
S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Chapter 7

PAVM: The Programmable Agent Platform
Agent Processing Platform based on a parallel and token-based Agent
FORTH Virtual Machine Architecture
Stack Machines versa Register Machines 214
Architecture: The PAVM Agent Processing Platform 216
Agent FORTH: The Intermediate and the Machine Language 221
Synthesis and Transformation Rules 237
The Boot Sections and Agent Processing 242
Agent Platform Simulation 242
Case Study: A Self-organizing System 245
The JavaScript WEB Platform JAVM 254
Further Reading 262
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform214

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
This Chapter introduces a programmable (generic) agent processing plat-
form that is capable of processing AAPL based agents. The platform bases on a
stack processor architecture with token-based agent processing. Various
implementations are presented and discussed supporting the execution and
migration of agents in heterogeneous environments including the Internet.

7.1 Stack Machines versa Register Machines

There are basically two different data flow processing architectures:

1. Register-based machines performing the data processing by accessing
single registers and organized memory with random access memory
behaviour;

2. Stack-based machines performing data processing by operating on the
top elements of commonly multiple stacks. The top elements of the
stacks are the operands of instructions, and they are directly con-
nected to the computational and control unit of the processor.

Register-based machine commonly using the stack (LIFO) memory model,
too, mainly for simplified temporary memory management, but the stack is
embedded in the main data and program memory.

The stack storage model is ordered with respect to the Last-In First-Out
data item ordering. The access of the stack memory is performed by using a
push and a pop operation only. The push operation stores (writes) a new data
item on the top of the stack, and the pop operation removes (reads) the top
data stack item, shown in Figure 7.1.

This data order requires an ordering of operations of nested expressions
that can only be relaxed by overlaying the LIFO access model with a Random
Access Model (RAM).

Beneath the memory model differ the instruction set of the machines in the
number of operands. Register-based machines usually carry one up to four
operands (instruction arguments) resulting in a more complex instruction for-
mat, whereby stack-based machines uses mostly zero-operand instructions.
These zero-operand instructions get their operands directly from the stacks,
and computational results are immediately stored on the stack (with some
exceptions like branches). This simple instruction format leads to a signifi-
cantly simplified and less complex machine architecture.

On one hand there are several stack-based virtual machines. Examples are
the OCaML byte code machine (with the predecessor ZINC [LER90]), the well-
known JAVA VM, or the FORTH interpreter, discussed below.
epubli, ISBN 9783746752228 (2018)

7.1 Stack Machines versa Register Machines 215

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Fig. 7.1 Stack storage model and simple access with the push(val) and pop() opera-
tions, extended and overlaid with a RAM access model using getn(index) and
setn(index,val) operations.

On the other hand, there are numerous register-based virtual machines, for
example, the DALVIK VM invented by Google for their Android OS (evaluated
and compared with the JAVA VM in [OH12]). The pro and contra of stack versa
register machines are discussed extensively in [CAS08]. Stack-based machines
are very popular in the context of functional programming languages, though
JAVA is an imperative (with respect to the execution model) and memory-
based language. Functional programming bases on expression evaluation,
which can be efficiently mapped to the stack model, which imply scope
bounds of data references constrained by the top elements of the stack,
which can be inferred from functional expressions. In contrast, imperative
programming (including the object-orientated programming model) with side
effects require random access of storage, which can be efficiently supported
by the stack model by overlaying the LIFO with a RAM access, extending the
operational set with a get and set n-th operation. All modern stack-based VMs
extend the stack model with these RAM operations, like the OCaML or JAVA
VM.

The importance of the deployment of virtual machines in heterogeneous
and multi-purpose sensor networks was already pointed out in [MUE07],
using a software implemented tiny JAVA VM capable of interpreting a subset of
JAVA byte code. Stack-based microprocessor raises in the seventies and eight-
ies of the last century, but mainly disappeared as a general purpose
processor.

42

42

21

42

21

77

13

Empty Stack push(42) push(21) push2(13,77)

42

21

77

13

pop()

42

33

77

42

setn(2,33); getn(3)

33
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform216

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
7.2 Architecture: The PAVM Agent Processing Platform

The abbreviation PAVM can be interpreted as the Programmable Agent
Forth Virtual Machine, but more precisely the P character is the abbreviation
for a specific architecture feature, Pipe-lining, related to token-based agent
processing, which is now discussed in more detail.

7.2.1 PAVM Overview
The requirements for the agent processing platform can be summarized to:

1. The suitability for microchip level (SoC) implementations;
2. The support of a stand-alone platform without any operating system;
3. The efficient parallel processing of a large number of different agents;
4. The scalability regarding the number of agents processed concur-

rently;
5. The capability for the creation, modification, and migration of agents at

run-time.

 Migration of agents requires the transfer of the data and control state of
the agent between different virtual machines (at different node locations). To
simplify this operation, the agent behaviour based on the activity-transition
graph model is implemented with program code, which embeds the (private)
agent data as well as the activities, the transition network, and the current
control state encapsulated in code frames. It can be handled as a self-con-
tained execution unit. A code frame can be modified by the agent itself or by
the agent manager, responsible for the agent process control and the migra-
tion of the program code.

The execution of the program by a stack virtual machine (SVM) is handled
by a task. The program instruction set consists of zero-operand instructions,
mainly operating on the stacks of the VM. The VM platform and the machine
instruction set implements traditional operating system services, too, offering
a full operational and autonomous platform, with a hybrid RISC and CISC
architecture approach. No boot code is required at start-up time. The hard-
ware implementation of the platform is capable of operating after a few clock
cycles, which can be vital in autonomous sensor nodes with local energy sup-
ply from energy harvesting. An ASIC technology platform requires about 500-
1000 k gates (16 bit word size), and can be realized with a single SoC design.

A task of an agent program is assigned to a token holding the task identifier
of the agent program to be executed. The token is stored in a queue and con-
sumed by the virtual machine from the queue. After a (top-level) word (one
activity in terms of the agent processing) was executed and leaves an empty
data and return stack, the token is either passed back to the processing queue
or to another queue.
epubli, ISBN 9783746752228 (2018)

7.2 Architecture: The PAVM Agent Processing Platform 217

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Fig. 7.2 (Left) Code Frame Layout (Right) The Agent Forth Virtual Machine Architecture
with a token-based agent processing.

The token is passed, e.g., to the agent manager queue, enabling self-sched-
uling of different agent processes, shown in Figure 7.2.

7.2.2 Platform Architecture
The virtual machine executing tasks is bases on a traditional FORTH proces-

sor architecture and an extended zero-operand word instruction set
(FORTH), discussed in Section 7.3 Most instructions directly operate on the
data (DS) and the control (RS, return) stack. A code segment (CS) stores code
frame containing program code with embedded data, shown in Figure 7.3.
There is no separate data segment. Temporary data is stored only on the
stacks. The program is mainly organized by a composition of words (func-
tions). A word is executed by transferring the program control to the entry
point in the CS; arguments and computation results are passed only by the
stack(s). There are multiple virtual machines with each attached to (private)
stack and code segments. There is one global code segment (CCS) storing
global available functions and code templates that can be accessed by all pro-
grams. A dictionary is used to resolve CCS code addresses of global functions
and templates. This multi-segment architecture ensures high-speed program
execution and the local CS can be implemented with (asynchronous) dual-port
RAM (the other side is accessed by the agent manager, discussed below), the
stacks with simple single-port RAM. The global CCS requires a Mutex sched-
uler to resolve competition by different VMs.

The register set of each VM consists of: ={CF, CFS, IP, IR, TP, LP, A, .. , F}. The
code segment is partitioned in physical code frames. The current code frame
that is processed is stored in the CF register.
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform218

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
The instruction pointer IP is the offset relative to the start of the current
code frame. The instruction word register IR holds the current instruction. The
LP register stores an absolute code address pointing to the actual relocation
LUT in the code frame, and the TP register stores an absolute address pointing
to the currently used transition table (discussed later). The registers A to F are
general purpose registers.

The program code frame (shown on the right of Figure 7.3) of an agent con-
sists basically of four parts:

1. A look-up table and embedded agent body variable definitions;
2. Word definitions defining agent activities and signal handlers (proce-

dures without arguments and return values) and generic functions;
3. Bootstrap instructions that are responsible to set up the agent in a

new environment (i.e., after migration or on first run);
4. The transition scheduler table calling activity words (defined above)

and branching to succeeding activity transition rows depending on the
evaluation of conditional computations with private data (variables).

The transition table section can be modified by the agent by using special
instructions, explained in Section 7.3.4 Furthermore, new agents can be cre-
ated by composing activities and transition tables from existing agent
programs, creating subclasses of agent super classes with a reduced but opti-
mized functionality. The program frame (referenced by the frame pointer CF)
is stored in the local code segment of the VM executing the program task
(using the instruction pointer IP). The code frame loading and modifications of
the code are performed by the virtual machine and the agent task manager
only.

 A migration of the program code between different VMs requires a copy
operation applied to the code frame. Code morphing can be applied to the
currently executed code frame or to any other code frame of the VM, refer-
enced by the shadow code frame register CFS.

Each time a program task is executed the stacks are initially empty. After
returning from the current activity execution the stacks are left empty, too.
This approach enables the sharing of only one data and return stack by all
program tasks executed on the VM they are bound to! This design significantly
reduces the required hardware resources. In the case of a program task inter-
ruption (process blocking) occurring within an activity word the stack content
is morphed to code instructions, which are stored in the boot section of the
code frame, discussed later. After the process resumption, the stacks can be
restored.
epubli, ISBN 9783746752228 (2018)

7.2 Architecture: The PAVM Agent Processing Platform 219

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Fig. 7.3 The Agent processing architecture based on a pipelined stack machine proces-
sor approach. Tasks are execution units of agent code, which are assigned to
a token passed to the VM by using processing queues. The control state is
stored in and restored from the process table. After the execution, the task
token is either passed back to the input processing queue or to another queue
of either the agent manager or a different VM. Right: The content and format
of a code frame.

