SC =
  definitions 
end;

Defines a new agent subclass 
SC   part of a root class AC.

Creation and 
Replication

id := new AC[.SC] (args);
id := fork [SC] (args);
kill(id);
id = {$self,$parent,inte‐
ger}

Creates new agents at run-
time. They are created from 
the class template, or forked 
from the parent agent. A sub-
class SC can be selected, too.

Data var x,y,z: datatype;
var* a,b,c: datatype;

Defines persistent and non-
persistent agent body varia-
bles. The latter ones are not 
saved on migration or inher-
ited by children.

Activity activity A = 
  statements 
end;

Defines a new agent activity A,  
which can be bound to a sub-
class SC.

Composition activity+ (id,a1,a2,...);
activity‐ (id,a1,a2,...);

Adds or remove activities at 
run-time to/from a specific 
agent id.

Transition transitions [SC] = 
  transitions 
   ai ‐> aj: condj; ...
end;

Defines transitions at compile 
time between activities ai and 
aj with predicate condj. Can be 
used to define a sub-classi-
fied transition set SC, too.

Tab. 2.1 Summary of the AAPL statements used to define the agent behaviour and
control
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Reconfigura-
tion and Com-
position

transition+ [SC] (a1,a2,c);
transition* [SC] (a1,a2,c);
transition‐ [SC] (a1,a2);
                 (id,..)

Changes transitions at run-
time (add, replace all, remove 
all). Can be applied to a sub-
class SC or to a specific agent 
id only.

Mobility moveto(DIR|PATH); 
moveto(dx,dy,..);
.. link?(DIR|PATH) ..
.. link?(dx,..) ..
DIR={NORTH, SOUTH,
     WEST, EAST, ORIGIN, ..}
PATH =IP|CAP|URL|..

Migrates agent to a neighbour 
node. The connectivity can be 
tested by using the link? 
operation.

Kind AAPL Statement Description

Signal signal S:datatype;
handler S(x) = 
  statements 
end;
send(id,S,v);
reply(S,v);
broadcast(AC,DX,DY,S,v);

sendto(to,S,v);

Definition of a signal S that can 
be processed by a signal handler 
similar to an activity. Signals are 
either send to a specific agent id 
or send to all agents of a specific 
class within a region (Agent-to-
Agent). A signal receiver can 
send a signal reply back to the 
original sender. The sendto oper-
ation sends a signal to a specific 
node that is further passed to all 
listening agents on this node 
(Agent-to-Node).

Tab. 2.2 Summary of the AAPL statements used for interaction and communication

Kind AAPL Statement Description 

Tab. 2.1 Summary of the AAPL statements used to define the agent behaviour and
control
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Tuple Space 
Database

out(v1,v2,..);                   
.. exist?(v1,?,..) ..
in(v1,x1?,v2,x2?,..);       
rd(v1,x1?,v2,x2?,..);
in?(timeout,v1,..);
rd?(timeout,v1,..);
mark(timeout,v1,v2,..);   
rm(v1,?,..);
alt((pat1)|(pat2)|..]);
alt?(timeout(pat1)|..]);

Coordinated data exchange by 
agents using the tuple space 
operations with tuples and pat-
terns. A marking is a tuple with a 
limited lifetime. Commonly, the 
first tuple value is treated as a 
key, e.g. classifying the tuple. 
The alt operation listens on a set 
of tuple patterns. If there is a 
tuple matching one of the pat-
terns, the tuple is consumed.

Tuple Space 
Database

eval(id,v1,x1?,v2,x2?,..);       Injection of an active tuple that 
is only partially evaluated (con-
taining empty elements) that is 
consumed by a server agent 
processing the tuple and storing 
the evaluated tuple. The evalu-
ated tuple is passed back to the 
initiator of the evaluation opera-
tion.

Distributed 
Tuple Space

copyto(to,v1,x1?,v2,x2?,
..);
collect(to,v1,x1?,v2,x2?,
..);
store(to,v1,v2,..);

Remote tuple space access. The 
copyto operation copies all 
tuples matching the pattern to 
the specified node tuple space. 
The collect operation moves 
all matching tuples, and the 
store operation is the remote 
out operation.

Timer and 
Blocking

timer+(timeout,S); 
timer‐(S); 
sleep; wakeup;

A timer can be used to raise a 
signal S. Agents can be sus-
pended and be woken up.

Neighbour-
hood

who?; 
who?(DIR|PATH|RANGE)
who?(AC,DIR|PATH|RANGE)

Returns a list of agents found on 
this node or in the neighbour-
hood, optionally limiting to a 
specific class.

Kind AAPL Statement Description

Tab. 2.2 Summary of the AAPL statements used for interaction and communication
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2.9.2 Signal Classes

Agent-to-Agent (A2A) Signals
Signals are lightweight messages that are delivered to specific agents

(Agent-to-Agent A2A), in contrast to the anonymous tuple exchange. One
major issue in distributed MAS is remote agent communication between
agents executed on different network nodes. Though an agent can be
addressed by an unique identifier, the path between a source and destination
agent is initially unknown. For the sake of simplicity and efficiency, a signal
from a source node A can only be delivered to a destination agent currently
on node B iff the destination agent was executed (or created) on node A some
time ago. I.e., two agents must have been executed on the same node in the
past. Agent migration and signal propagation is recorded by the agent plat-
form using look-up table caches with time limited entries and garbage
collection.

