S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

Chapter 6

PCSP: The Reconfigurable Application-spe-

cific Agent Platform

Agent Processing Platform based on a Parallel Pipelined Communicat-

ing Sequential Processes Architecture

Pipelined Processes

Agent Platform Architecture

Agent Platform and Hardware Synthesis
Platform Simulation

Heterogeneous Networks

Further Reading

epubli, ISBN 9783746752228 (2018)

192
193
203
207
210
211

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

m Chapter 6. PCSP: The Reconfigurable Application-specific Agent Platform

In this Chapter an application-specific and reconfigurable agent platform is
introduced that is capable of executing AAPL based agents. The platform archi-
tecture relies on a pipelined processes model and token-based agent
processing. Various implementations of the platform are presented and dis-
cussed, supporting agent processing and mobility in heterogeneous networks
environments.

6.1 Pipelined Processes

The Communicating Sequential Processes (CSP) Model was originally pro-
posed by C. Hoare (1985) and is synchronized parallel processing model
based on interactions and fundamental algebraic laws. The CSP model can be
directly mapped on hardware implementations using a Multi Finite-State
Machine and Register-Transfer Level architecture (FSM-RTL).

In the CSP model there is a set of processes P={p,, p,, ..} executing state-
ments sequentially. The set of processes is executed in parallel. Processes can
be started and stopped any time at run-time (by other processes). Inter-pro-
cess communication (IPC) is performed by using queues. The original CSP
model was extended with concurrent access of global shared objects
(queues).

Original CSP w/o Concurrent Access

PROCESS 1 PROCESS 2

%ﬁﬁ

[roces [l roces |
Extended CSP with Concurrent Access Pipelined CSP

[rrocess. [rrocess: |
I '
Oy e R
v

Agent \

Cee™ @ State @

Token

\/
| PROCESS 3 | | PROCESS 4 | | PROCESS 2 |

Fig. 6.1 (Top) CSP Model (Bottom) CCSP Model, IPC Architecture and pipelined CSP
with token-based Agents

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

6.2 Agent Platform Architecture m

Competition is resolved by a mutual exclusion (Mutex) scheduler (atomic
guarded actions), discussed in Section 5. A set of multiple processes can be
connected by using queues, transferring execution unit tokens (related to
data of operational processes created dynamically at run-time), introducing a
pipelined token-based processing architecture, shown in Figure 6.7. Each
gueue has exactly one output port that is connected to a process, and an arbi-
trary number of input ports coming from other processes. The order of the
execution of the tokens is arbitrary and may not affect the result of the paral-
lel data processing.

6.2 Agent Platform Architecture

The AAPL model is a common source for the implementation of agent pro-
cessing on hardware, software, and simulation processing platforms. With the
database driven high-level synthesis approach introduced in Section 7 it is
possible to map the agent behaviour to these different platforms. The agent
processing architecture required on each network node must implement dif-
ferent agent classes and must be efficiently scalable to the microchip level to
enable material-integrated embedded system design, which represents a cen-
tral design issue, further focussing on parallel agent processing and optimized
resource sharing.

6.2.1 Token-based Agent Processing and Petri-Nets

Towards the implementation of the (hardware) agent processing platform
and for the ATG analysis the ATG is transformed in a State-Transition (ST)
Petri-Net (PN), shown in Figure 6.2.

Activities are mapped on states of the PN, conditional transition expres-
sions and transition scheduling are merged with the activity states!

Agents are represented by tokens passed by transitions between states of
the PN. The token-based approach originates in the CSP model, discussed in
Section 5.5, pipe-lining processes by channels. Only one token can be consumed
by an activity state at any time. There exist exactly one token for each agent,
either moving within the agent processing Petri network, or temporarily con-
sumed by an external agent manager. Signal handler are related to their own
and independent Petri-Net.

The only existing connection between the agent activity processing and the
signal handler Petri-nets are the body variables of an agent, shared by the
Petri-Nets (see Figure 6.2, lower right corner), introducing concurrency. This
requires atomic operations applied to the shared variables. But those shared
variables should usually only read in transitions, and modified by signal han-
dlers (except the initialization of these variables in activities), resolving any
competition and race conditions.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

Activity-Transition

Chapter 6. PCSP: The Reconfigurable Application-specific Agent Platform

Activity A1

Graph (ATG)

C1,2=e

C1'3=£ Vi

Activity A2

C3
V

Agent X
Agent Z

V

JAgent AC

Fig. 6.2 Transformation from the agent ATG behaviour to ST-PN model

An activity is treated here as a sequential execution unit performing compu-
tation and interaction with the environment. The execution of an activity is
started by a transition and an agent token, which is bound the currently pro-
cessed activity. There can be multiple different agents consumed by a
satisfied transition, acting as a queue.