STATE VM# CFROOT CFCUR IP ID PAR AWAIT AWARG POS

Pro-
cess
state

Virtual
Machi
ne
Num-
ber

Root
code
frame #
of pro-
cess

Current
code
frame #
of pro-
cess

Last/
Next IP
offset

Pro-
cess
identi-
fier
num-
ber

Id. of
par-
ent
pro-
cess

The rea-
son for
waiting

Await
argu-
ment
(Key)

Delta
posi-
tion of
migrat
ed
Pro-
cess

Tab. 7.1 Process table (PT) row format and description
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform220

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Each VM processor is connected with the agent process manager (PM). The
VM and the agent manager share the same VM code segment and the process
table (PT). The process table contains only basic information about processes
required for the process execution. The column entries of a process table row
are explained in Table 7.1.

7.2.3 Token-based Agent Processing
Commonly the number of agent tasks NA executed on a node is much

larger than the number of available virtual machines NV. Thus, efficient and
well-balanced multi-task scheduling is required to get proper response times
of individual agents. To provide fine-grained granularity of task scheduling, a
token based pipelined task processing architecture was chosen. A task of an
agent program is assigned to a token holding the task identifier of the agent
program to be executed. The token is stored in a queue and consumed by the
virtual machine from the queue. After a (top-level) word was executed, leaving
an empty data and return stack, the token is either passed back to the pro-
cessing queue or to another queue (e.g., of the agent manager). Therefore,
the return from an agent activity word execution (leaving empty stacks) is an
appropriate task scheduling point for a different task waiting in the VM pro-
cessing token queue. This task scheduling policy allows fair and low-latency
multi-agent processing with fine-grained scheduling.

Tokens are coloured by extending tokens with a type tag. There are generic
processing tokens, signal processing tokens, and data tokens, for example,
appearing in compounds with signal processing tokens, discussed later.

Each VM interacts with the process and agent task manager. The process
manager passes process tokens of ready processes to the token queue of the
appropriate VM. Processes which are suspended (i.e., waiting for an event),
are passed back to the process manager by transferring the process token
from the current VM to the manager token queue.

7.2.4 Instruction Format and Coding
The width of a code word is commonly equal to the data width of the

machine. There are four different instruction code classes:

1. Values
2. Short commands
3. Long command Class A
4. Long command Class B.

A value word is coded by setting the most significant bit of the code word
(MSB) and filling the remaining bits (N-1, N machine word size) with the value
argument. To enable the full range of values (full data size N bit), a sign exten-
epubli, ISBN 9783746752228 (2018)

7.3 Agent FORTH: The Intermediate and the Machine Language 221

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
sion word can follow a value word setting the n-th bit. A short command has a
fixed length of 8 bits, independent of the machine word and data width. Short
commands can be packed in one full-size word, for example, two commands
in a 16 bit code word. This feature increases the code processing speed and
decreases the length of a code frame significantly. The long commands pro-
vide N-4 (class A) and N-7 (class B) bits for argument values.

7.2.5 Process Scheduling and VM Assignment
The token-based approach enables fine-grained automatic scheduling of

multiple agent processes already executed sequentially on one VM with a
FIFO scheduling policy. A new process (not forked or created by a parent)
must be assigned to a selected VM for execution. There are different VM
selection algorithms available: Round-robin, load-normalized, memory-nor-
malized, random. The VM selection policy has a large impact on the
probability of a failure of a process creation and a process forking by a run-
ning process, requiring child agents to be created on the same VM!

7.3 Agent FORTH: The Intermediate and the Machine
Language

The FORTH programming language corresponds to an intermediate pro-
gramming language level, with constructs from high-level languages like loops
or branches and low-level constructs used in machine languages like stack
manipulation. The FORTH (AFL) instruction set IAFL consists of a generic FORTH
subset IDF with common data processing words operating on the data and
return stack used for computation, a control flow instruction set ICF, i.e., loops
and branches, a special instruction set IAP for agent processing and creation,
mobility, and agent behaviour modification at run-time based on code mor-
phing, and finally an agent interaction sub-set IAI based on the tuple space
database access and signals. The AFL language is still a high-level program-
ming language close to AAPL, which can be used directly to program multi-
agent systems. The PAVM agent processing platform will only support a
machine language sub-set (AML) with a small set of special low-level instruc-
tions IAM for process control, so that IAML  (IAFL*  IAM), and with some
notational differences. Several complex and high-level statements of IAFL are
implemented with code sequences of simpler instructions from the IAML set,
with some of them are introduced in Section 7.4 The (current) AML instruction
set consists of 92 instructions, most of them are common FORTH data pro-
cessing instructions operating immediately on stack values, and 31 complex
special instructions required for agent processing, communication, and
migration. The AML instruction set is unfixed and can be extended, which
leads to an increased resource requirement and control complexity of the VM.
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform222

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
7.3.1 Program Code Frame
An FORTH code frame (see Figure 7.4) starts with a fixed size boot section

immediately followed by a program lookup relocation table (LUT). The instruc-
tions in the boot section are used to

 Set up the LUT offset register LP (always the first instruction);
 Enable program parameter loading (passed by the data stack);
 Restore stack content after migration or program suspending;
 Branch the program flow to the transition table section.

The program counter IP points to the next instruction to be executed. The
LUT is a reserved area in the program frame initially empty, and is used by the
VM to relocate variable, word, and transition table row references. A LUT row
consists of the entries: {Type, Code Offset, Code Frame, Secondary Offset}. Possi-
ble row types are: Type = {FREE, PAR, VAR, ACT, FUN, FUNG, SIGH(S), TRANS}. The
signal handler type SIGH is indeed a negative value, specifying the signal num-
ber S that is related to the signal handler.

Within the program code, all address references from the frame objects,
i.e., variables, user defined words, and transitions, are relocated by the LUT at
run-time. This indirect addressing approach eases the reconfiguration of the
program code at run-time and the code migration significantly. If a program
frame is executed the first time or after a migration, the code frame is exe-
cuted on top-level, where the LUT is updated and filled with entries by
processing all object definitions of the frame from the beginning to the end.
Code inside user defined words are bypassed in this initialization phase. Vari-
able, parameter, and word definitions (var V, par P, :W) update at
initialization-time entries in the LUT (code offset, code frame), and transition
branches ?A updates entries at run-time (secondary offset specifying the rela-
tive offset of an activity call in the transition table section). On programming
AFL level, generic function, activity, and signal handler word definitions are dis-
tinguished by different syntax (:F, :*A, :$S), whereas not on machine
instruction AML level (DEF).

After the LUT section, parameter and variable object definitions (private
agent data) follow and some top-level instructions used to initialize agent
parameters with values passed by the data stack.

The main part of the code frame consists of activity, function, and signal
handler word definitions (:F .. ;, :*A .. ;, :$S .. ;, with names F/A/S,
respectively).

Finally, the transition table section is defined (:%T .. ;). A transition table
consists of transition rows, which group all transitions outgoing from one spe-
cific activity, discussed later. Because of more than one transition table can be
defined, but only one may be used by a process at one time, a top-level transi-
epubli, ISBN 9783746752228 (2018)

7.3 Agent FORTH: The Intermediate and the Machine Language 223

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
tion table call is required at the end of the frame. A transition table contains a
small boot section (four words) at the beginning, too. This boot section is used
for the control of process resumption after a suspending, whereas the code
frame boot section is used primarily to store data.

Beside pure procedural activity words (without any data passing leaving the
data stack unchanged) there are functional words passing arguments and
results by using the data stack. Words not accessing private agent data can be
exported (::F) to a global dictionary (transferring the code to a CCS frame)
and reused by other agents, which can import these functions (import W) ref-
erenced by their name, which creates a LUT entry pointing to the CCS code
frame and offset relative to this frame. Global functions may not access any
private agent data due to the LUT based memory relocation.

The code segment of a VM is divided in fixed size partitions to avoid mem-
ory management with dynamic linked lists for free and used memory regions
and memory fragmentation issues. A code frame always occupies a region of
this fixed size code partition, the physical code frame, in the code segment of
the respective virtual machine. Therefore, a single code frame is commonly
limited to minimal 512 and maximal 2048 words of one code partition,
depending on the VM implementation and CS overall size. In the case an agent
program does not fit in one code partition, physical code frames can be linked
forming one logical code frame, shown on the right side of Figure 7.4.

Fig. 7.4 Logical code frame structure (left, AFL source code) and (optionally split) phys-
ical code frame (middle, AML machine code) with mapping to code partitions
in the code segment (right).
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform224

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
A physical code frame is specified by its address offset in the code segment,
or by a partition index number (absolute index), or by a relative physical code
frame number, relative to the first root frame of a process. The root frame
always has the relative number 1. This relative physical code frame number-
ing is required to support code frame migration between different VMs,
where absolute code frame addresses and index numbers changes, discussed
later.

The last two words of the boot section are reserved and are used to control
the code frame initialization and the current transition set table. Initially they
contain the {BRANCH(2),CALL(Ti)} word sequence. At the end of the code
frame there is a long branch to the last boot section word finally executing
CALL(Ti). If the initialization of the code frame should be omitted, the
BRANCH(2) word is replaced with a NOP operation by using code morphing, dis-
cussed in the following sections.

The following subsections introduce the special AFL/AML instruction set
required for code morphing, agent interaction, agent creation, and mobility.
Most instructions get their arguments from the stacks and return results to
the stacks. To illustrate the modification of stacks by instructions, a common
stack notation is used: (a1 a2 a3 ‐‐ r1 r2 r3), showing the relevant top
content of the stack before (left part) and after the instruction execution (right
part), delimited by ‐‐. The top element of the stack is the right element (a3/r3
in this example). The return stack is prefixed with a R character.

7.3.2 Agent Processing
Agent processing involves the execution of activities and the computation

and processing of transitions between activities based on private agent data
(body variables). The transition computation is stored in the transition table
words (:%TRANS .. ;). A transition table consists of transition rows, grouping
all (conditional and unconditional) transitions for one outgoing activity. Each
row starts with an activity word call |Ai. After the return from the activity and
a process schedule occurred, a new activity transition is computed by evaluat-
ing Boolean expressions. The result of the computation is processed by a
transition branch operation ?Aj, which branches to a different transition row
(starting with |Aj) if the condition is true, otherwise, the next transition is eval-
uated. If currently no condition is satisfied and the end of a transition row is
reached, the process is suspended, and the process token is passed back to
the process manager. In this case, the process will be only resumed by the
process manager if a signal was delivered to and processed by the process
(e.g., an event occurred).
epubli, ISBN 9783746752228 (2018)

7.3 Agent FORTH: The Intermediate and the Machine Language 225

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
AFL AML Stack Description

|Ai TCALL(#) (‐‐)

R(‐‐ ip cf#)

Calls next activity word Ai. The word
address offset and the code frame
are taken from the LUT. The current
code location (a call frame) is stored
on the return stack. Only relative
frame numbers may be used in call
frames to enable process migration.