Agent-to-Node (A2N) Signals
The signal delivery along migration paths based on the destination agent

identifier (private, uni-cast) or the agent class (public, broadcast) is not appro-
priate in all   use cases. Therefore, signal delivery of signals to specific remote
platforms (remote signalling) based on paths specified by the signal sender
agent is available. The destination platform node broadcasts the signal to all
listening agents executed on this particular node. To simulate private A2A uni-
cast (or multi-cast) communication, agents can use a randomly generated sig-
nal name only known by the sender and the receiver. This new approach
enables interaction between agents never executed on the same node. Fur-
thermore, these remote signals are used to implement distributed tuple-
spaces, discussed later. 

2.9.3 Distributed Tuple-Spaces
The tuple exchange between agents is limited to the node level. To estab-

lish distributed tuple spaces, tuple migration using the collect, copyto, and
store operations are available, which can be performed by agents. This fea-
ture enables the composition of distributed tuple-spaces controlled by
agents. The collect and copyto operations transfer tuples from the local tuple-
space to a remote using pattern matching, similar to the inp and rd opera-
tions. The store operation send a tuple to a remote tuple-space, similar to the
out operation.
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Fig. 2.10 Effects of AAPL control statements at run-time

2.9.4 AAPL Agent Classes and Agent Instantiation
The AAPL agent behaviour model is closely related to the DATG model. An

agent behaviour description is encapsulated in an agent class and consists ini-
tially of a set of activities A={a1, a2, ..} performing actions (computation and
interaction with the environment) and a set of transitions T={t1, t2, ..} defining
the activation of activities based on the previous activity already executed and
the internal data state, as already defined in Equation 2.1.
There are multiple different methods to create new agents at run-time:

1. Agents can be instantiated from an original root agent class. If there
are more than one transition sets in the agent class definition, a spe-
cific set can be chosen and activated for the new created agent.

2. Agents can be instantiated from a subclass of an original root agent
class.

3. Agents can be forked from a parent agent. The child agents inherit the
agent behaviour including the current transitions, and the data (con-
tent of body variables). A child agent must use the same transition set
of the parent agent. A transition set switch is impossible.

4. New agents are composed of an original or already modified agent
behaviour (ATG and data, e.g., sub-classing). Though only sub-classing
is possible by creating a subset of activities and transitions, free com-
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position is possible at run-time, but can be limited by the underlying
processing platform.

The agent class consists of a unique name, an optional parameter list, and
the agent class body, shown in Definition 2.5. 

Def. 2.5 Summary of agent class definition and instantiation (left AAPL syntax, right
short notation) [AC: Agent class, sc: agent subclass]

The body consists of the definition of body variables, optional signals, types,
and exceptions. Body variables can be defined as persistent (var) or tempo-
rary (var  *). The data content of persistent variables is preserved on
migration and is inherited by child agents. Variables defined with the var*
statement are temporary variables. They are not part of the mobile data state
of an agent and are not transferred during agent migration and is not inher-
ited by child agents.

The following example demonstrates the AAPL agent class definition for a
simple MAS exploring a region of interest (ROI) and collecting sensor data
within the ROI by sending out child agents. The agent class Sample consists of
five activities and transitions. Agent parent-child interaction is done by using
signals carrying an argument (the computational result of the child agents). In

Definition of an Agent Class           Short Notation
agent AC [(p1:DT,p2:DT,..)] =    AC:(p1,p2,..)   
begin    { 
  definitions
    body variables   var  v1:T; ..     : { .. } 
    body variables*  var* v1:T; ..      : { .. }
    [ signals ]       signal s:T; ..       : { .. } 
    [ exceptions ]    exception e;        : { .. } 
    [ types ]         type T =  ..;      : { .. }
  activities       activity a = .. end;      a: { .. }
  transitions      transitions = .. end;     : { .. } 
  [ functions ]    function f(..) = .. end;   f : (p1,..)  { .. }
  [ handler ]     handler s(..) = .. end;   s:(p)  { .. } 
  [ subclasses ]  subclass sc = .. end;     ac: { .. }  
 end;       }

Creation of Agents
id := new AC(x1,x2,..);     id  + AC(x1,x2,..)
id := fork (x1,x2,..);    id  (x1,x2,..)
id := fork sc(x1,x2,..);    id   sc(x1,x2,..)
id := new AC;
.. ATG composition ..
run(id,x1,x2,..);
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the case of more complex data transfer between agents the tuple-space must
be invoked, and signals are used only to synchronize an event notification.
The main activity is percept, which creates the child agents by forking.

Ex. 2.2 AAPL definition of a simple agent class and instantiation of agents at run-time
using the fork and new statements. The goal of the MAS is to collect sensor val-
ues in a ROI within the given radius and finally computes the mean values of
all samples.

