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This Chapter introduces a programmable agent processing platform that
is capable of processing AAPL based agents entirely programmed in JavaScript.
The JavaScript Agent Machine (JAM) platform is programmed entirely in JavaS-
cript, too, supporting the execution and migration of agents in heterogeneous
environments including the Internet and the Internet-of-Things.

8.1 JAM: The JavaScript Agent Machine

The latest extension of the agent platform family was the Agent Forth Vir-
tual Machine (AFVM) fully implemented in JavaScript including Browser
implementations, which is capable of executing agent code using a stack-
based FORTH machine language with AAPL agent-specific extensions
[BOS15D]. The AFVM was optimized originally for low-resource environments,
including single microchip implementations. One major feature of AAPL
agents is the capability of reconfiguration and agent behaviour (re-)composi-
tion at run-time. The code-based agent platforms therefore support this by
enabling and using code-morphing.

To simplify the development and deployment of multi-agent systems on the
Internet AAPL agents should be directly implemented in JavaScript (JS), which is
a well-regarded and public widespread used programming language. /S exe-
cution platforms are available for a very broad range of devices and operating
systems, e.g., Intel x86/x64, Arm32, Linux, Windows, Solaris, MacOS, FreeBSD,
Android, 10S, and many more. Furthermore, the implementations of mobile
agents directly in JS would benefit from actually existing high-performance JS
VMs, e.g., Googles Chrome V8 or Mozillas Spidermonkey engines with Just-in-
Time native code compilation (JIT). At a glance, JS is a very simple but highly
dynamic language covering procedural, object-orientated, and functional con-
cepts. Even if a JIT-based VM is used, full code-to-text and text-to-code
transformation is preserved at any execution time, including functions and
data. This enables the capability of code morphing at run-time, a prerequisite
for AAPL-based agents, used to store the current state of an agent process
(e.g., prior to migration) and to modify the behaviour of an agent by applying
a re-composition to the ATG by the agent itself. In contrast to JAVA and com-
mon JAVA-based agent frameworks (e.g., JADE), JS has a loose coupling to and
low dependencies of the underlying execution platform. This is a significant
advantage over JAVA or C programming languages, which must be always
compiled before the code can be executed, and being very sensitive for API
and library mismatches. JS considers functions as first-order values, enabling
code reconfiguration on-the-fly like any other data modification using the
built-in eval function.

An overview of the JAM architecture and the composition of JavaScript mod-
ules is shown in Figure 8.7. The core JAM platform implements the agent
execution (left side of Figure 8.7), and an optional Distributed Operation Sys-
tem (DOS) layer adds Internet connectivity (right side of Figure 8.7).
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Fig. 8.1 The JAM architecture and modules
8.2 AgentJS: The Agent JavaScript Programming Language

Agent/S is common JavaScript aligning the JS object model with AAPL agent
template classes. A comparison of Agent/S with the meta language AAPL is
shown in Example 8.7. The programmatical and semantic structure of Agent/S
is very close to AAPL. Agent/S consists of an agent class constructor function
with some required attributes defining the agent activities, the transitions,
auxiliary functions, and agent data.

8.2.1 Agent)S: The JavaScript Object and extended Code-to-Text JSON+
Representation

Textual representations used as a data and code interchange format is a
prerequisite for data and code processing in strong heterogeneous platform
and network environments, mixing big- and little endian machines, different
data word sizes, and data coding. Though byte-code based interchange for-
mats are widely used, they require a strict compliance of the coding between
a sender and a receiver. At any time, a JS object can be converted to text in
JSON format at run-time. Originally, JSON was introduced for portable
exchange of JS data objects in a textual representation only, being much more
compact and easier to interpret than XML. A JAM/Agent/S agent is basically a JS
object containing data (values, data objects, arrays) and functions, represent-
ing the agent activities and transitions of the ATG, requiring an extended JSON
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text formatter and parser supporting functions, which was introduced in JAM.
An entire agent process can be converted at any time to the textual rep-
resentation (JSON+) preserving its current control and data state, which can be
exchanged by different network and agent platform nodes, and that is finally
back converted to JS code. The only existing limitation are circular (self) refer-
ences inside of an object, which still cannot be handled, but not being a real
restriction. Transferring text instead of binary code results in a significantly
increased communication cost on agent migration, but the text can be com-
pressed reducing the size significantly (experiments showed that LZ
compressing reduces the JSON+ text size and hence the communication costs
about 5-6 times). Embedded devices can utilize hardware compressor mod-
ules, e.g., using FPGA-based co-processors, maximizing communication
efficiency without additional CPU costs.