?Ai TBRANCH(#) (flag ‐‐) Branches to next transition row for
start activity Ai if the flag is true. The
relative branch displacement for the
appropriate TCALL(#) target is first
searched by using the LUT entry for
the respective activity (Sec. off. col.).
If this fails, the entire transition sec-
tion is searched (and the result is
cached in the LUT).

{*n .. }

{n .. }

BBRANCH() (−−) Dynamic block environment: a condi-
tional branch that can be enabled
(>0, block disabled) or disabled
(<0, block enabled) using the BLMOD
operation. If the branch is enabled,
the block spawned by  is skipped.

. END (−−) End marker, which marks the end of
a transition table row. The process is
suspended if reached in the transi-
tion section.

Tab. 7.2 AFL/AML agent processing control instructions
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform226

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
 More than one transition table can exist and can be selected by using the
!t statement. The reconfiguration of the transition table using the t+, t‐, and
t* statements (add, delete, replace) requires code morphing capabilities, dif-
ferent from those instructions introduced in Section 7.3.4 The reconfiguration
of the transition table - basically reduced to enabling and disabling of transi-
tions on machine level - bases on dynamic code blocks {n .. }, which can be
enabled or disabled using the blmod (BLMOD) instruction, explained in Table
7.4. The {*n .. } block is enabled by default.

The generic program flow can be controlled using AFL and common FORTH
branch and loop statements. On machine level (AML), there are only three
branch operations: 1. a conditional relative branch BRANCHZ(IP), which redi-
rects the program flow if the top of the data stack is zero, 2. an unconditional
relative branch BRANCH(IP), and 3. a long inter-frame branch
BRANCHL(CF,IP).

?block QBLOCK (flag −−) Suspend code processing and saves
the stacks if the flag is not zero. If a
schedule occurs, the current data
and return stack content must be
transferred and morphed to the boot
code section with a branch to the
current IP–1, repeating the previous
code word execution after process
resumption.

suspend SUSPEND (.. flag −−)

R(.. ‐‐)

Suspend the execution. The current
CF and IP+1 are saved in the current
transition table boot section with a
long branch. If flag = 1 then the code
frame is fully re-initialized after
resumption and the stacks must be
already dumped to the boot section.
If flag = –1 then the boot section is
initialized and the stacks are
dumped, after resumption the next
instruction is directly executed w/o
full code frame setup by jumping
directly to the transition table boot
section.

AFL AML Stack Description

Tab. 7.2 AFL/AML agent processing control instructions
epubli, ISBN 9783746752228 (2018)

7.3 Agent FORTH: The Intermediate and the Machine Language 227

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
7.3.3 Agent Creation and Destruction
New agents are created (or forked) by using a composition of the NEW, LOAD,

and RUN operations, discussed in Section 7.4 The suspend (SUSP) operation is
usually inferred by the compiler in conjunction with other blocking instruc-
tions. An agent can be destroyed by using the kill operation. Table 7.3
summarizes these operations.

AFL AML Stack Description

fork ‐ (arg1 .. argn

#args ‐‐ pid)

Forks a child process. The child pro-
cess leaves immediately the current
activity word after forking, the parent
process continues after the fork oper-
ation.

create ‐ (arg1 .. argn

#args #ac ‐‐ pid
)

Creates a new agent process loaded
from the agent class code template
#ac.

‐ RUN (arg1 .. #args

 cf# flag ‐‐

 id)

Starts a new process with code frame
(from this VM), returns the identifier of
the newly created process. The argu-
ments for the new process are stored
in the boot section in the code frame
of the new process.

If flag = 1 then a forked process is
started. The boot section of the new
code frame and the boot section of
the transition table will be modified.

kill pid=self:

CLEAR
EXIT

(pid −−) Terminates and destroys an agent. For
self-destruction the aid must be equal
–1. Executing an exit operation with an
empty stack (clear) terminates an
agent.

Tab. 7.3 AFL/AML agent creation and destruction instructions
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform228

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
7.3.4 Agent Modification and Code Morphing
Code morphing is the capability of a program to modify its own code or the

code of another program. Code morphing is used for:

 Modification of the boot section part of a code frame and the boot sec-
tion of a transition table;

 Temporary state saving on process forking, migration, and suspend to
dump stack data to the boot section;

 Copying variable, word, and transition tables to a new code frame;
 Modification of dynamic blocks, mainly used in the transition table,

which enables or disables specific transitions.

 Since data is embedded in the code frame of a process, code morphing is
used here to modify data, too. Only twelve instructions supporting code mor-
phing are required and are summarized in Table 7.4. There are explicit code
morphing operations, which can be used on the programming level, and there
are implicit code morphing operations embedded in other control instruc-
tions, for example, the QBLOCK and SUSP operations (see Table 7.2) used for
modifying the code frame and transition table boot sections.

New code frames can be allocated using the new (NEW) instruction. The code
frame can be allocated only from the VM of the current process. If the init
argument is equal 1, then a default (empty) boot and LUT section is created,
with sizes based on the current process. The code frame number cf# and the
offset value off pointing to the next free code address in the morphing code
frame is returned.

The load (LOAD) instruction has two purposes. First, it can be used to load a
code template from the global code segment CCS, which is resolved by the
agent class number using the global dictionary. Second, it can be used to copy
the current process code to the new code frame, which was already allocated
by using the new command. If the template or the current process code
spawns more than one frame, additional frames are allocated and linked.

New agents are created (or forked) by using a composition of the NEW, LOAD,
and RUN operations, discussed in Section 7.4

Code can be modified by using the c> (TOC), v>c (VTOC), s>c (STOC), and r>c
(RTOC) instructions. All these operations are complex instructions with high
operational power supported directly by the VM. Commonly the code mor-
phing instructions are used by the compiler for agent creation, forking, and
migration. Some process control instructions like QBLOCK or SUSPEND use code
morphing implicitly to save the data and control state of the process in the
boot sections.

All code morphing operations are applied to the code frame, which is refer-
enced with the current value of the CFS register, which can point to the
epubli, ISBN 9783746752228 (2018)

7.3 Agent FORTH: The Intermediate and the Machine Language 229

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
current process frame or to any other code frame (limited to the code seg-
ment of the current process). The code morphing frame can be loaded by
using the !cf (SETCF) operation. Basically code morphing takes place by trans-
ferring code words from the data stack to a specified code offset position in
morphing frame by using the >c (TOC) operation.

Code words (code snippets) can be pushed by using the c> (FROMC) opera-
tion, which copies code words following this word from the current process
frame to the data stack. Value literal words can be created and transferred to
the morphing frame with values stored on the data stack by using the v>c
(VTOC) operation.

The current entire stack contents can be dumped to the morphing frame by
using the s>c (STOC) operation, excluding the arguments of this operation.

AFL AML Stack Description

new NEWCF (init −− offinit=1 cf#
)

Allocates a new code frame
(from this VM) and returns the
code frame number. If init = 1
then a default boot and LUT sec-
tion is generated, and the code
offset is returned additionally.

load LOAD (cf# ac# −−) Loads the code template of
agent class ac in the specified
code frame number or make a
copy of the current code frame
(ac=–1).

c> FROMC (n −− c) Pushes the n following code
words on the data stack

v>c VTOC (v n off −− off') Converts n values from the data
stack in a literal code word and
extension if required. The new
code offset after the last
inserted word is returned.

>c TOC (c1 c2 .. n off −−) Pops n code words from the
data stack and store them in the
morphing code frame starting
at offset off.

Tab. 7.4 AFL/AML code morphing words (off: code offset relative to code segment start,
cf#: code frame number, ref#: LUT object reference number)
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform230

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
s>c STOC (.. off −− off')

R(.. −−)

Converts all data and return
stack values to code values and
store them in the morphing
code frame starting at offset off.
Return the new offset after the
code sequence.

r>c RTOC (off ref# −− off') Transfers the referenced object
(word, transition, variable) from
the current process to the mor-
phing code frame starting at
offset off. Returns the new off-
set after the code sequence.

!cf SETCF (cf# −−) Switches code morphing engine
to new code frame (number).
The root frame of the current
process can be selected with
#cf=–1.

@cf GETCF (−− cf#) Gets current code frame num-
ber (in CS from this VM).

t+(Ai,b#)

t‐(Ai,b#)

t*(Ai,b#)

!t(Ti)

BLMOD

TRSET

(ref# b# v sel ‐‐)

(ref# ‐‐)

Modifies the transition table
that can be selected by the !t
statement. Each transition
bound to an outgoing activity is
grouped in a dynamic block
environment. The transition
modifiers reference the block
number in the respective transi-
tion row. The t-operations are
reduced to the AML operation
BLMOD (modify a dynamic block).
BLMOD can be used for global
dynamic blocks, too (sel=1: tran-
sition, sel=0: activity, sel=-1:top-
level).

AFL AML Stack Description

Tab. 7.4 AFL/AML code morphing words (off: code offset relative to code segment start,
cf#: code frame number, ref#: LUT object reference number)
epubli, ISBN 9783746752228 (2018)

7.3 Agent FORTH: The Intermediate and the Machine Language 231

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Entire words from the current process can be copied to the morphing
frame by using the r>c (RTOC) operation.

The transition table can be modified by using dynamic blocks and configur-
able block branches (BBRANCH), which can be enabled or disabled by using the
BLMOD operation, inferred by high-level transition configuration functions t+,
t‐, and t* enabling and disabling transitions.

7.3.5 Tuple Database Space
The access of the database tuple space transfers n-ary data tuples to, and

reads or removes n-ary tuples from the database, based on pattern matching,
which is part of the agent processing platform and directly supported on
machine level! Reading and removing of tuples bases on search pattern
matching, consisting of actual parameter values and formal parameters
replaced with values from matching tuples. The implementation of generic
tuple space access - vital to the agent interaction model and heavily used - on
machine level is a challenge. Table 7.5 summarizes the AFL programming
interface and AML subset, which reuses some instructions for efficiency. Tuple
space operations (in and rd) can suspend the agent processing until a match-
ing tuple was stored by another agent. This requires a special operational
behaviour of the machine instructions for further process management,
which must save the control and data state (stack content) of this process in
the frame and transition table boot sections.