1 type Direction = {NORTH,SOUTH,EAST,WEST,ORIGIN};
2 type Delta = (dx:integer,dy:integer);
3 type keys = {SENSOR,MEAN};
4 signal DELIVER:integer;
5
6 agent Sample (dir: Direction, radius: integer[1..16]) =
7   var mean: integer; s:integer; deltaV: Delta; dirs:Direction set; 
8
9   activity start =
10     mean := 0; deltaV := Delta(0,0); 
11   end;
12
13   activity percept =
14     enoughinput := 0; 
15     if not rd?(0,SENSOR,s?) then s := 0; end;
16     mean := mean+s;  
17     transition*(percept,move);
18     if not inbound(dir) then dirs := {}
19     elsif deltaV.y = 0 and deltaV.x > 0 then dirs := {NORTH,SOUTH,EAST}
20     elsif deltaV.y = 0 and deltaV.x < 0 then dirs := {NORTH,SOUTH,WEST}
21     elsif deltaV=Delta(0,0) then dirs := {NORTH,SOUTH,WEST EAST}
22     elsif deltaV.y > 0 then dirs := {NORTH}
23     else dirs := {SOUTH} end;
24     for nextdir in dirs do    
25       incr(enoughinput);
26       eval(fork(nextdir,radius)); 
27     end;
28     transition*(percept,goback,enoughinput=0);
29     wait for child agents delivering sensor values
30   end;
31
32   activity move =
33     mean := 0;
34     deltaV := deltaV+delta(dir);
35     moveto(delta(dir));
36   end;
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37
38   activity goback =
39     if deltaV <> Delta(0,0) then
40       deltaV := deltaV+delta(backdir(dir));
41       moveto(delta(backdir(dir)));
42     end;
43   end;
44
45   activity deliver =
46     if deltaV = Delta(0,0) then
47       out(MEAN,mean/(radius*2+1)**2)
48     else
49       signal($parent,DELIVER,mean); 
50     end;
51   end;
52
53   handler DELIVER(v:integer) =
54     mean := mean + v;
55     decr(enoughinput);
56   end;
57
58   function delta(dir:Direction):Delta =
59     case dir of | NORTH ‐> Delta(0,1) | WEST ‐> Delta(‐1,0) | .. end;
60   end;
61   function inbound(nextdir:Direction):bool =
62     case nextdir of | NORTH ‐> dy<radius | WEST ‐> dx > ‐radius | ..
63     end;
64   end;
65   function backdir(dir:Direction):Direction =
66     case dir of | NORTH ‐> SOUTH | WEST ‐> EAST | .. end;
67   end;
68
69   transitions =
70     start ‐> percept;
71     percept ‐> move;
72     goback ‐> deliver;
73     deliver ‐> exit
74   end;
75
76   .. some other agent ..
77   id := new Sample(ORIGIN,2);

2.9.5 Agent Identification in AAPL
The AAPL offers symbolic variables for the identification of agents, $self for

self-referencing and $parent for the identification of the parent agent if the
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current agent was forked. There are basically two approaches assigning
agents a unique identifier, a natural number:

1. A local unique identifier number handled by the agent manager
extended with a delta-distance vector  for migrated agents;

2. A random number in the range [a..b].

The first approach requires the locking of an agent identifier number on the
node where the agent was created until the agent process is terminated,
which can happen on a different node. The first approach ensures the unique-
ness of agent identifiers and the required bit-width of the identifier depends
on the maximal extent of the network and the maximal number of agents that
can be processed on a node. The second approach requires a large value
range to minimize the collision probability, which usually requires at least 16
bit for an identifier.

2.9.6 AAPL Activities, Transitions, Composition, and Subclasses
The AAPL definition of the agent ATG behaviour is partitioned in the defini-

tion of activities and a transitions block. An activity is like a procedure that can
use local storage defined at the beginning of the activity body. There is a
sequentially ordered execution model for the statements of the activity body.
Activities perform computation, modification of agent data and global data,
migration, communication, and agent management. An activity can use tem-
porary local storage variables, only visible in the activity body and valid only
during the activity is processed, defined in the beginning of the activity body.

The transitions section of an agent class definition specifies an initial transi-
tion set with conditional and unconditional transitions between activities of
the current agent class,   shown in Definition 2.6. There may be several transi-
tions out going from the same activity and different incoming transitions from
other activities.

Transitions can be assigned to a subclass. A subclass transition usually set
only handles a part of the ATG. The root class always handles the entire ATG.
Subclasses can be switched and modified at run-time providing a sub-classing
of agents and their respective ATG behaviour. The main usage and the highest
benefit of transition set switching is achieved during forking or creating of
new agents. The deployment of multiple transition sets (sub-classes) provides
an efficient way to create new (child) agent behaviours by still preserving the
current (parent) behaviour.
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Def. 2.6 AAPL agent activity and transition definitions, which can be encapsulated in
sub-classes.

Activities and transitions can be bound to subclasses, creating ATG sub-
graphs. All subclasses initially belonging to the root class. Creating of agents
from this root class therefore includes all sub-classes. But child agents can be
forked by using the subclasses, shown below. The effect of sub-classing at
run-time depends strongly on the agent platform architecture, which may
only partially support sub-classing at run-time. Subclasses can import activi-
ties (and variables) from the parent class.

Subclass definitions allow the partition and decomposition of the entire
ATG in sub- ATGs. A subclass restricts the root class (which includes all the
subclasses) to a restricted or scope-limited set of variables, transitions, and
activities.

Activity Definition                       Short Notation
activity aci =      aci { .. 
  definitions  var x:DT; var* l:DT;     : {x1,..} :{l1,..}
  statement;       statement;
  statement;     statement;
  ..   ..
end;     }

Transitions Definition
transitions =  { 
  ai  aj [ : cond ] ;   ai  aj [ : cond ]
  ..   ..
end; }

Subclass Definition
subclass sc =  sc: { .. }
  definitions   var x:DT; var* l:DT;
  .. imports  use x;  x
  activities  activity aj = .. end;
  .. imports use aj;  aj
  transitions transitions = .. end;  { .. }
end;
transitions sc = .. end;

Creation of Agents and Subclass Agents
id := new AC(x1,x2,..);     id  + AC(x1,..)
id := new AC.sc(x1,x2,..);     id  + AC.sc(x1,..)
id := fork (x1,x2,..);    id   (x1,..)
id := fork sc(x1,x2,..);    id   sc(x1,x2,..)
id := new [ empty ] AC;    id   AC
.. ATG composition ..
run(id,x1,x2,..);    id’   (id,x1,..)
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If there are no variable definitions inside a subclass, the full root data set is
inherited. If there is at least one subclass variable definition, no root variables
are inherited!