6.2.2 The (R)PCSP Agent Platform

This processing platform - very well matching microchip-level designs -
implements the agent behaviour with reconfigurable pipelined communicating
processes (RPCSP), in short form abbreviated with PCSP, related to original the
Communicating Sequential Process model (CSP) proposed by Hoare (1985).
The activities and transitions of the AAPL programming model are merged in a
first intermediate representation by using state-transition Petri Nets (PN),
shown in Figure 6.3.

The control part is proportional to the number of supported different agent
classes. The data part depends on the maximal number of agents executed by
the platform and the storage requirement for each agent class.

This PN representation allows the following CSP derivation specifying the
process and communication network, and advanced analysis like deadlock
detection. Timed Petri-Nets can be used to calculate computational time
bounds to support real-time processing.

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

6.2 Agent Platform Architecture

Act.-Trans. Graph ATG ST Petri-Net PN Reconf. Pipelined CSP

Agent AC

__Activity1__
—Input Queue _
C1’2=e @
V
Activity 1
Activity A2 | I:::(I)‘tl:let;ls |
o PP Transitions Q

e v Vol b
o ==
Vi
Ee Y
0 Agent Y
: Activity 3
P Input Queue
=Fy ——
I Activity 3
& vonders1 | © o ismeraen B O
e J
Fig. 6.3 Pipelined Communicating Sequential Processes Architecture derived from a

Petri-Net specification and relationship to the activity-transition graph. Sig-
nals are handled asynchronously and independently of the activity
processing.

Keeping the PN representation in mind, the set of activities {A, A,, A3, ..} is
mapped on a set of sequential processes {Py, P,, P3, ..} executed concurrently.
Each subset of transitions {T, , Ty, T,--} activating one common activity pro-
cess P; is mapped on a synchronous and multiplexed n:1 queue Q; providing
inter-activity-process communication, and the computational part of the tran-
sitions are embedded in all contributing processes {P,, Py, ..}, shown in Figure
6.3. Changes (i.e., reconfiguration) of the transition network at run-time are
supported by transition tables, shown in Figure 6.4. Body variables of agents
are stored in an indexed table set. Activity processes are partitioned in sub-
states, at least one computational and one transitional state, discussed below.

Each sequential process is mapped (by synthesis) on a finite-state machine
and a data path using a register-transfer architecture (RTL) with mutual exclu-
sive guarded access of shared objects, all implemented in hardware.

This pipeline architecture offers advanced resource sharing and paral-
lelized agent processing with only one activity process chain implementation
required for each agent class. The hardware resource requirement (digital
logic) is divided into a control and a data part.

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

Chapter 6. PCSP: The Reconfigurable Application-specific Agent Platform

Transition Table
Set

Input Queue

©| |

Manager
Input Queue

Agent
Manager

V4

Network

Input Queue

Network

[aar]
AT
2l

Activity 3
Input Queue

for AC W EGET[1g

N

DA<

55

Sub States

Network

—

Signal \
Input Queu @

EVENT(KEY)

Activity 3
Process @

l'_AWAIT(KEY)

N (A% Tuple-Space

i

Body Variable
Set

Signal
Manager

Activity 2 I @

Process I

Signal Handler
Process

Interaction of the agent, signal, and network manager with activity processes

SEND(S,V)

° REE

Signalh. S
Input Queue

Fig. 6.4

Token-based Processing

As already introduced, agents are represented by tokens (natural numbers
associated with the agent identifier that is unique on node level), which are
transferred by the queues between activity processes depending on the spec-
ified transition conditions and the enabling of transition by the transition
tables, shown in Figure 6.5.

This multiprocess model can be directly mapped on Register-Transfer Level
(RTL) hardware architectures. Each process P; is mapped on a Finite-State
Machine FSM; controlling process execution and a Register-Transfer data path.
Local agent data is stored in a region of a memory module assigned to each
individual agent.

There is only one incoming transition queue for each process consuming
tokens, performing processing, and finally passing tokens to outgoing queues,
which can depend on conditional expressions and body variables.