The implementation complexity of the tuple space together with the code
morphing operations is very high. Therefore, the high-level AFL input opera-
tions (in, tryin, rd, tryrd, ?exist, rm) are mapped on a reduced set of
machine instructions {IN, RD} offering an enhanced platform resource shar-
ing, selected by the t-parameter, explained in Tab 7.5. The processing of the
IN and RD operations by the platform VM profits from additional resource
sharing in the VM.

AFL AML Stack Description

out 0 OUT (a1 a2 .. d −−) Stores a d-ary tuple (a1,a2,..) in the
database.

mark OUT (a1 a2 .. d t −−) Stores a d-ary temporary marking
tuple in the database (after time-out t
the tuple is deleted automatically).

Tab. 7.5 AFL/AML tuple data space access operations
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform232

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
7.3.6 Signal Processing
Signals :S(A) carry simple information A that is treated as the (optional)

argument of a signal. Signals are delivered to an appropriate signal handler of
a specific agent, offering peer-to-peer agent communication. Signals are man-
aged by the node signal manager. A signal S is delivered to an agent signal
handler $S by inserting a signal processing token in the processing queue of
the VM responsible for the parent process, followed by a signal and argument
data token consumed by the VM immediately if the signal process is executed.
The signal argument is pushed on the data stack, and the signal handler word
is called. After the return from the signal handler word, the signal processing

in

rd

0 IN

0 RD

QBLOCK

(a1 a3 .. p d −−

 pi .. p2)

Reads and remove or read only a
tuple from the database. Only param-
eters are returned.

To distinguish actual and formal
parameters, a pattern mask p is used
(n-th bit=1:n-th tuple element is a
value, n-th bit=0: it is a parameter
and not pushed on the stack).

tryin

tryrd

IN

RD

(a1 a3 .. p d t −−

 pi .. p2 0)

(a1 a3 .. p d t −−

 a1 a3 .. p d t 1)

Tries to read and remove or read only
a tuple. The parameter t specifies a
time-out. If t = –1 then the operation
is non-blocking. If t = 0 then the
behaviour is equal to the rd opera-
tion. If there is no matching tuple, the
original pattern is returned with a sta-
tus 1 on the top of the data stack,
which can be used by a following
?block statement. Otherwise a status
0 is returned and the consumed
tuple. Only parameters are returned.

rm ‐2 IN (a1 a2 .. p d −−) Removes tuples matching the pat-
tern. Is processed with a IN operation
and t=-2.

?exist ‐2 RD (a1 a3 .. p d −−

 0|1)

Checks for the availability of a tuple.
Returns 1 if the tuple does exist, oth-
erwise 0. It is processed with a RD
operation and t=–2.

AFL AML Stack Description

Tab. 7.5 AFL/AML tuple data space access operations
epubli, ISBN 9783746752228 (2018)

7.3 Agent FORTH: The Intermediate and the Machine Language 233

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
token is converted in a wake-up event token and passed to the agent man-
ager, which resumes the process in the case the process waits for a signal
event. On one hand using signal processing tokens and queues ensures that
the parent agent process will not be pre-empted if executed with pending sig-
nals. On the other hand, signals can be processed delayed, which is normally
not critically, since signal handler should modify only agent data used primar-
ily for the transition decision process.

The raising of a signal from a source process passes an extended signal
token to the signal manager, which either generates the above described sig-
nal processing token sequence that is passed to the VM processing queue, or
encapsulates the signal in a message, which is sent to a neighbour node by
the network manager (sketched in Figure 7.3). A process migrating to a neigh-
bour node leaves an entry in a process cache table providing routing path
information for message delivery to the migrated process.

7.3.7 Agent Mobility
An agent program can migrate to a different VM on a neighbour node by

executing the move operation specifying the relative displacement to the cur-
rent network node, shown in Table 7.7. A code migration is a complex
instruction that requires the dump of the control and data state in the boot
section of the code frame. The connection status for the link in a specified
direction can be tested with the ?link operation.

AFL AML Stack Description

signal S ‐ (−−) Definition of a signal S.

:$S .. ; DEF (arg ‐‐) Definition of a handler for signal S. The
signal argument is pushed on the top
of the data stack.

raise RAISE (arg sig# pid −−
)

Sends a signal S with an argument to
the process pid.

timer TIMER (sig# tmo −−) Installs a timer (tmo>0) raising signal
sig if time-out has passed. If tmo=0
then the timer is removed.

Tab. 7.6 AFL/AML signal processing instructions
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform234

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

AFL AML Stack Description

move MOVE (dx dy −−) Migrates agent code to neighbour node in
the given direction. The current data and
return stack content are transferred and
morphed to the boot code section. The tran-
sition boot section is loaded with a branch
to the current IP+1.

?link LINK (dx dy ‐‐ flag
)

Checks the link connection status for the
given direction. If flag=0 then there is no
connection, if flag=1 then the connection is
alive.

Tab. 7.7 AFL/AML agent mobility instructions
epubli, ISBN 9783746752228 (2018)

7.3 Agent FORTH: The Intermediate and the Machine Language 235

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Fig. 7.5 Effects of AML operations on code and stack memory, process management,
and token flow, shown partially for agents processed on two different con-
nected platform nodes (Node 1, Node 2).

The migration is handled by the agent process and network managers and
requires the encapsulation of the code frame(s) in a message container. The
header of the container contains some persistent information about a pro-
cess like the process identifier number, the parent process identifier (if any),
and the delta position vector. All remaining information is contained in the
program code and is initialized by restarting the program on the new node
and VM.

The effects of various important machine instructions are summarized and
illustrated in Figure 7.5.

7.3.8 Examples
Take a look at the following very simple FORTH code Example 7.1 imple-

menting an agent performing a mean value computation of sensor values
exceeding a threshold (agent parameter thr) with two body variables x and m,
one agent class parameter thr, three activities {A1, A2, A3}, and a transition
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform236

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
network with some conditional transitions. The AAPL behaviour model is
shown on the right side. The sensor value will be read from the tuple space by
using the - / in instruction in activity A1 (tuple key ADC). The mean value is
computed and stored in the database in activity A2. It is finally passed to the
tuple database in activity A3 by using the + / out instruction if the mean value
exceeds a threshold. The agent is terminated after this action.

Ex. 7.1 Left code shows an FORTH program derived from an AAPL-based agent
behaviour specification on the right side (in short notation).

FORTH (AFL)   AAPL

1 enum TSKEY ADC SENSOR SENSOREV ; : {ADC, SENSOR, SENSOREV}
2 par thr integer  mean_filter: thr 
3 var x integer var m integer : {x,m}
4 :A1 ADC 0b10 2 in x ! ;  A1 : { 

‐(ADC,x?) }
5 :A2 m @ x @ + 2 / m !  A2 : { m(m + x)/2;
6 SENSOR m @ 2 out +(SENSOR,m) }
7 :A3 SENSOREV m @ 2 out $self kill;  A3 : { 

+(SENSOREVENT,m);
 ($self) }

8 :%trans  : {
9 |A1 m @ thr @ > ?A2 m @ thr @ <= ?A3 . A1A2 | m>thr
10 |A2 1 ?A3 . A1A3 | m<=thr
11 |A3 . ; A2A3 }
12 trans }

This code example requires 74 operational AML code words, and the total
size of the code frame including the boot section and the LUT created by the
AFC compiler is only 137 words. The AFL parameter definition appearing in line
2 is treated like a variable definition, but with an additional parameter initiali-
zation added by the compiler following this definition immediately. After an
agent process was instantiated from this program code, the entire program is
executed on top-level, and therefore initializing the parameter with values
pushed to the data stack in the boot section, also added by the compiler. The
last statement in the AFL program executes the transition network, starting
the execution of the program (in this case calling activity A1).

Ex. 7.2 Code morphing and agent creation related to the agent behaviour
modification.

FORTH (AFL)  AAPL

1 t*(A1,2) *(A1  A2 | x < y) replace all trans A1‐>A2
2 t*(A1,2) +(A1  A2 | x = 0) add transition A1‐>A2
3 100 1 fork a ! a  (100); fork child agent
4 100 1 mean_filter create a   mean_filer(100); create new agent
epubli, ISBN 9783746752228 (2018)

7.4 Synthesis and Transformation Rules 237

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
 create a !
5 1 new !cf ref(A1) r>c .. a   (); create new customized agent

 ref(T1) r>c .. + a(A1,A2,..) +a(A1  A2 | x < y) ..
 100 1 run a(100)

The reconfiguration of the ATG modifying the agent behaviour using code
morphing (see Example 7.2) enables agent sub-classing at run-time. This situa-
tion occurs in the employment of parent-child systems creating child agents
getting an operationally reduced subset from the parent agent. This approach
has the advantage of high efficiency and performance due to the reduced
code size. New agents can be created by simply forking an existing agent
(fork), which creates a copy of the parent agent including the data space. New
agent programs (with different behaviour) can be created by composing exist-
ing activities and by adding different transition tables. The capability to
change an existing agent is limited to the modification of the transitions (ena-
bling and disabling of dynamic blocks inside transition rows) and by removing
activities. The transition table modification (and activity deletion) is the main
tool for run-time adaptation of agents based on learning. The modified agent
behaviour can be inherited by forked child agents. In AFL/AML customized
agents can be assigned only a complete transition table already part of the
current agent program.

7.4 Synthesis and Transformation Rules

This section explains the mapping of fundamental concepts of the ATG
agent behaviour and AAPL programming model and the transformation of the
AFL program to AML machine code, primarily performed by the AFC compiler.
The composition with only a small set of special AFL/AVM instructions is capa-
ble of providing agent creation, forking, migration, and modification by using
code morphing, directly supported by the VM.

7.4.1 Agent Creation using Code Morphing
New agent processes can be created by using code templates and the cre‐

ate statement, by forking the code and the state of a currently running
process using the fork statement, or by composing a new agent class from
the current process.

Creating new and forking child processes are implemented with the previ-
ously introduced NEW, LOAD; and RUN machine instruction sequences, defined
in Equations 7.1 and 7.2, respectively.
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform238

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
(7.1)

(7.2)

7.4.2 Agent Migration using Code Morphing
Process migration requires the saving of the data and control state of the

process in the frame and transition table boot sections. After the migration,
the code frame is fully re-initialized including the loading of the process
parameters. This is requiring the storage of the process parameter values on
the data stack.