All activities defined in the subclass are only visible and usable inside the
subclass. All root class activities for which subclass activities have transitions
to must be imported. The transition set of a subclass is independent of the
root class transition set and does not inherit any root class or other subclass
transitions.

Some special statements or statements with a special semantic appearing
inside the subclass section are listed below:

var x:DT; var* l:DT;
Defines persistent and temporary data only used by subclass agents.

use A,T,v;
Imports an activity, transition, or variable from the root or another
subclass.

SC.A
Reference of a subclass activity

A subclass definition can be used to define a subset of transitions only, which
can be simplified by marking a transition definition section with the subclass
name.

An agent class can define additional computational functions and proce-
dures, which can be used in activities or conditional transition expressions,
shown in Definition 2.7. Functions can be used in transitional expressions if
they have no side effects (i.e., not modifying body variables and not using I/O
statements).

Def. 2.7 AAPL function and procedure definitions

Function Definition                 Short Notation
function f(par1,par2,..):T = f:(x,y,..)  {..}
  definitions
  statements
  return expr;
end;
procedure p(par1,par2,..) = p:(x,y,..)  {..}
  definitions
  statements
  return;
end;
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2.9.7 AAPL Data Types
Core Types

The AAPL core type set consists of integer, natural, float, boolean, char, and
string (text) types, summarized in Definition 2.8. The integer type can be
sub-typed (value range) to support efficient program and hardware synthe-
sis from AAPL specifications. Additionally, there is a low-level word type for
generic use (bit-vector type). Though real type value arithmetic is expensive
regarding hardware resources, the generic real (floating-point) and the
fixed point real type are included in the set of core data types. The fixed
point real type can be limited by a sub-range specification, providing impor-
tant information for the hardware synthesis and enabling the transforma-
tion of real to integer type arithmetic, vital for low-resource processing
platforms.

Def. 2.8 AAPL core data types and variable definitions

Arrays
One- and multidimensional arrays of scalar and composed types are sup-
ported, summarized in Definition 2.9.

Def. 2.9 AAPL array definition (type and object instantiation in one statement)

Core Data Types
DT = {integer, natural, word, real, fixed, boolean, char, text} 

Agent Body Variable Definitions
var x: DT; var* x: DT;
var x: integer [[A..B]]; [sub‐range]
var w: word[bit‐size]; true‐bit scaled
var r: real [[A..B]] scaled fixed point real type
var f: fixed[N1..N2,F1..F2] scaled fixed point real type

Array Definition
var A[size]: T;
var A[a..b]: T;
var M[size1,size2,..]: T;

Array Element Access
  A[index] := expr;
  x := A[index];
  y := M[index1,index2,..];
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Composed Types
AAPL provides common record structure, enumeration, and static set types,
summarized in Definition 2.10. There are no record type references to
avoid a restriction to memory-based data processing architectures. List
types are provided, but list objects are unavailable on all platforms. Lists
are ordered, in contrast to sets, which are always unordered (the order is
insignificant). Sets objects are available on all platforms (PCSP/PAVM).

Def. 2.10 AAPL definition of user defined types (product and simple sum types) and
object instantiation

Def. 2.11 AAPL definition of sets and list types

Record Types
type Tr = (e1:T, e2:T, ..);   var x:Tr;

.. x := Tr(v1,v2..); .. x.v1 := x.v2; ..

Symbol (Enumeration) Types
type Ts = {S1 ,S2, .. }; var x:Ts;

.. x := S1; ..

Set Type
type Ts = {S1 , S2, .. }; var e:Ts;

var s:Ts set;
..
  s := {};            Empty set
  s := s + {S2,S3};   Add elements to the set
  s := s − {S3};      Remove elements from set
  e := Random(s);     Return one element of s
  for e in s do ..    Iterate over sets
  for e in {S2,S3} do ..
..
List Type

var l:T list;
..
  l := [];            Empty list
  l := l + [v1;v2];   Add elements to the tail
  e := Random(s);     Return one element
  for e in l do ..    Iterate over lists
  for e in [e2;e3] do ..
..
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Set Types
Sets can be constructed from symbolic enumeration types, shown in Defi-
nition 2.11. A set contains each enumeration element only zero or one
times. Initially a set variable is empty (empty set {}). New set elements can
be added by using set addition and subtraction operations (+,−). Internally
set variables are represented with bit-fields, with each bit field assigned to
one symbol element. Set operations (+,−) will enable or disable the respec-
tive bits of the bit-field variable.

2.9.8 AAPL Computational Statements
The set of computational statements consists of data (assignment) and con-

trol flow related statements. Computational statements can be used in the
body of activities, handlers, functions, and procedures, shown in Definition
2.12. Expressions can be used additionally in transition sections. Expressions
are used in assignments, branches, function applications, and loops. There
are arithmetic, relational, boolean, and bit-wise logical operations.

Def. 2.12 AAPL expressions and data statements [x: variable, v: value, : expression]

2.9.9 AAPL Control Statements
There are different branch statements available passing the program flow

to an alternative statement or a block of statements depending on boolean
conditions or value matching expressions, summarized in Definition 2.13.
Branches with static conditions (which can be resolved at compile time) can
appear on module top-level, too., supporting conditional compiling (there is
no syntax preprocessing in AAPL like in C).