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

6.2 Agent Platform Architecture

Activity-based APL Pipelined Multi-CSP
___AgentaC
activity Al =
x = f(a,b); O
queue Q1

r
I l

I I

, :

| y = x-1; :

| |

| |

| |

! | process Al:

| | var T;

: | always do

: : T+« Q1L

I I X[T]:= f(a[TL.b[T1):
! y[T] := x[T]-1;

! z[T] :=g(x[TT*Y[T]):
1 if C12 then Q2 «- T
: elsif C13 then Q3 «- T ;
I

I

I

|

|

|

|

|

queue Q2 W

Fig. 6.5 Mapping of pure computational agent activities to sequential processes

There are computational and I0/event-based activity statements. The latter
ones can block the agent processing until an event occurs (for example, the
availability of a data tuple in the database).

Agents in different activity states can be processed concurrently. Thus,
activity processes that are shared by several agents may not block. To prevent
blocking of /0 processes, not ready processes pass the waiting agent to the
agent manager.

Activity Sub-State Partitioning and 1/O event-based Processing

To handle 1/0-event and migration related blocking of statements, activity
processes executing these statements are partitioned in sub-states A, =
{0;1,0i 2, ...0iTRANS} @nd a sub-state-machine decomposing the process in
computational, I/0 statement, and transitional parts, which can be executed
sequentially by back passing the agent token to the input queue of the pro-
cess (sub-state loop iteration). The control state of an agent consists therefore
of the actual/next activity A/Ai,, and the activity sub-state a;(4;) to be exe-
cuted. Agents that wait for the occurrence of an event are passed to the agent
manager queue releasing the activity process. After the event occurred, the
agent token is passed back to the activity process continuing the processing,
shown in Figure 6.6.

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

Chapter 6. PCSP: The Reconfigurable Application-specific Agent Platform

Activity-based APL Pipelined Multi-CSP
Agent AC

process A4_1:
var T;
always do
T <- Q4;
PRE COMPUTATION

Q4.2 T queue Q4
2<-T;

queue Q4_2

I

I

I

|

l [

| |activity A4 = :

: PRE-computation | | process A4_2:
?61-» in(SENSOR,x?); ¥ | | var T,found;
POST-computation : always do

i T <-Q4.2;
| found := try_in(H,x[T]);
: if not found then
|
|
|
|
|
|

4

Activity A5

Q4.2 <-T;
else

POST COMPUTATION

Q5 <-T;

L

queue Q5

Fig. 6.6 Mapping of mixed I0/computational agent activities on sequential processes

Usually 1/0 events are related to a tuple-space database (TSDB) access (in-
operation is blocked until a matching out-operation is performed). For this
reason, the TSDB module is directly connected to the agent manager, which is
notified about the keys of new tuples stored in the database releasing waiting
consumer agents. The following annotated code snippet shows the sub-state
partitioning and sub-state transitions (—: immediate, L: blocked and passed
to the agent manager).

An example for sub-state partitioning of an agent ATG is shown in Example
6.17.

Ex. 6.1 Sub-state partitioning of an agent ATG behaviour description that decom-
poses the activities in computational and event parts that can block the agent
process.

activity init =
init;: dx := 0; dy := 0; h := 0; — 1init,
init,: if dir <> ORIGIN then
moveto(dir); L inits
init3: case dir of
| NORTH => backdir:=SOUTH;
| SOUTH => backdir:=NORTH;
| WEST => backdir:=EAST;
| EAST => backdir:=WEST;

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

6.2 Agent Platform Architecture

end; — 1init,
else
live:=MAXLIVE; backdir:=0RIGIN; — inity,
end;
init,: group := Random(integer[0..1023]);
out(H,id(SELF),0); — initg
inits: rd(SENSORVALUE,s@?); L initypay
initepay: Transition Computation

Agent and Network Managers

The agent manager is connected with all input queues of the activity pro-
cesses and with the network managers handling remote agent migration and
signal propagation. Agents are associated with control state structures. Agent
tokens are injected by the agent manager after agent creation, migration, or
resumption.

The Agent Manager (AM) provides a node level interface for agents, and it is
responsible for the creation, control (including signals, events, and transition
network configuration), and migration of agents with network connectivity,
implementing a main part of an operating system. The agent manager con-
trols the tuple-space database server and signal events required for 10/event
based activity processes.

The agent manager uses agent tables and caches to store information
about created, migrated, and passed through agents (required, for example,
for signal propagation), see Figure 6.7.