The migration is a two-stage process: the first stage is executed by the MOVE
operation, the second by the SUSPEND operation, shown in Equation 7.3.

(7.3)

In Example 7.3 a short AAPL program and the transformed corresponding
AFL program is shown. The AAPL program implements a mobile agent travel-
ling along the x-axis in east direction in a mesh like network using the  /
move instruction (activity A2), sampling sensor values using the % / rd instruc-
tion reading the sensor value from the current node tuple space (activity A1),
and computing the mean value of the sensor values. The agent class parame-
ter dn determines the extension of the path in node hopping units. If the last
node is reached, the computed mean value is stored in the local tuple data-
base using the + / out instruction for further processing by other agents,
performed in activity A3, which is started if the hop-counter dx is equal to dn

a a a n acn args1 2 .. create

VAL(0) NEW DUP TOR SWAP Lnoinit) OOAD FROMR VAL(0) RUNnew

a a a nn args1 2 .. fork

VAL(0) NEW DUP TOR VAL(-1)noinit fork) LOAD FROMR VAL(1) RUNfork

dx dy move

MOVE VAL(-1) SETCF VAL(1) STOC TOR

RE

root codeoff

FF(p) FETCH .. REF(p) FETCH

VAL(n) FROMR VTOC VAL(1

1 n

fullin

)
iit) SUSPEND
epubli, ISBN 9783746752228 (2018)

7.4 Synthesis and Transformation Rules 239

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
(increased at each migration). The compiled AML code frame requires 181
words including the embedded data space, boot section, and LUT.

Ex. 7.3 Left code shows an FORTH program derived from an AAPL-based agent
behaviour specification on the right side (in short notation), posing migration
of agents.

FORTH (AFL)  AAPL

1 enum TSKEY ADC SENSOR ; : {ADC, SENSOR}
2 par dn integer  mean_filter: dn  {
3 var x integer var dx integer : {x,dx,m}

 var m integer
4 :A0 0 m ! 0 dx ! 0 dx ! ;  A0 : { m0; dx0; }
5 :A1 ADC 0b10 2 rd x ! ;  A1 : { 

%(ADC,x?) }
6 :A2 m @ x @ + 2 / m ! dx @ 1 + dx !  A2 : { m(m + x)/2;

 1 0 move; dxdx+1; (EAST) }
7 :A3 SENSOR m @ 2 out self kill ;  A3 : { 

+(SENSOR,m);
 ($self) }

8 :%trans  : {
9 |A0 1 ?A1 . A0 A1
10 |A1 dx @ dn @ < ?A2 dx @ dn @ = ?A3 . A1 A2 | dx<dn
11 |A2 1 ?A3 . A2 A3 | dx=dn
12 |A3 . ; A2 A1 }
13 trans }

7.4.3 Code Frame Synthesis
The compiled AML machine program that was synthesized from the previ-

ous Example 7.3 is shown with assembler mnemonics in the following
Example 7.4. The program frame is partitioned according Figure 7.4, beginning
with a boot section (address range 0-15), followed by the look-up table LUT
(start address 16) and the parameter and variable definitions (start address
58) adding embedded data space after each object definition, which is part of
the code frame. The LUT reserves 4 words for each object (variable, parame-
ter, activity, function) used in this program frame. The object type (first
column) is already filled.

The agent parameter is initialized by the store instruction at address 74 get-
ting the data from stack, which is pushed on the data stack in the boot section
(modified at agent process instantiation). For example, if the agent program is
created with the parameter dn = 5, a typical boot section contains the instruc-
tion sequence SETLUT(18) VAL(5) .. BRANCH(2) CALL(9). The first
instruction sets the LUT pointer relative to the code frame start, the second
pushes the argument on the stack. The branch instruction ensures a complete
initialization of the code frame (jumping over the transition section call). The
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform240

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
last branch instruction (address range 179-181) jumps back to the last instruc-
tion in the boot section calling the transition network.

The boot section is also used for the migration request, performed by the
code in the address range 119-133. The move operation itself only prepares
the migration (reset of the boot section), which is finalized by the last suspend
instruction. The code between modifies the boot section by morphing the
actual stack content to instructions in the boot section. After the migration a
full code frame initialization is required, therefore requiring the BRANCH(2)
CALL(9) sequence at the end of the boot section. The boot section of the tran-
sition network (address range 150-153) is modified for saving the current
control state (that is the instruction pointer) by creating a long branch to next
instruction to be executed after migration (within an activity word) and the full
code frame initialization.

Each time a code frame is initialized by executing the top-level instructions,
the LUT is updated by the VAR/DEF/TRANS instructions (updating current code
address). This self-initialization approach enables the modification of the code
frame, e.g., reconfiguration and re-composition of agent programs.

The execution of the TCALL and TBRANCH instructions in the transition sec-
tion rely on the LUT, too. The TBRANCH lookups and updates the secondary
column (initially zero) of a LUT row for the relative address computation
reaching the respective TCALL. Again, this approach ensures the highest
degree of flexibility and independence from any other computational unit or
VM data.

Ex. 7.4 Compiled AML assembler code from Example7.3. First part: Boot, LUT, varia-
ble, and activity/function relocation section (KIND NAME [off0+off1] # LUT),
Second part: machine instructions shown in ADDR : AML format.

BOOT [000000+0] LUT LUT [000016+2]
PAR dn [000058+3] #1
VAR x [000062+3] #2
VAR dx [000066+3] #3 VAR m [000070+3] #4
WORD A0 [000076+3] #4
WORD A1 [000089+3] #6 WORD A2 [000101+3] #7
WORD A3 [000134+3] #8 TRANS trans [000147+3] #9

BOOT
0000 : SETLUT 18 0001 : NOP ..
0014 : BRANCH 2 0015 : CALL 9

LUT
0016 : LUT 0017 : VAL 40
0018 : VAL 2 0019 : DATA 0020 : DATA 0021 : DATA First LUT row
0022 : VAL 1 0023 : DATA 0024 : DATA 0025 : DATA Second LUT row
epubli, ISBN 9783746752228 (2018)

7.4 Synthesis and Transformation Rules 241

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
..
0058 : VAR 0063 : VAL 1 0064 : VAL 1 0065 : DATA
0062 : VAR 0067 : VAL 2 0068 : VAL 1 0069 : DATA
..

Parameter Initialization
0074 : REF 1 0075 : STORE

Activity A0
0076 : DEF 0077 : VAL 5
0078 : VAL 10 0079 : VAL 0 0080 : REF 4 0081 : STORE
0082 : VAL 0 0083 : REF 3 0084 : STORE 0085 : VAL 0
0086 : REF 3 0087 : STORE 0088 : EXIT

Activity A1
0089 : DEF 0090 : VAL 6 0091 : VAL 9 0092 : VAL 1
0093 : VAL 2 0094 : VAL 2 0095 : VAL 0 0096 : IN
0097 : QBLOCK 0098 : REF 2 0099 : STORE 0100 : EXIT

Activity A2
0101 : DEF 0102 : VAL 7 0103 : VAL 33 0104 : REF 4
0105 : FETCH 0106 : REF 2 0107 : FETCH 0108 : ADD
0109 : VAL 2 0110 : DIV 0111 : REF 4 0112 : STORE
0113 : REF 3 0114 : FETCH 0115 : VAL 1 0116 : SUB
0117 : REF 3 0118 : STORE 0119 : VAL 1 0120 : VAL 0
0121 : MOVE 0122 : VAL ‐1 0123 : SETCF 0124 : VAL 1
0125 : STOC 0126 : TOR 0127 : REF 1 0128 : FETCH
0129 : VAL 1 0130 : FROMR 0131 : VTOC 0132 : VAL 1
0133 : SUSP 0134 : EXIT

Activity A3
0135 : DEF 0136 : VAL 8 0137 : VAL 9 0138 : VAL 1
0139 : REF 4 0140 : FETCH 0141 : VAL 2 0142 : VAL 0
0143 : OUT 0144 : VAL ‐1 0145 : CLEAR 0146 : EXIT

Transition Network Section
0147 : TRANS 0148 : VAL 9 0149 : VAL 29
0150 : NOP 0151 : NOP 0152 : NOP 0153 : NOP
0154 : TCALL 5 0155 : VAL 1 0156 : TBRANCH 6 0157 : END
0158 : TCALL 6 0159 : REF 3 0160 : FETCH 0161 : REF 1
0162 : FETCH 0163 : LT 0164 : TBRANCH 7 0165 : REF 3
0166 : FETCH 0167 : REF 1 0168 : FETCH 0169 : GE
0170 : TBRANCH 8 0171 : END
0172 : TCALL 7 0173 : VAL 1 0174 : TBRANCH 8 0175 : END
0176 : TCALL 8 0177 : END
0178 : EXIT

Transition Section Call, referenced from Boot section
0179 : VAL 15
0180 : VAL ‐1
0181 : BRANCHL
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform242

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
7.5 The Boot Sections and Agent Processing

The code frame contains different boot sections. This is the main boot sec-
tion at the beginning of the code frame containing instructions to set up the
code frame, and a short boot section embedded at the beginning of each
transition network section, shown with an example in Table 7.8.

7.6 Agent Platform Simulation

The proposed agent processing platform is a massive parallel data process-
ing system. The composition of networks with these processing nodes creates
a massive distributed system. The agent behaviour model used in this work
reflects the parallel and distributed system. But it is a challenge to test and
validate the operational and functional behaviour of a MAS consisting of hun-

Boot Section Content Description

0: SETLUT() NOP ..
 BRANCH(2) CALL(Tr)
0: SETLUT() VAL(a) VAL(b) ..
 BRANCH(2) CALL(Tr)
T: NOP ..

Default main boot section setting up the
LUT register offset (relative to start of
code frame) and finally skips the transi-
tion call forcing a full frame setup. The 
offset specifies the size of the boot sec-
tion, too. The second boot section con-
tains values that are pushed to the data
stack for further processing, e.g., the
agent parameters.

0: SETLUT() VAL(a) VAL(b) ..
 BRANCH(0) CALL(Tr)
T: VAL (IP) VAL(CF) BRANCHL

The boot section pushes values on the
data stack that are later consumed, e.g.,
for reprocessing of blocked operations.
At the end of the boot section the cur-
rent transition scheduler is called. The
transition scheduler boot section con-
tains a long branch to the next code
position after the last that blocked.