There are different loop statements available for repetitive execution of
statements. Each loop repeats the execution of the loop body as long as a
boolean condition is satisfied. A counting loop iterates a list of values, either
specified explicitly by a set/list or implicitly by a range set constructor. The for-
loop can be used to iterate over sets and lists, too. Furthermore, multi-iterator
loops are supported.

Assignment and Expressions

x := ;
     ::= v | x | (tp) |  op  | (  )

op ::= 
  + ‐ * / mod |x|
  and or not land lor lnot lsl lsr 
  < <= > >= = <>
tp ::=  |  , tp

incr(x[,]); decr(x[,]);         x:=x +/‐ ;  (w/o : =1)
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Def. 2.13 AAPL control statements [x: variable, v: value, : expression]

2.9.10 AAPL Communication
Tuple-spaces and signals are the central inter-agent communication ser-

vices provided by the agent processing platform. There is one set of n-
dimensional spaces accessible in each node domain. Hence, tuple-space com-
munication can only be used by agents currently processed on the same
network node. In contrast, signals can be propagated in the network domain.
Signals can be used to send events carrying simple data (one argument value)
to other agents, commonly instantiated from the same root agent class. The
agent identity number must be known by the sender. To receive signals, an
agent must implement a signal handler, primarily modifying agent data.
Tuple-spaces can be used by different agents (not necessarily belonging to the
same class) to exchange simple or complex data with a producer-consumer
synchronization model. Tuple-spaces can be accessed without any special
environment like a handler, hence being more flexible.

Signals
A signal can be defined within an agent class or outside on top-level, option-

ally specifying the data type of the signal argument. The signal API is given in
Definition 2.14.

Signal handlers are defined within the agent class. There may be at most
one handler for each signal. Signal handlers are usually executed pre-emptive
and concurrently to an activity processing of an agent. Signals are queued by
the agent processing platform, but not necessarily preserving the order of the
arrival of different signals. Signals are addressed by giving the agent identity
number, which is unique in each node domain, and in the global domain
extended by the relative displacement vector if an agent has migrated to
another node. Hence, signals are usually only used within groups of agent,
mostly parent-child groups.

Conditional Control Statements

if  then S1; [ else S0; ] end;
if 1 then .. elsif 2 then .. [ else .. ] end;
case  of | V1 => S1; | V2 => S2; .. [ else S0; ] end;

Iterative Control Statements

for i := a to | downto b [ by c ] do S; end;
for i in x do S; end;
for i in x, j in y,.. do S; end;
while  do S; end;
repeat S; until ;
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Def. 2.14 AAPL Signal Communication

A signal can be sent from an agent to itself, commonly used with timers
raising a signal after a time-out has occurred, shown in Definition 2.14.

Peer-to-peer signals are commonly used to synchronize parent-child
agents. The broadcast of a signal to all agents of a specific agent class and
within a limited spatial range (in node units) goes beyond the parent-child
relationship of agents, and is more generic.

Group specific signal propagation is actually not supported because there is
no agent group management at all. Groups must be managed by the agents
themselves, for example, shown in the distributed feature recognition Algo-
rithm 9.1 using tuple-space interaction and temporary tuple markings. An
agent that received a signal can reply (within the currently executed signal
handler) with any signal to the original sender using the reply operation.

Tuple Spaces
Multi-Agent interaction and synchronization is provided by a tuple-space

database server available on each node (service provider), summarized in
Definition 2.15. 

Signal Definition

signal S1,S2,.. [ : DT ];

Signal Raising

send(ID,Si,[arg]); ID={$parent,$self,agent‐id}
reply(Si,[arg]);
broadcast(AC,DX,DY,S,[arg]);
sendto(TO,Si,[arg]); TO={DIR,PATH,node‐id}

Signal Handler Definition

handler Si [([val] p)] = .. end;

Timer Installation and Signal Handler

signal Ti [ : DT ];
timer+(timeout,T);
timer+(timeout,T,V);
timer‐(T);
handler Ti [([val] p)] = .. end;
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Def. 2.15 AAPL tuple space communication

An agent can store an n-dimensional data tuple (v1, v2, ..) in the database by
using the out(v1,v2,..) statement (commonly the first value is treated as a
key). A data tuple can be removed or read from the database by using the
in(v1,p2?,v3,..) or rd(v1,p2?,v3,..) statements with a pattern template
consisting of a set of formal (variable,?) and actual (constant) parameters,
which can be expression terms. These operations block the agent processing
until a matching tuple is found and was stored in the database by another
agent. There are non-blocking versions of these operations, respectively
in?(tmo,..) and rd?(tmo,..), limiting the blocking with a time-out (which
can be zero), and combine a tuple existence test with the input operation. 

These simple operations solve the mutual exclusion problem in concurrent
systems easily. Only agents processed on the same network node can

Generation of Tuples and Markings Short Notation
out(v1,v2,..); +(v1,v2,..)
mark(timeout,v1,v2,..); T(v1,v2,..)

Search and Removal of Tuples
in(v1,x1?,..); ‐(v1,x1?,..)
in(v1,x1?,?,?,..); ‐(v1,x1?,?,?,..)
stat := try_in(timeout,..,); ?‐(tmo,..)

Search and Reading of Tuples
rd(v1,x1?,..,v2,..); %(v1,x1?,..)
rd(v1,x1?,?,?,..,v2,..); %(v1,x1?,?,?,..,v2,..)
stat := try_rd(timeout,..); ?%(tmo,..)

Testing of Tuple Existence
exist?(v1,?,?,..); ?(v1,?,?,..)