Agents are identified node-locally by a unique local agent handler (LAH),
which is a slot number in the local agent table (see Figure 6.7) keeping informa-
tion about all locally created agents. The LAH is equal to the local agent
identifier (LID) in the case of a locally created agent, but can differ in the case
of a remotely created agent now migrated to this node. All agents migrated to
the local node or passing this node are stored in a following agent cache. Both
the agent table and cache - part of the agent manager - store processing infor-
mation about agents like agent class, control state, and pending signals (S/G).
The agent cache holds additional information about the origin of the agent or
the routing direction of an agent recently passed this node. Agent live times
are used in conjunction with a garbage collector.

Agent migration requires a global agent identifier (G/D) encapsulated in a
network message holding information about the agent class AC, the original
LID, and the displacement vector (DX,DY) relative to the origin of the agent. The
GID is followed by the actual state of the agent consisting of local agent data
and the current control state.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

Chapter 6. PCSP: The Reconfigurable Application-specific Agent Platform

AGENT MIGRATION

F F Q| a|»| # O

NODE |\ |

SIGNAL CACHE Agent > |
A bl Manager p
Gk —e—
AGENT TABLE »

£ G F F O H
AGENT CACHE

|
|
I
D D A ’, »
I
|

Row

Fl@|e ¥ ¥|X|0
® PASSED I

® DYING
® GONE

Row

SIGNAL PROPAGATION
DY AC SRC DST SIG DATA

Fig. 6.7 Each node has an agent manager for agent control, migration, and signal
handling. Global agent- and signal identifiers are used to identify agents
uniquely without the necessity of global unique node identifiers (LAH: Local
Agent Handler, LID: Local Agent Identifier, AC: Agent Class, LIVE: agent live,
STATE: agent state, DX and DY: spatial displacement vector, SID: Signal Identi-
fier, SIG: pending signal ID)

Transitions and Reconfiguration

Each activity process has a final transition sub-state, which tests for enabled
transitions in the current context. If an enabled transition condition is true,
the agent token is passed to the respective destination queue.

Modification of the transition network modifies transition tables, storing
the state of each transition {enabled, disabled}. There is one table set for each
individual agent, which can be divided further in the super class and possible
subclasses.

Reconfiguration can aid to increase and optimise utilization of the activity process
network populated by different sub-classed agents using only a sub-set of the
activities.

Migration

Messages carrying the state of agents consisting of the body variables (only
the long-term part) and the control structure with the current activity, the sub-

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

6.2 Agent Platform Architecture m

state that is entered after migration, and agent identifiers (id, A). Furthermore,
messages are used to carry signals. The network managers (input & output)
perform message encoding, decoding, and delivery. Migration requires at
least one more activity sub-state. After migration, the next sub-state of the
last activity is executed.

Signal Processing

Signals are handled asynchronously by activating signal handlers, imple-
mented by a process and a signal handler queue. The signal manager is
responsible for the creation and propagation of signals, shown in the bottom
of Figure 6.4. Signal tokens are tuple values (dst-id, src-id, signal, argument). Sig-
nals can be propagated encapsulated in a message from a source node to a
destination node actually processing a specific agent by using the global sig-
nal identifier (S/D), shown on the right side of Figure 6.7. Signals are unreliable
because they depend on routing information stored in the agent cache. Due
to the limited cache size older entries can be removed. Missing routing infor-
mation or changes in the network topology (link failures or reconfiguration)
prevent signal delivery.

Replication

Replication of activity processes sharing the same input queue offers
advanced parallel processing of multiple agents for activities with high com-
putation times.

AAPL-to-Pipelined Multi-CSP

Queue Q, 4

¥
Process A1,1

Fig. 6.8 Each agent class is mapped on one PCSP

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

m Chapter 6. PCSP: The Reconfigurable Application-specific Agent Platform

Multiple Agent Behaviour Classes

Each Agent Class is mapped on one Pipelined-CSP, shown in Figure 6.8.
Each PCSP is shared by a set of agents belonging to the same class.

Reconfiguration of the agent behaviour ATG only affects and modifies a
transition table, with a set of possible transitions finally embedded in the
activity transition selector.

6.2.3 Replication and Factoring

Timed Petri-Net analysis can be used to optimise the execution of multiple
agents in the same activity state and belonging to one agent class AC. Pro-
cesses of computational activities with high computation time can be

1. Factored and split into smaller units and processes with intermediate
queues; and/or

2. Replicated to enable parallel agent processing;

to improve the overall pipeline throughput, shown in Figure 6.9.