0: SETLUT() VAL(a) VAL(b) ..
 BRANCH(2) CALL(Tr)
T: VAL (IP) VAL(CF) BRANCHL

With additional full code frame initializa-
tion after migration or forking.

Tab. 7.8 Example of boot section layouts (AML statements) and their effect on the
frame processing [0: Main boot section, T: Transition scheduler boot section]
epubli, ISBN 9783746752228 (2018)

7.6 Agent Platform Simulation 243

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
dreds and thousands of agents processed on hundreds of agent platform
nodes. The monitoring of such a large parallel and distributed system is
nearly impossible in a technical real-world system. For this purpose a multi-
agent based simulation environment is used to simulate the distributed agent
platform network on architectural level. That means that all components, i.e.
the VM and the managers, shown in Figure 7.3 are simulated with non-mobile
state-based agents and the SeSAm simulator [KLU09], simulating the process-
ing of code frames representing agents on the proposed platform
architecture. This simulation model uses agents to simulate the processing of
the agents. In SeSAm, agent behaviour model bases on a similar but simpler
ATG model compared with the AAPL model introduced in this work. SeSAm
agents communicate with each other by accessing agent body variables of
other agents (that is a shared memory model). This approach is only suitable
in a simulation environment, and not in a real world distributed deployment
of agents.

Though the simulation model has no fixed timing model regarding the real
processing platform (e.g., a microchip), a time step in the simulation is equiva-
lent to the processing of one machine instruction, which correspond roughly
to 5-10 clock cycles required in an RTL implementation of the PAVM platform
for the same code processing. The relationship for a software implementation
of the PAVM platform is about 100-1000 machine instructions on a generic
microprocessor for each simulation step.

The simulation environment addresses two different simulation goals:

1. Test, profiling, and validation of the agent processing platform;
2. Test, profiling, and validation of algorithms and multi-agent system use

cases, for example, event-based distributed sensor data processing in
sensor networks.

Technical failures like connection losses or complete node failures can be
simulated using Monte-Carlo simulation methods.

The entire simulation environment uses a database for storing output and
reading input data, e.g., the program code, shown in Figure 7.6. The SQLD
database server not only provides a standard SQL based database interface, it
additionally provides a RPC interface, which allows programs to communicate
and synchronize with each other.

This feature enables multi-domain simulations, for example, incorporating
external mathematical computations with MATLAB or FEM simulators for test-
ing and evaluating Structural Monitoring systems (but this is unconcerned in
this work). On other hand, the code output of the AFL compiler AFC can be
immediately stored in the database and read by the simulator.
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform244

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Fig. 7.6 Simulation environment with the simulation world (left) of a sensor network
with sensor nodes containing the PAVM processing platform (with multiple VM
and manager components, each simulated using an agent). The simulator
operates on a database for storing output and reading input data (e.g., the
program code).

The SeSAm simulator has originally only a GUI based programming interface
for the composition of the simulation model, which is unsuitable for large
models. To overcome this limitation, a textual representation of the SeSAm
simulation model with the SEM language was developed, which can be com-
piled with the SEMC compiler to a XML simulation model, which can be
imported directly by the simulator (native model file format).

The simulation world consists of a 10 by 10 mesh network of sensor nodes
and some dedicated computational nodes at the outside of the network,
which is irrelevant for the following case study. Each network node consists of
a process, signal, and two network managers, four virtual processing
machines, each with its own code and stack memory segments. The physical
code frame size is set to 1024 words. Overall, 400 VMs with a total of 7 million
of memory cells are simulated simultaneously. The simulator uses 1621
immobile (SeSAm) agents to simulate the platform components and the
network.
epubli, ISBN 9783746752228 (2018)

7.7 Case Study: A Self-organizing System 245

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Furthermore, agents are used to simulate the network connections
between nodes (resources in the terms of SeSAm). Each sensor node, repre-
sented by a node agent, provides a set of sensor values by storing data tuples
in the node tuple database, which can be processed by other agents. There is
a world agent that updates the sensor values for all nodes. The set of sensor
data is read from the SQL database, that dimension and the values depend on
the use case to be simulated.

7.7 Case Study: A Self-organizing System

In this section, a self-organizing MAS is implemented with AAPL and trans-
formed to FORTH to show the suitability and resource requirement of the
proposed agent processing platform. The AFM machine code is tested and
evaluated by using the agent-based platform simulation environment intro-
duced in the previous section.

7.1. The Algorithms
Faulty or noisy sensors can disturb data processing algorithms significantly.

It is necessary to isolate noisy from well operating sensors. Usually sensor val-
ues are correlated within a spatially close region, for example, in a spatial
distributed load measuring network using strain-gauge sensors. The goal of
the following MAS is to find extended correlated regions of increased sensor
intensity (compared to the neighbourhood) due to mechanical distortion
resulting from externally applied load forces. A distributed directed diffusion
behaviour and self-organization are used, derived from the image feature
extraction approach (proposed originally by [LIU01]). A single sporadic sensor
activity not correlated with the surrounding neighbourhood should be distin-
guished from an extended correlated region, which is the feature to be
detected.

The feature detection is performed by the mobile exploration agent, which
supports two main different behaviour: diffusion and reproduction. The diffu-
sion behaviour is used to move into a region, mainly limited by the lifetime of
the agent, and to detect the feature, here the region with increased mechani-
cal distortion (more precisely the edge of such an area). The detection of the
feature enables the reproduction behaviour, which induces the agent to stay
at the current node, setting a feature marking and sending out more explora-
tion agents in the neighbourhood. The exploration behaviour, the algorithms,
and the AAPL specification is given in Chapter 9.

The calculation is performed by a distributed calculation of partial sum
terms by sending out child explorer agents to the neighbourhood, which itself
can send out more agents until the boundary of the region R is reached. Each
child agent returns to its origin node and hands over the partial sum term to
his parent agent. Because of a node in the region R can be visited by more
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform246

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
than one child agent, the first agent reaching a node sets a marking MARK. If
another agent finds this marking, it will immediately return to the parent. This
multi-path visiting has the advantage of an increased probability of reaching
nodes having missing (non operating) communication links. An event agent,
created by a sensing agent, finally delivers sensor values to computational
nodes, which is not considered here.

The AFL program of the AAPL Algorithm 9.1 is shown in Algorithm 7.1 incor-
porating a subclass definition for the neighbourhood perception agents
(helpers). Two signal handlers are installed, processing WAKEUP and TIMEOUT
signals.

Alg. 7.1 AFL program of the explorer agent including the explorer child subclass

1 enum KEYS
2 ANY ADC H MARK FEATURE COMPUTER DISTRIBUTER SENSOR SENSORVALUE;
3
4 enum DIR NORTH SOUTH WEST EAST ORIGIN;
5
6 const MAXLIVE 1
7 const E1 3
8 const E2 6
9 const ATMO 500
10 const MTMO 50
11 const DELTA 30
12
13 signal timeout
14 signal wakeup
15
16 par dir integer
17 par radius integer
18
19 var dx integer
20 var dy integer
21 var live integer
22 var h integer
23 var s0 integer
24 var backdir integer
25 var group integer
26
27 var enoughinput integer
28 var die integer
29 var back integer
30 var s integer
31 var v integer
32
33 (dir ! radius !)
epubli, ISBN 9783746752228 (2018)

7.7 Case Study: A Self-organizing System 247

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
34
35 :*init
36 0 dx !
37 0 dy !
38 0 h !
39 false die !
40 0 10000 random group !
41 dir @ ORIGIN <>
42 if
43 dir @ dup opposite backdir !
44 delta move
45 else
46 MAXLIVE live !
47 ORIGIN backdir !
48 then
49 H self @ 0 3 out
50 SENSORVALUE 0b10 2 rd s0 !
51 ;
52
53 :*percept
54 0 enoughinput !
55 ref(percept) 3 t*
56 ORIGIN 0 do
57 i backdir @ <> i delta ?link and if
58 enoughinput @ 1 + enoughinput !
59 i radius @ 2 fork drop
60 then
61 loop
62 ref(percept) 1 t*
63 ref(percept) 2 t+
64 timeout ATMO timer
65 ;
66
67 :*reproduce
68 live @ 1 ‐ live !
69 H self @ 0b110 3 rm
70 FEATURE 0b10 2 ?exist
71 if
72 FEATURE 0b10 2 in v !
73 else
74 0 v !
75 then
76 FEATURE v @ 1 + 2 out
77 live @ 0 >
78 if
79 ref(reproduce) 2 t‐
80 ORIGIN 0 do
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform248

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
81 i backdir @ <> i delta ?link and if
82 i radius @ 2 fork drop
83 then
84 loop
85 ref(reproduce) 1 t+
86 then
87 ;
88
89 :*diffuse
90 live @ 1 ‐ live !
91 H self @ 0b110 3 rm
92 live @ 0 >
93 if
94 0
95 begin
96 drop
97 NORTH EAST random dup dup
98 backdir @ <> swap delta ?link and
99 until
100 dir !
101 else
102 true die !
103 then
104 ;
105
106 :*end
107 ‐1 kill
108 ;
109
110 Explorer.child
111 :*percept_neighbour
112 MARK group @ 0b11 2 ?exist not
113 if
114 MARK group @ 2 MTMO mark
115 0 enoughinput !
116 SENSORVALUE 0b10 2 rd s !
117 H self @
118 s @ s0 @ ‐ abs DELTA <=
119 3 out
120
121 ref(percept_neighbour) 1 t*
122 ORIGIN 0 do
123 i backdir @ <> i delta ?link and
124 i inbound and
125 if
126 enoughinput @ 1 + enoughinput !
127 i radius @ 2 fork drop
epubli, ISBN 9783746752228 (2018)

7.7 Case Study: A Self-organizing System 249

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
128 then
129 loop
130 timeout ATMO timer
131
132 ref(percept_neighbour) 2 t*
133 else
134 ref(percept_neighbour) 3 t*
135 then
136 ;
137
138 :*migrate
139 dir @ opposite backdir !
140 dir @ delta
141 dy @ + dy !
142 dx @ + dx !
143 dir @ delta move
144 ;
145
146 :*goback
147 H self @ 0b110 3 ‐1 tryin
148 not if
149 h !
150 else
151 0 h !
152 then
153 backdir @ delta move
154 ;
155
156 :*deliver
157 H parent @ 0b110 3 in v !
158 H parent @ v @ h @ + 3 out
159 0 wakeup parent @ raise
160 ;
161
162 :opposite (dir ‐‐ dir')
163 dup NORTH = if drop SOUTH exit then
164 dup SOUTH = if drop NORTH exit then
165 dup WEST = if drop EAST exit then
166 dup EAST = if drop WEST exit then
167 ;
168
169 :delta (dir ‐‐ dx dy)
170 dup NORTH = if drop 0 ‐1 exit then
171 dup SOUTH = if drop 0 1 exit then
172 dup WEST = if drop ‐1 0 exit then
173 EAST = if 1 0 exit then
174 0 0
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform250