Removal of Tuples
rm(v1,?,?,v2,..); (v1,?,?,..)

Generation of Active Tuples
eval(id,v1,?,?,v2,..); (id,v1,?,?,..)

Distributed Tuple Space/Remote Tuple Access
store(to,v1,v2,..); +(v1,v2,..)   to
collect(to,v1,x1?,..); ‐(v1,x1?,..)  to
copyto(to,v1,x1?,..,v2,..); %(v1,x1?,..)  to

Multi‐Pattern Selector
res:=alt((v1,x1?,..)|(..)); *‐((v1,x1?,..)|(..))
res:=try_alt(tmo,(v1,x1?,..)|(..)); ?*‐(tmo,(v1,x1?,..)|(..))
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exchange data in this way. Simplified the expression of beliefs of agents is
strongly based on the AAPL tuple database model. Tuple values have their ori-
gin in environmental perception and computation bound to a specific node
location.

The existence of a tuple can be checked by using the exist? function or
with atomic test-and-read behaviour using the in?/rd? functions. A tuple with
a limited lifetime (a marking) can be stored in the database by using the mark
statement. Tuples with exhausted lifetime are removed automatically (by a
garbage collector). Tuples matching a specific pattern can be removed with
the rm(v1,?,v3,..) statement.

The alt operation enables listening on tuples matching different patterns.
If a tuple matches one of the patterns it is returned. The alt operation always
return the tuple or none.

2.9.11 AAPL Migration
Migration of agents (preserving the local data and processing state) to a

neighbour node is performed by using the moveto(DIR) statement, assuming
the arrangement of network nodes in a mesh- or cube-like network. To test if
a neighbour node is reachable (testing connection liveliness), the link?(DIR)
statement returning a Boolean result can be used, summarized in Definition
2.16. 

Def. 2.16 AAPL mobility and connectivity [DIR: symbolic direction, d: relative numeric
direction value for a specific dimension)

The set of symbolic directions is defined by a relation function mapping
symbolic directions names, e.g., {NORTH, SOUTH, WEST, EAST}, on a delta dis-
tance vector specifying a neighbour node location. Alternatively, the delta
distance vector can be used immediately in the moveto and link? operations,
.i.e.,  moveto(d1,d2,..) and link?(d1,d2,..) with di={-1,0,1}, shown in Defi-
nition 2.16. To extend the deployment of agents to generic network
environments found on the Internet domain a specific node identifier id can

Migration Short Notation
moveto(DIR|PATH) (DIR)
moveto(d1,d2,..) (d1,d2,..)
moveto(id) (id)

Link Test
link?(DIR|PATH).. ?(DIR) ?(d1,d2,..) ?(id)

Directions
type DIR = {NORTH, SOUTH, WEST, EAST} = {..}
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be passed instead a geometrical distance vector, for example, a URL or IP
address.

2.9.12 AAPL Reconfiguration
Behavioural Modification. An activity itself is immutable, but the composition
of ATGs at compile and at run-time is dynamic. An arbitrary set of different
ATGs G={g1, g2, ..} with gi=A’A, T’T, V’V can be composed of a static set
of activities and transitions known at compile time. The capabilities of the ATG
composition and reconfiguration at run-time depends on the particular agent
processing platform and the agent behaviour implementation (programmable
contrary to application specific). But at least the reconfiguration by modifying
the set of active transitions is available on all platforms. 

The activity composition of an agent at run-time can be limited by the agent plat-
form due to side effects and storage dependencies existing in the activities (though
storage references exists in transitions, too), the implementation depends on the
used platform architecture, and is primarily only supported by sub-classing of the
ATG itself, which must be known at design time.

Def. 2.17 AAPL behavioural reconfiguration and composition modifying the ATG

The transition reconfiguration can be used to create child agents with a
modified behaviour forked from a parent agent, shown in Example 2.3. Before
a child agent is created (either forked or created from the template using the
fork or new operations, respectively) the transition network can be modified
and immediately restored after the child agent was instantiated. Basically the
same behaviour can be achieved by using behavioural subclasses.

In this example, a parent agent performs a transition from the replicate to
the wait activity, whereas the child agent transitions after forking to the move
activity. In the first case (a) the move activity is part of the root class (top-level),
and in the second case (b) it is part of the subclass childsc.

Transitions Short Notation
transition+ [C] ([id,] a1,a2,c); + [C] ([id,] a1,a2,c)
transition* [C] ([id,] a1,a2,c); * [C] ([id,] a1,a2,c)
transition‐ [C] ([id,] a1,a2); ‐ [C] ([id,] a1,a2,c)

Activities
activity+ [C]([id,] a1,a2,...); + [C]([id,] a1,a2,...)
activity‐ [C]([id,] a1,a2,...);  ‐ [C]([id,] a1,a2,...)  
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Ex. 2.3 Practical use of the AAPL transition reconfiguration for behavioural modifica-
tion with (a) Transition reconfiguration, and (b) Subclass specification for the
instantiation of child agents

(a)
  activity replicate =
    transition*(replicate,move);
    eval(fork(..));
    transition*(replicate,wait);
  end;

  
  activity wait = .. end;
  activity move = .. end;
  transitions =
    ..
    replicate ‐> wait;
    ..
  end;

  
(b)
  activity replicate =
    eval(fork childsc(..));
  end;
  transitions =
    ..
    replicate ‐> wait;
    ..   
  end;
  subclass childsc =
    use replicate;
    activity move = .. end;
    transitions =
      replicate ‐> move;
    end;
  end;

Ex. 2.4 Free ATG composition at run-time using the configuration operations

id := new empty AC;
activity+(id,A1,A4,A6,..);
transition+(id,A1,A4,cond);
transition+(id,A4,A6);
run id(arg1,arg2,);
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The Example 2.4 shows a free ATG composition from an original root agent
class by adding activities and transitions. A new empty class template is
required.