6.2.4 Software Platform

The already introduced RPCSP architecture can be implemented in soft-
ware, too. In this case, the activity processes are implemented with light
weighted processes (threads) communicating through queues, providing
token based agent processing, too. The software platform includes the agent
and signal managers, tuple space databases, and networking. Software plat-
forms can be directly connected to hardware platforms and vice-versa. They
are compatible on interface (message) and agent behaviour level.

Implementing the RPCSP architecture in software has the advantage of low-
resource requirements and the exploitation of parallelism by multiprocessor
or multi-core architectures including advanced hyper-threading techniques.
The number of threads and resources are known and allocated in advance,
which can be mandatory for hard real-time processing systems.

process A1,1A: PART1 process Al,lB: PART1
v v

PART1;
PART?2;

process A1 v PART1
activity Al =
» g

)

process A1,2: PART2 process A1,2A: PART2 process Al,ZB: PART2

Fig. 6.9 Transformation of computational activity processes

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

6.3 Agent Platform and Hardware Synthesis m

6.2.5 Simulation Platform

In addition to real hardware and software implemented agent processing
platforms there is the capability of the simulation of the agent behaviour,
mobility, and interaction on a functional level. The SeSAm simulation frame-
work [KLUO9] offers a platform for the modelling, simulation, and visualization
of mobile multi-agent systems employed in a two-dimensional world. The
behaviours of agents are modelled with activity graphs (specifying the agent
reasoning machine) close to the AAPL model. Activity transitions depend on
the evaluation of conditional expressions using agent variables. Agent varia-
bles can have a private or global (shared) scope. Basically SeSAm agent
interaction is performed by modification and access of shared variables and
resources (static agents).

Simulation of complex MAS on behavioural level and the methodology
using the SeSAm simulator was already demonstrated in [BOS14B], mapping
AAPL agents of the MAS one-to-one on SeSAm agents. The RPCSP agent pro-
cessing platform simulation with the agent-based SeSAm simulation
framework is discussed in detail in Section 77.4. This simulation provides the
testing and profiling of the proposed processing platform architecture in a
distributed network world.

The simulator is also fully compatible to the software and hardware plat-
forms on behavioural and interface level and can be integrated in an existing
real-world network, offering simulation-in-the-loop capabilities.

6.3 Agent Platform and Hardware Synthesis

The database driven synthesis flow consists of an AAPL front end, the core
compiler, and several back-ends targeting different platforms. The AAPL pro-
gram is parsed and mapped on an abstract syntax tree (AST). The first
compiler stage analyses, checks, and optimizes the agent specification AST.
The second stage is split in three parts: an activity to process-queue pair map-
per with sub-state expansion, a transition network builder, manager
generators, and a message generator supporting agent and signal migration.
Different outputs can be produced: a hardware description enabling SoC syn-
thesis using the ConPro high-level synthesis framework (details in Section 7), a
software description (C) which can be embedded in application programs, and
the SeSAm simulation model (XML). The ConPro programming model reflects
an extended CSP with atomic guarded actions on shared resources. Each pro-
cess is implemented with an FSM and an RT data path. The simulation design
flow includes an intermediate representation using the SEM programming lan-
guage, providing a textual representation of the entire SeSAm simulation
model, which can be used independently, too.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

m Chapter 6. PCSP: The Reconfigurable Application-specific Agent Platform

All implementation models (HW/SW/SIM) provide equal functional behav-
iour, and only differ in their timing, resource requirements, and execution
environments. Some more implementation and synthesis details follow.

RTL Architecture

The set of activities {A;} is mapped on a set of sequential processes {P;} exe-
cuted concurrently. The set of transitions {7} is mapped on a set of
synchronous queues {Q;} and transition selectors {S;} embedded at end of the
activity processes, providing the inter-activity-process communication. The
PCSP multiprocess model is directly mappable on RTL hardware. Each process
P; is synthesized to a finite state machine FSM; controlling the process execu-
tion and a register-transfer data path. Local agent data is stored in a region of
a memory module assigned to each individual agent. There is only one incom-
ing transition queue for each process consuming tokens, performing
processing, and finally passing tokens to outgoing queues, which can depend
on conditional expressions.