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
175 ;
176
177 :inbound (dir ‐‐ flag)
178 dup NORTH = if drop dy @ radius @ negate > exit then
179 dup SOUTH = if drop dy @ radius @ < exit then
180 dup WEST = if drop dx @ radius @ negate > exit then
181 EAST = if dx @ radius @ < exit then
182 0
183 ;
184 :$wakeup
185 drop
186 enoughinput @ 1 ‐ enoughinput !
187 H self @ 0b110 3 ‐1 tryrd
188 not if
189 h !
190 then
191
192 enoughinput @ 1 <
193 if
194 timeout 0 timer
195 then
196 ;
197
198 :$timeout
199 drop
200 0 enoughinput !
201 ;
202
203 :%trans
204 |init 1 ?percept .
205 |percept
206 {*1 h @ E1 >= h @ E2 <= and enoughinput @ 1 < and ?reproduce }
207 {*2 h @ E1 < h @ E2 > or enoughinput @ 1 < and ?diffuse }
208 {3 1 ?migrate }
209 .
210 |reproduce
211 {*1 0 ?end }
212 {2 1 ?init } .
213 |diffuse
214 die @ false = ?init
215 die @ true = ?end .
216 |percept_neighbour
217 {*1 1 ?migrate }
218 {2 enoughinput @ 1 < ?goback }
219 {3 1 ?goback }
220 .
221 |migrate 1 ?percept_neighbour .
epubli, ISBN 9783746752228 (2018)

7.7 Case Study: A Self-organizing System 251

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
222 |deliver 1 ?end .
223 |goback 1 ?deliver .
224 |end .
225 ;
226
227 trans

Summary: The corresponding AFL program consists of 227 source code lines only,
and is compiled to 721 code and 197 data words with a total code frame size of
918 words. The explorer child subclass requires 648 code and data words (result-
ing in a 30% reduction of the code frame size).

Fig. 7.7 Analysis results for a typical run of the SoS MAS with a correlated cluster of
4x2 nodes having significant different sensor values compared with the neigh-
bourhood (with 4 VMs/node, max. and mean computation related to nodes in
the region of active nodes processing at least one program/agent) [Load: frac-
tion of processing to idle time of a VM set]
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform252

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Figures 7.7 and 7.8 summarize the analysis results for a typical simulation
run of the above described SoS MAS, with a stimulated sensor network region
of four by two nodes having sensor values differing significantly from the
neighbourhood (shown in the inner black rectangle in Figure 7.6). The analysis
shows the VM load factor, the agent processing statistics, and the agent popu-
lation (related to the SoS MAS) in the entire network for the test run. The VM
load is the fraction of processing to idle time of a VM, for each VM in the range
[0.0,1.0], and is cumulated for all VMs of a node (i.e., the node VM load factor).
To clarify it, if all VMs are busy 100% of the time, the node load factor is x if the
number of VMs per node is x. The mean value is an averaged node VM load
factor of all nodes that are processing SoS agents, the maximum value is the
peak value of one VM of this group.

The MAS population has a peak number of 140 agents, with originally 8 root
agents created by the sensor nodes. The analysis evaluates the temporally
resolved processing load of the VMs in the extended region populated with
explorer and explorer child agents only (in the outer black rectangle in Figure
7.6).

Fig. 7.8 Analysis results with two VMs (left) and only one VM (right) per node (feature
recognized after 6200 and 8800 simulation steps, respectively) [Load: fraction
of processing to idle time of a VM set]
epubli, ISBN 9783746752228 (2018)

7.7 Case Study: A Self-organizing System 253

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Different platform configurations were investigated with four, two, and one
VM(s) per node. Depending on the number of VMs per node, the feature is
recognized by the MAS after 5050, 6200 and 8800 simulation steps, respec-
tively, which shows a significant performance decrease by reducing the
available number of VMs. The average speed-up compared with one VM for
this specific MAS and network situation is 2.2 for four, and 1.5 for two parallel
processing VMs. The fine-grained platform simulation of program code pro-
cessing requires only 100 times more simulation steps than a comparable
pure behaviour-based agent simulation (directly implementing AAPL agents
with SeSAm agents). Each explorer agent requires about 1000 machine
instruction to achieve its goal and termination. Neglecting communication
and migration time, the total computational execution time of an explorer
agent on a hardware platform with 10 MHz clock frequency requires less than
1 ms! A node in the populated region processes up to 10 different agent pro-
grams, shown in the right diagram of Figure 7.7.
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform254

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
7.8 The JavaScript WEB Platform JAVM

Deploying agents in large scale area heterogeneous networks ranging from
dedicated sensor networks up to WEB-based applications is a challenge.

One example for WEB-based sensor processing using agents is the Agent
factory micro edition (AFME) [MUL07], which is an intelligent agent framework
for resource-constrained and mobile devices and is based on a declarative
agent programming language, in contrast to the reactive and imperative AAPL
approach introduced in this work.

The PAVM agent processing platform is well suited for the implementation
in JavaScript enabling agent processing in client-side WEB browsers or by
using the node.js server-side VM [TIL10]. The JAVM implementation is fully
operational compatible with the previously described PAVM architecture, com-
monly implemented on microchip level with RTL and SoC architectures.

Two main issues arising in Internet applications using mobile agents must
be addressed:

1. The definition and the knowledge representation of virtual/artificial
neighbourhood connectivity in loosely coupled and hierarchical graph-
based networks based on semantic rather on physical connectivity.

2. The visibility and deployment of pure client-side applications like Web
browsers and computers hidden in private or restricted networks as
agent processing platforms capable of receiving, processing, and send-
ing of agents.

Usually the mobility of AAPL agents relies on geometrical neighbourhood
structures that are available immediately in wired networks, for example, two-
dimensional mesh-like networks embedded in surfaces like aircraft or air-
power wings or textiles (wearable computing applications). Wireless network
connectivity introduces spatially bounded domains connecting multiple
devices (sensor nodes). But nodes connected to the Internet are not initially
bounded in spatial domains, requiring the creation and management of logi-
cal domains that bind nodes in a meaningful sense.

Usually WEB applications communicate by using the HTTP application pro-
tocol level. But browser communication is limited to the HTTP client
capabilities (GET, PUT, POST operations) preventing an agent processing node
to be visible in the network that requires HTTP server capabilities (LISTEN,
RECEIVE,.. operations).

There are actually inventions to overcome these limitations (i.e., WEBSock-
ets), but there is still no common solution solving this limitation.

To enable the distributed agent processing in browser and applications run-
ning on generic computers connected by the Internet, the previously
epubli, ISBN 9783746752228 (2018)

7.8 The JavaScript WEB Platform JAVM 255

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
introduced Agent Forth Virtual Machine platform was implemented in JavaS-
cript that can be executed either by a node.js interpreter or by any browser
capable to execute JavaScript code. The AFVM was integrated in a distributed
operating system layer, also implemented entirely in JavaScript, discussed in
the following subsections. The transition form peer-to-peer networks to
routed and hierarchical networks like the Internet requires some methodo-
logical and architectural changes, introducing the aforementioned broker
service, discussed below.

A Distributed Co-ordination layer (DCL) is introduced to connect application
programs on the Internet and NAT networks. The DCL bases on Object-orien-
tated Remote Procedure Calls. A broker server based approach is instead
used to connect HTTP client-only devices, discussed in the next section.

7.8.1 Capability based RPC
Object-orientated Remote Procedure Calls (RPC) are initiated by a client

process with a transaction operation, and serviced by a server process by a
pair of get-request and put-reply operations, based on the Amoeba DOS
[MUL90]. Transactions are encapsulated in messages and can be transferred
between a network nodes. The server is specified by a unique port, and the
object to be accessed by a private structure containing the object number
(managed by the server), a right permission field specifying authorized opera-
tions on the object, and a second port protecting the rights field against
manipulation (see [MUL90] for details). All parts are merged in a capability
structure, shown in Definition 7.1.

Def. 7.1 RPC Capability Structure and textual representation

 [srvport] obj(rights)[protport]

srvport,protport: byte[48 bits], XX:XX:XX:XX:XX:XX X:0‐9,A‐F
obj: unsigned integer[24 bits]
rights: byte

The RPC communication interface is used in this work for the inter-platform
communication, for example, for transferring agent program code to another
platform or to access distributed file and naming services. The RPC ontology
consists of servers and clients communicating by using a set of operations. A
server performs a GETREQ operation to publish a listening on a public server
port, and a client performs a transaction TRANS operation to access a server
identified by the public server port. Each server handles a set of objects, iden-
tified by capabilities that are tuples port, obj, rights, rand, consisting of the
server port, an object number, a rights field, and a private protection field
authorizing the rights field. A transaction operation transfers object capabili-
ties to the server that handles the request and finally replies by using the
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform256

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
PUTREP operation. Therefore, a client transaction is synchronous and blocks
the client process until the reply arrives or an error occurred (time-out). The
localization of the server and the routing of the messages is hidden by the
RPC layer, or more precisely by the underlying protocol layer, shown in Defini-
tion 7.2. The localization is basically performed by broad- or multi-casting
LOCATE messages to nodes in the current domain and finally to a limited num-
ber of boundary domains. Each node monitors the locally registered servers,
and replies with a IAMHERE message. Nodes are identified with ports, too,
commonly identical to the server port of a host server, providing core
services.

The RPC communication is encapsulated in HTTP messages with XML con-
tent and transferred using the generic HTTP protocol. The RPC header and
data is stored inside XML tags with compacted hexadecimal coded text, on
one hand complaining with the XML standard, on the other hand reducing and
optimizing the payload. The binary byte data is coded with two hexadecimal
digits for each data byte. Each RPC server (process) can act as a client, too, and
vice versa.