2.9.13 AAPL Exception Handling
Exceptions are used to leave a control environment, for example a function,

loop, or branch. Exceptions are propagated beyond control environments
until an exception handler or handler environment catches the exception.
Otherwise, an uncaught exception fault appears. In contrast to signals (which
can be delivered to other agents), exception cannot carry arguments. The
AAPL exception management and statements are shown in Definition 2.18.

An exception raised within a nested control environment (nested branches/
loops or function calls) is passed to the next higher environment level until a
handler environment is reached. Exception handler environments can be
nested, too. Exception not caught by a particular handler (without else-
branch) are re-raised. If the exception reaches the activity control boundary,
either a specific exception handler is called if defined, or the agent is termi-
nated. Exception raised in functions called from activities are propagated to
the calling activity.

Def. 2.18 AAPL exception handling

Exception Definition
exception ex1,ex2,..;

Exception Handler Environment (inside program blocks)
try 
  statements;
except
 | ex1 => stmt1;
 | ex2 => stmt2;
 else stmt0;
end;

Exception Raising
raise exi;

Global Exception Handler Definition
handler exi = .. end;
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2.10 AAPL Agents, Platforms, Bigraphs, and Mobile Processes

2.10.1 Networks of Agent Platforms 
Mobile agents based on the AAPL model are associated with mobile pro-

cesses that can migrate between network nodes, introduced in Sections 2.7
and 2.8. In Chapters 6 and 7 two different Agent processing platforms (APP)
will be introduced (non-programmable application-specific and programma-
ble APP). The AAPL behaviour and programming model is a common source
for both APP implementations of agents. The state of a mobile agent process
is a tuple Ast=Cst,Dst,Fst, consisting of the control (Cst), data (Dst), and config-
uration (Fst) sub-state, independent of the implementation of the process and
the APP used to execute a process. The migration of a process preserves the
agent process state Ast. In the case of the programmable APP the agent pro-
cesses are related to program code specifying the agent behaviour with
embedded data and control sections, which carry the entire agent process
state. Migration of agents means the transmission of program code including
the agent behaviour. In the case of the non-programmable APP only the pro-
cess state is transmitted, without the agent behaviour model, which is
implemented in the APP, as shown in Figure 2.11. 

Fig. 2.11 Two different Agent Processing Platform architectures and the association
with mobile processes representing the state of the process. (a) Deployment of
both APPs in heterogeneous networks with two different sub-networks (b)
Mobile processes with program code embedding the process state (c) Mobile
processes with a state vector only 
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The composition of heterogeneous networks consisting of sub-networks
with nodes of different APP classes requires a transformation module at least
on one of the connected nodes of different sub-networks. These different APP
class networks are related to different domains (sites) in the Bigraph model.
The transformation module can use code templates and code morphing to
transform a pure state-vector based mobile process in a code-based. The
other direction is much more complicated, requiring the extraction of the
agent state vector from the program code containing the embedded agent
state. The transformation can be eased by adding transformation activities to
the agent class.

2.10.2 AAPL MAS and the Calculus
In Section 2.8 the relation of the AAPL behaviour and interaction model with

the -Calculus was introduced. The following Example 2.5 shows a simple
MAS behaviour model. A parent agent sends out child agents to each reacha-
ble neighbour node with the goal to deliver sensor values from the nodes,
finally computing the mean value.

Ex. 2.5 Simple explorer MAS behaviour model

agent explorer(dx,dy) =
  var s,s1,dxb,dyb,n: integer; signal WAKEUP;
  activity init = 
    dxb:=‐dx; dyb:=‐dy;
    if (dx,dy) <> (0,0) then moveto(dx,dy); end;
  end;
  activity percept = 
    in(SENSOR,s?);
    if (dx,dy) = (0,0) then

         n:=0; out(SENSORMEAN,s); 
      transition*(percept,init); 
      if link?(‐1,0) then eval(fork(‐1,0)); incr(n); end;
      if link?(1,0) then eval(fork(1,0)); incr(n); end;
      if link?(0,‐1) then eval(fork(0,‐1)); incr(n); end;
      if link?(0,1) then eval(fork(0,1)); incr(n); end;
      transition*(percept,finalize,n = 0); 
    end;
  end;
  activity goback = moveto(dxb,dyb); end;
  activity deliver =
    in(SENSORMEAN,s1?); s1:=s1+s; out(SENSORMEAN,s1);
    send($parent,WAKEUP);
    kill($self)
  end;
  activity finalize = kill($self); end; 
  handler WAKEUP = decr(n); end;
  transitions =
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    init ‐> percept;
    goback ‐> deliver;
  end;

A possible evolving of such multiprocess system in terms of the -Calculus
in shown in Example 2.6. It is assumed that another agent instantiates one
explorer agent with the AAPL new  explorer(0,0) statement. It is further
assumes that the processing nodes are arranged in two-dimensional mesh-
network with full connectivity and that tuple-space communication is pure
computational and non-blocking. The explorer parent agent will then send out
four child agents in all four directions, which will finally return and deliver the
collected sensor values. The initial location is l, and the neighbour nodes in
North, South, West, and East direction are at locations l, l, l, l, respectively.