Agent Managers

The agent, signal, and network managers provide a node level interface for
agents, and are responsible for the creation, control (including signals, events,
and transition network configuration), and migration of agents with network
connectivity, implementing a main part of an operating system. The agent
manager controls the tuple-space database server and signals events
required for I0/event-based activity processes. The agent manager uses agent
tables and caches to store information about created, migrated, and passed
through agents (required, for example, for signal propagation), as shown in
Figure 6.7.

Migration

Migration of agents requires the transfer of the agent data and the control
state of the agent together with a unique global agent identifier (extending
the local ID with the agent class and the relative displacement of its root node)
encapsulated in messages. The control state consists of the next activity to be
processed after migration and the current setting of the transition table. This
approach minimizes network load and energy consumption significantly.
Migration of simple agents results in a message size between 100-1000 bits.
The agent start-up time after the data transfer is low (about some hundred
clock cycles).

Transition Network

A switched transition network offers support for agent activity graph recon-
figuration at run-time. Though the possible reconfiguration and the

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

6.3 Agent Platform and Hardware Synthesis m

conditional expressions must be known at compile time (static resource con-
straints), a reconfiguration can release the use of some activity processes and
enhances the utilization for parallel processing of other agents. All possible
(enabled and disabled) transitions outgoing from an activity are processed in
the transition sub-state of each activity process. The transition network is
implemented with selector tables in the case of the HW and SW implementa-
tions, and with transition lists in case of the SIM implementation.

Tuple-Space Database

Each n-dimensional tuple-space TS" (storing n-ary tuples) is implemented
with fixed size tables in case of the hardware implementation, and with
dynamic lists in the case of the software and simulation model implementa-
tions. The access of each tuple-space is handled independently. Concurrent
access of agents is mutually exclusive. The HW implementation implicates fur-
ther type constraints, which must be known at design time (e.g. limitation to
integer values).

Signals

Signals must be processed asynchronously. Therefore, agent signal han-
dlers are implemented with a separate activity process pipeline, one for each
signal handler. For each pending agent signal, the signal manager injects a sig-
nal token in the respective handler process pipeline independent of the
processing state of the agent. Remote signals are processed by the signal and
network managers, which encapsulate signals in messages sent to the appro-
priate target node and agent.

Resources
A rough estimation of the resource requirements R for the hardware imple-
mentation of the agent processing architecture supporting a set of N differ-
ent agent classes {AC;} is shown in Equation 6.7 [BOS14A], with each class
having M; activities, T, transitions, D; data cells with a resource weight wqta,
and wy,;j for each activity, and a maximal number of managed agents for
each class Nagents, -

The tuple space database requires w; ;*S; resources for each supported n-
dimensional space. The C, values are control parts independent of the
above values.

For example, assuming simplified four agent classes with N =16 agents for
each class, each class requires D=512 bit memory, M=10 (w,=500), T=16,
three tuple spaces (1,2,3) with $=32 (and wy=32, w,=64, w3=128) entries
each, and Wyata™4, Wqueue=150, Wscheq=60, Wcong=50, W= 500,
Cscheq=5000, Ccomm=10000, C;s=1000 (based on experimental experiences,

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

Chapter 6. PCSP: The Reconfigurable Application-specific Agent Platform

all w and C values in eq. gates units), which results in 189400 eq. gates for
the HW implementation.

R= (Wdata Z NiagentSDi)+

ieAC

C sched T Weched (Z M :) + Wy maX(NiagentS) +
ieAC

Ccomm t (uneue + Wcond)(Z T|) + (2 Z V\qa(;t) +
ieAC ieAC jeAT,
Co + (X W'S)

ieTS

(6.1)

Power/Efficiency

Agents are often heavy-weighted processing entities interpreted by soft-
ware-based virtual machines. In contrast, in the proposed RTL architecture
the agent behaviour is mapped on finite state machines and a data path
with data word length scaling, offering minimized power- and resource re-
quirements, both in the control and data path. Most activity statements are
executed by the platform in one or two clock cycles! All commonly admin-
istrative parts like the agent manager, communication protocols, and the
tuple-space database commonly part of an operating system are imple-
mented in hardware, offering advanced computational power enabling
low-frequency and low-power designs, well suited for energy-autonomous
systems. Transition network changes can be performed within a few clock
cycles.