Def. 7.2 RPC-based client-server communication types, operations, and protocol
schema

type port = byte array;
type capability = {cap_port:port, cap_priv: private};
type private = {prv_obj: integer, prv_rights: integer,
 prv_rand: port};
type header = {h_port: port, h_priv: private,
 h_command: integer, h_status: integer};

+‐‐‐+
| reply:header = TRANS(request:header,data:buffer); | Client
+‐‐‐+
  » ¶ Network (Messages))
+‐‐‐+
| Locate | Foreward | Router/Broker
+‐‐‐+
 · LOC   ¸ IAMHERE  ¹  º Network (Messages))
+‐‐‐+
| request:header*buffer = GETREQ(public:port);  ¹ |
| .. service .. | Server
| PUTREP(reply:header,data:buffer)  º |
+‐‐‐+
epubli, ISBN 9783746752228 (2018)

7.8 The JavaScript WEB Platform JAVM 257

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
7.8.2 AFS: Atomic File System Service
The Atomic File System Server (AFS) provides a unified file system storage

suitable for the deployment in unreliable environments and is independent of
lower level storage capabilities. Files are associated with a capability. The
capability port is given by the server, and the capability object number identi-
fies the file uniquely. The protected rights field of the capability determines
the authorized operations to be applied to a file or the file system.

A file is stored always in a contiguous block cluster of the file system, avoid-
ing a linked free and used block management that offers a low-resource and
low-overhead file system with basic real-time feature capabilities. A commit-
ted file is immutable (locked, read-only mode) and occupies only one internal
node (i-node). Modification of locked files require an uncommitted (unlocked)
copy of the original immutable file. Though this approach seems to be ineffi-
cient for post modifications of files, it avoids the requirement of file system
logging required for a fast crash recovery. Here, after a crash only uncommit-
ted files (occupying only one i-node) must be cleared. The AFS is used in this
work mainly for storing agent program code and persistent tuple space data.
The simplicity of the AFS enables the implementation in JavaScript and the
embedding in browser applications, discussed in the next section.

The set of operations embraces the reading, modification, commitment,
creation, and destruction of files. Each file object has a limited lifetime that is
decremented periodically by a garbage collector that removes unused entries.
Therefore, there is a touch and age operation modifying the lifetime of a file.
Only the explicit commitment of a file makes the file persistent. Reading data
from and writing data to storage devices is performed through a cache mod-
ule, speeding up reading and modifying of file data and i-nodes.

7.8.3 DNS: Directory and Naming Service
The Directory and Name Server (DNS) provides a mapping of names

(strings) on capability sets, organized in directories. A directory is a capability-
related object, too, and hence can be organized in graph structures. A capabil-
ity set binds multiple capabilities associated with the same semantic object,
for example, a file that is replicated on multiple file servers. A capability set
marks one object capability as the current and reachable object, though this
may change any time.

A directory is associated with an internal node and the content (the rows).
The directory content is stored in an AFS file. Redundancy is offered by the
capability sets themselves (replication of objects) and by the DNS using two
file servers for storing directories in two-copy mode (replication of directo-
ries). The immutability of AFS files immediately qualifies the immutability of
directories, enabling a robust directory system with a fast and stable recovery
after a server crash.
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform258

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
The simplicity of the DNS enables the implementation in JavaScript and the
embedding in browser applications, too, discussed in the next section.

The set of operations embraces the reading, modification, creation, and
destruction of directories. Each directory has a limited lifetime that is decre-
mented periodically by a garbage collector that removes unused entries that
are not linked anymore. Therefore, there is a touch and age operation modify-
ing the lifetime of a directory.

7.8.4 Broker Service
The integration and network connectivity of client-side application pro-

grams like Web browsers as an active agent processing platform requires
client-to-client communication capabilities, which is offered in this work by a
broker server that is visible in the Internet or Intranet domain, shown in Fig-
ure 7.9. To provide compatibility with and among all existing browser, node.js
server-side, and client-side applications, a RPC based inter-process communi-
cation encapsulated in HTTP messages exchanged with the broker server
operating as a router was invented. Client applications communicate with the
broker by using the generic HTTP client protocol and the GET and PUT opera-
tions. RPC messages are encapsulated in HTTP requests. If there is a RPC
server request passed to the broker, the broker will cache the request until
another client-side host performs a matching transaction to this server port.
The transaction is passed to the original RPC server host in the reply of a HTTP
GET operation.

But the deployment of one central broker server introduces a single-point-
of-failure and is limiting the communication bandwidth and the scaling capa-
bility significantly. To overcome these limitations, a hierarchical broker server
network is used. Each broker in this broker graph can be the root of a sub-
graph and can be a service end-point (i.e., providing directory and name ser-
vices), a router between clients and other broker servers, and an interface
bridge to a non-IP based network, for example, a sensor network. A broker is
just an application program capable of running on any computer visible glob-
ally on the Internet or more locally in some Intranet domains. Each node in
the network act always as a service end-point and as a logical router, regard-
less of the server- or client-side visibility.

Communication between broker servers can be established either by using
the aforementioned HTTP based message passing without a size limitation, or
by using the UDP with additional data fragmentation and de-fragmentation
layers that splits large messages in packets. Alternatively, client applications
(using the node.js VM) can communicate with a broker server by using UDP.
epubli, ISBN 9783746752228 (2018)

7.8 The JavaScript WEB Platform JAVM 259

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Fig. 7.9 Different agent processing platforms and nodes are connected in Inter-,
Intranet, and dedicated sensor network domains including hardware nodes
(embedded and microchip level platform implementations).

7.8.5 Domains as Organizational Structures and the Directory Name
Service

Domains are groups of agent processing nodes that are coupled in a net-
work. Agents can migrate between nodes of a group. A node can be assigned
to more than one domain, enabling the migration of agents between
domains. Node domain composition bases on

1. Geometrical localization and proximity, basically expressing and simu-
lating neighbourhood connectivity

2. Information and data context
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform260

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
3. Tasks to be performed, cooperative goals to be satisfied
4. Logical network domains

Domains can be expressed by paths similar to directory trees that are han-
dled usually by a file system. In this work a distributed and unified Directory
Name Service (DNS) is used that provides a database to publish (capability-
name) pairs organized in trees. Each object in the distributed system is related
to a capability, which is serviced by a specific server. For example, a file con-
taining the agent program code is serviced by a file server. A directory
containing domains is an object, too, handled by the DNS server. An agent
platform that processes agents programs is another kind of object, handled
by a run server that exists on each node. Agents are objects in this sense, but
they don’t belong to a specific server, therefore they are handled as mobile
and autonomous severs. In Figure 7.9, an example for a composition of
domains consisting of network nodes that are not directly connected is
shown.

7.8.6 The Modular Platform Architecture
The agent processing platform is highly modular, shown in Figure 7.10, con-

sisting of various modules. Basically it consists of the agent code processes
(Agent Forth Virtual Machine, AFVM, discussed later), an agent manager
(AMAN) responsible for agent processing control, migration, and interaction,
some kind of communication layer (the bare-bone NET module or an Operat-
ing System layer), and optional a distributed operating and coordination layer
consisting of the file- and naming services including the previously introduced
RPC, implemented in JavaScript (JS) and executed either using the node.js VM
or a JS capable WWW browser application. The JS platform requires a task
scheduler to implement synchronization of parallel tasks. At least one broker
server is required in Intra- and Internet domains for connecting pure client-
side applications (WWW browser). The agent processing platform is imple-
mented in hardware (SoC design, pure digital logic), in software (stand-alone
C/OCAML), and in JavaScript. All platform implementations are compatible on
communication, operational, and execution level. Platforms that should be
visible in Intra- and Internet domains and that are connected indirectly
require the RPC, a message Router (used for inter-node server-client commu-
nication, too), and HTTP connection modules to establish at least agent
migration.
epubli, ISBN 9783746752228 (2018)

7.8 The JavaScript WEB Platform JAVM 261

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Fig. 7.10 The modular host platform architecture:
(A) Full Server-side JavaScript Implementation with File and Naming Service
(B) Client-side JS Implementation
(C) Broker-only Node
(D) Client-side Browser JS Implementation
(E) Client-side Browse JS Implementation with File- and Naming Services using,
e.g., WebStorage
(F) Native Software Implementation of the AFVM
(G) Native Hardware Implementation of the AFVM

FILE

WebStorage

(A) (B) (C)

(D) (E)

(G)

(F)
epubli, ISBN 9783746752228 (2018)

 Chapter 7. PAVM: The Programmable Agent Platform262

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
7.9 Further Reading

1. S. Pelc, Programming Forth, May. 2011, ISBN 9780952531050.
2. L. Brodie, Thinking FORTH. 2004, ISBN 0976458705
3. R. Wilhelm and H. Seidl, Compiler Design - Virtual Machines, Springer

Berlin, 2010, ISBN 9783642149085
4. lain D. Craig, Virtual Machines, Springer London, 2006, ISBN

9781852339692
epubli, ISBN 9783746752228 (2018)

	PAVM: The Programmable Agent Platform
	7.1 Stack Machines versa Register Machines
	7.2 Architecture: The PAVM Agent Processing Platform
	7.2.1 PAVM Overview
	7.2.2 Platform Architecture
	7.2.3 Token-based Agent Processing
	7.2.4 Instruction Format and Coding
	7.2.5 Process Scheduling and VM Assignment

	7.3 Agent FORTH: The Intermediate and the Machine Language
	7.3.1 Program Code Frame
	7.3.2 Agent Processing
	7.3.3 Agent Creation and Destruction
	7.3.4 Agent Modification and Code Morphing
	7.3.5 Tuple Database Space
	7.3.6 Signal Processing
	7.3.7 Agent Mobility
	7.3.8 Examples

	7.4 Synthesis and Transformation Rules
	7.4.1 Agent Creation using Code Morphing
	7.4.2 Agent Migration using Code Morphing
	7.4.3 Code Frame Synthesis

	7.5 The Boot Sections and Agent Processing
	7.6 Agent Platform Simulation
	7.7 Case Study: A Self-organizing System
	7.1. The Algorithms

	7.8 The JavaScript WEB Platform JAVM
	7.8.1 Capability based RPC
	7.8.2 AFS: Atomic File System Service
	7.8.3 DNS: Directory and Naming Service
	7.8.4 Broker Service
	7.8.5 Domains as Organizational Structures and the Directory Name Service
	7.8.6 The Modular Platform Architecture

	7.9 Further Reading