Ex. 2.6 Possible evolving of a multiprocess-system based on the AAPL behaviour in
Example2.5 (Tuple space communication is assumed to be non-blocking and
is neglected here) [s: event channel for WAKEUP signal handling for parent-
child communication]

(new dx,dy) P1,init@l1{0/dx,0/dy} 



(new s) (P1,percept@l1 || P2,init@l1{‐1/dx,0/dy} || 

                        P3,init@l1{1/dx,0/dy} || 

                        P4,init@l1{0/dx,‐1/dy} || 

                        P5,init@l1{0/dx,1/dy})



s?().P1,percept@l1 || goto(l2).P2,percept@l2 || 

                    goto(l3).P3,percept@l3 || 

                    goto(l4).P4,percept@l4 || 

                    goto(l5).P5,percept@l5



s?().P1,percept@l1 || P2,goback@l2 || P3,goback@l3 || P4,goback@l4 || P5,goback@l5



s?().P1,percept@l1 || goto(l1).s!<>.P2,deliver@l1 || 

                    goto(l1).P3,deliver@l1 || 

                    goto(l1).P4,deliver@l1 || 

                    goto(l1).P5,deliver@l1


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s?().P1,percept@l1 || s!<>.P3,deliver@l1 || P4,deliver@l1 || P5,deliver@l1



s?().P1,percept@l1 || s!<>.P4,deliver@l1 || P5,deliver@l1



s?().P1,percept@l1 || s!<>.P5,deliver@l1



P1,finalize@l1

2.11 AAPL Agents and Societies

There are different levels of organisation in MAS [FER99], which can be
related to the AAPL behaviour and interaction model:

1. The Micro-social level characterized by a tight bounding of agents, sup-
ported by AAPL parent-child groups with forking of the control and data
state. 

2. The group level characterized by a composition of larger structures
and organisations, supported by AAPL mobility, replication, reconfigu-
ration, and tuple-space coordination.

3. The global society level characterized by the dynamics of numerous
agents at their evolution, supported by the AAPL mobility crossing plat-
form barriers and the DATG reconfiguration and sub-classing capabil-
ity. Organisations profit from behavioural differentiation and the
constitution of specialists, well matching the DATG sub-classing fea-
ture.

The micro-macro relationship in Multi-Agent Systems and the role of the
agent society created by organisation and interaction of agents is illustrated in
Figure 2.12. 

The structure of organisation is not a static structure, it is mainly a result of
effects and interactions. The Bigraph model introduced in Section 2.7 can
reflect such dynamic structures.
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Fig. 2.12 Agent societies by organisation structures and interaction

2.12 AAPL Agents and the BDI Architecture

2.12.1 The BDI Architecture
The Belief-Desire-Intention (BDI) architecture is well-known agent behav-

iour and interaction model capable of rational behaviour and practical
reasoning [WOO99], in contrast to, for example, procedural reasoning archi-
tectures (like PRS). The BDI architecture was originally proposed in [RAO95].

The top of Figure 2.13 outlines the BDI agent architecture and its compo-
nents. The bottom part shows the relationship of the AAPL model with the BDI
architecture, discussed below.

There are seven main components consisting of functions and databases
that implements the rational behaviour [WOO99]:

1. A set of beliefs B, representing information the agent has collected and
computed from the environment.

2. A set of current Desires D, the options, representing possible action
executions and expected outcomes. 

3. A set of current Intentions I, representing the current focus of the
agent.

4. A Belief Reasoning Function (BRF), which gets the input from current
set of perception data Sn and the previous beliefs Bn-1, and stores the
output in the Belief database B.

Interactions

                                                   Organisation

Agents

Constraints and
Social Objectives

Emergence
Of Proper-

ties
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5. An Option Generation Function (OGF), which determines the available
options, the desires of the agents, computed from the current beliefs
and intentions.

6. A Filter Function (FF) as part of the agent’s deliberation process, and
which computes the next intentions of the agent.

7. An Action Selection Function (ASF), which selects actions to be per-
formed basing on the current intentions.

Fig. 2.13 Relation of the BDI agent architecture to the AAPL behaviour model (agent
class)
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The following equation summarizes the functions involved in BDI reasoning
process. The state of an agent at any moment is given by the tuple B, D, I
with B B, D  D,  and I  I, where B, D, and I are the sets of all possible
beliefs, desires, and intentions The outcome of the filter function FF giving the
current intentions of the agent are either older intentions or newly adopted
options. This is given by the following set constraint.

(2.2)

The (X) function represents the current sets of beliefs, desires, and inten-
tions, P is the current perception, and A the currently executed action.

The reasoning function (originally proposed as the action function) repeat-
edly computes new Beliefs, Desires, and Intentions from the current
perception and outputs the current action, shown in the Definition 2.19.

Def. 2.19 The BDI reasoning function

1 DEF reasoning = p:P 
2   B := BRF(B,p)
3   D := OGF(D,I)
4   I := FF(B,D,I)
5   execute(I)

2.12.2 The AAPL-BDI Relationship
The Belief, Desire, and Intention databases are basically represented by

and composed of the body variables of an agent. But agents also store data in
the tuple-space database, which can contain BDI data, or at least pre-com-
puted data that has an effect on the current B, D, I database of an agent.
Furthermore, the current transition set TT  of an agent’s ATG is embedded in
the Intentions and Desire sets.

Sensor input comes from and action output affects tuple-space database
data, representing both the environmental world, the agent itself, and other
agents state, or at least the public visible parts.

The Belief Reasoning and Option Generation functions are related to the
AAPL activities, and the Filter and Action Selection functions are related to the
transitions set of an ATG.
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