Use-Case Example

A use-case implementing the Explorer SOMAS, which is presented in Sec-
tion 9.2 and based on the AAPL model from Algorithm 9.7., with the RPCSP
platform should demonstrate the suitability and scalability of the RPCSP
platform for SoC microchip level designs. The synthesis results of the hard-
ware implementation for one sensor node are shown in Table 6.7, which
are in accordance with the previous made resource estimation. The AAPL
specification was compiled to the ConPro programming model and synthe-
sized to an RTL implementation creating VHDL models. Two different target
technologies were synthesized by using gate-level synthesis: 1. FPGA, Xilinx
XC3S1000 device target using Xilinx ISE 9.2 software, 2. ASIC standard cell
LIS10K library using the Synopsys Design Compiler software. The agent
processing architecture consisted of the activity process chain for the ex-
plorer and node agent, the agent manager, the tuple-space database (sup-
porting two- and three-dimensional tuples with integer type values), and
the communication unit.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

6.4 Platform Simulation

AAPL & CP Synthesis FPGA/XC3S1000 Synthesis ASIC LSI10K Synthesis

AAPL Source: 200 LUTs (4-input): 10826 (70 Equation NAND Gates:

lines %) 309502
CP Source: 1615 FLIP-FLOPs: 2415 (15 %) Comb. Gates: 95354
lines

VHDL Source: 37171 BLOCK RAMs: 19 (80 %) Non-comb. Gates: 214148
lines

CP Processes: 28 Max. Clock: 85 MHz Chipzarea (180 nm Tech.): 7
mm

CP Queues: 14

Tab. 6.1 High-level and gate-level synthesis results for one sensor node [BOS14A]

6.4 Platform Simulation

This section will summarize that agent-based simulation is suitable to for
the simulation of the RPCSP agent processing platform itself and large scale
distributed networks, e.g., sensor networks. Simulation of parallel and distrib-
uted systems is a challenge. Performance profiling and the detection of race
conditions or dead locks are essential in the design of such systems, where
the agent processing platform is a central part. Details of the simulation tech-
niques can be found in Section 77.4.

Behavioural simulation (see Section 77.2 for details) maps agents of the
MAS directly and isomorph on agent objects of the simulation model. Plat-
form simulation uses agents to implement architectural blocks like the agent
manager or activity processes. Hence, agents of the MAS are virtually repre-
sented by the data space of the simulator, and not by the agents themselves.

The SeSAm simulation framework offers the platform for the modelling,
simulation, and visualization of mobile multi-agent systems employed in a
two-dimensional world. The behaviours of agents are modelled with activity
graphs (specifying the agent reasoning machine) close to the AAPL model.
Activity transitions depend on the evaluation of conditional expressions using
agent variables. Agent variables can have a private or global (shared) scope.
Basically SeSAm agent interaction is performed by modification and access of
shared variables and resources (static agents). In addition to the agent rea-
soning specification there are global visible feature packages that define
variables and function operating on these variables. Features can be added to
each agent class.

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

Chapter 6. PCSP: The Reconfigurable Application-specific Agent Platform

, Network Connection IComputationaI Node
4

/ SensorNode /[

’ ! ’

Network-Input Manager
i Network-Output Manager

O O

BN [F----Agent Manager

Connection gf - !
1

Link Ressource .~ | .
. ! Signal Manager

Node Agént Virtual Agent Ressource

Fig. 6.10 Simulation world of the sensor network (left) consisting of 10x10 nodes and
the network populated with agents (right)

Agents can change their position in the two-dimensional world map ena-
bling mobility, and new agents can be created at run-time by other agents.
The SeSAm framework was chosen due to the activity-based agent behaviour
and the data model, which can be immediately synthesized from the common
AAPL source and can be imported by the simulator from a text based file
stored in XML format that can be compiled from the textual language SEM (see
Section 77.5 for details). This model exchange feature allows the tight coupling
of the simulator to the synthesis framework.

The simulation world is shown in Figure 6.70. The network is a two-dimen-
sional mesh grid. Each node can be connected with four neighbours.
Communication connections can be enabled and disabled.

Each node provides multiple stationary agents: a node agent, an agent
manager agent, providing the administrative service of the RPCSP platform, a
signal manager agent, and network manager agents.

In principle, AAPL activity graphs can be directly mapped on the SeSAm agent
reasoning model. But there are limitations that inhibit the direct mapping.
First of all, AAPL activities (I0/event-based) can block (suspend) the agent pro-
cessing until an event occurs.

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

6.4 Platform Simulation

SeSAm Simulation Model Sensor Node SeSAm Simulation Model Agent

Variables Agent Reasoning

Agent Reasoning Variables

Tuple Space TS1

X

Activity
A

Tuple Space TS2

Y

Tuple Space TS3

Activity
Al
signals | — | =~ v 7/

prre——ee
Agents Transition Scheduler Signal Schedul
Activity - PICheck Pending Signals |Get one Signal from Queue
A2 Handle Timers Select Signal Handler
Calculate Next Transition [~

Select Activi
4 4 J7
Transition = \
Feature Packages Network Activity P
L S1
Tuple Space Host J
Interface Activity v

A3.2

Fig. 6.11 Simulation Model Architecture used in the SeSAm MAS Simulator for the simu-
lation of AAPL agents with the RPCSP platform

Blocking agent behaviour is not provided directly by SeSAm. Second, the
transition network can change during run-time. Finally, the handling of con-
current asynchronous signals used in AAPL for inter-agent communication
cannot be established with the generic activity processing in SeSAm (the pro-
vided exception handling is only used for exceptional termination of agents).

For this reason, the agent activity transitions including the dynamic transi-
tion network capability are managed by a special transition scheduler, shown
in Figure 6.77. This transition scheduler handles signals and timers, too, which
are processed prioritized and passed to the signal scheduler. Each agent activ-
ity is activated by the transition scheduler. After a specific activity was
processed, the transition scheduler is activated and entered again. An AAPL
activity can be split in computational and 10/event-based sub-activities in the
presence of blocking statements (e.g., in and rd tuple space interaction).

There is a special node agent implementing the tuple database with lists
(partitioned to different spaces for each dimension), and managing agents
and signals actually bound to this particular node. Concurrent manipulation
of lists is non-atomic operations in SeSAm, and hence requires mutual
exclusion.

The AAPL mobility, interaction, configuration, and replication statements are
implemented by feature packages.

epubli, 1SBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

m Chapter 6. PCSP: The Reconfigurable Application-specific Agent Platform

6.5 Heterogeneous Networks

It was already pointed out that the hardware, software, and simulation plat-
forms are equal on operational and interface level. Mobility of agents is
provided by transferring the state of the agent, consisting of the data state
(content values of all body variables) and the control state (next activity and
the transition table). The agent behaviour and state machine is immobile and
implemented in each node of the network. This feature enables the composi-
tion of heterogeneous networks using nodes from all of these platform
classes based on inter-node communication with different connections
technologies:

1. Sensor Networks and Hardware Platforms: Serial links with byte-
stream protocols (aka. RS232)

2. Software Platforms: TCP/UDP/IP protocols
3. Simulation Platforms: TCP/UDP/IP protocols and socket interfaces

There is one common APPL behaviour and programming model that is syn-
thesized to different platform classes, as shown in Figure 6.72.

o o o

High-level Synthesis

Hardware
RTL Model

ra| .
] | el =
Software
MT Model

Code Simulation Sensor Network
Model

Fig. 6.12 From one common AAPL programming level to heterogeneous distributed net-
works [RTL: Register-Transfer Level, MT: Multi-Threading, CSP: Communicating
Sequential Processes]

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

6.6 Further Reading m

6.6 Further Reading

1. M. Raynal, Concurrent Programming: Algorithms, Principles, and Founda-
tions. Springer, 2013, ISBN 3642320260
2. M. Fingeroff, High-Level Synthesis Blue Book, Xlibris Corp. 2010

3. P. Araté (Autor), T. Visegrady, |. Jankovits, High Level Synthesis of Pipe-
lined Datapaths, Wiley, 2001, ISBN 9780471495826

4. G. Ku, David C., DeMicheli, High Level Synthesis of ASICs under Timing and
Synchronization Constraints. Kluwer Academic publishers, 1992, ISBN
9781475721171

epubli, ISBN 9783746752228 (2018)

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

m Chapter 6. PCSP: The Reconfigurable Application-specific Agent Platform

epubli, ISBN 9783746752228 (2018)

	PCSP: The Reconfigurable Application-specific Agent Platform
	6.1 Pipelined Processes
	6.2 Agent Platform Architecture
	6.2.1 Token-based Agent Processing and Petri-Nets
	6.2.2 The (R)PCSP Agent Platform
	6.2.3 Replication and Factoring
	6.2.4 Software Platform
	6.2.5 Simulation Platform

	6.3 Agent Platform and Hardware Synthesis
	6.4 Platform Simulation
	6.5 Heterogeneous Networks
	6.6 Further Reading