8.2.2 The Agent]S Sandbox Environment

Stability and robustness of the agent processing platform is one major chal-
lenge in the design of those platforms. Agents can be considered as
autonomous or semi-autonomous processes and execution units. But this
autonomy requires strictly bounded and safe platform environments for the
execution of agent processes, and the strict isolation of agent processes from
each other. An agent platform must be capable to execute hundreds and
thousands of different agent processes. Although there are extension mod-
ules for some JS VMs (e.g., webworker) allowing the execution of a JS program
in a separate host process (or thread), this method is importable and is cre-
ates significant overhead in time and memory space. Unfortunately, /S has
only a very limited scoping mechanism, basically limited to function closures
and the this object, and with one global space shared by all imported modules
and evaluated code. This limitation initially prohibits the safe and interfer-
ence-free execution of multiple agent processes within one /S VM. But
fortunately, JS provides the with (mask) {code} statement, executing the
code with an additional new overlaid name space given by the mask object
argument. This cannot limit the name space scope (scopes are chained, and
higher scopes like the global one are still visible), but it can be used to over-
ride higher scope level and global name qualifiers, and to invalidate
references to free variables and functions without compromising other agent
processes or the JAM modules.

So basically the agent process execution is an execution of a function with a
strictly limited visible name space without any bindings to external and free
variables and functions. To ensure this, the JSON parsing and evaluation is
always performed inside the with statement with a mask environment only
providing a selected AIOS set of objects and functions, discussed in Section
8.2. A creation of a new agent will always first stringify the agent object, and
finally coding back a sand-boxed agent object free of any free and global
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object references, which can be executed the A/OS agent scheduler without
any interference with the platform and other agents. This approach protects
the agent execution and JAM at least against failures by accident using com-
mon JS coding styles. The capability of full intrusion protection depends on the
JS VM environment itself.

8.2.3 Agent/S-AAPL Relationship

Agent/S is a modified and restricted /S programming and object model,
which can be directly executed by any JS VM using the A/OS execution layer.
The AAPL model can be directly mapped on this Agent/S model without further
transformation steps, shown in Example 8.7. The only exception is the decom-
position of activities in scheduling blocks if they contain blocking statements
(e.g., line 12), except one blocking tail-statement at the end of an activity, that
do not require encapsulation in a scheduling block. Transition functions may
not block, otherwise an exception is raised.

There is a significant difference between Agent/S and common JS programs:
The this object used inside Agent/S activity, transition, callback, and first-order
function calls of AIOS provided functions is always bound to the agent object
itself! Due to the JSON+ code-text transformation, there cannot be any free
variables inside an agent object (the references would be lost on transforma-
tion and migration), including the commonly used self variable. Finally, there
may no cyclic object links and objects posing method prototypes (i.e., only
data structures can be created and used by an agent).

Ex. 8.1 A simple neighbourhood explorer agent programmed in AAPL (left) and the
corresponding Agent/S code (right). Note: In Agent/S this always references
the agent object, even in deeper context levels.

1 agent explorer(dir,radius) function explorer(dir,radius) {

2 var X,y:int; this.dir=dir; this.radius=radius;
3 var mean,hop:int; this.x=0; this.y=0; this.mean=0;
4 var goback:boolean; this.hop=0; this.goback=false;

5 activity init = .. this.act = {

6 end; init:function() {..},

7 acitivity move = move:function() {

8 if (hop=radius) goback := true; if (this.hop==radius)

9 else this.goback=true;

10 begin hop++; moveto(dir); else {this.hop++;

11 end; moveto(this.dir);}

12 end; ¥,

13 activity percept = percept: function () { var s;

14 var s:int; rd(SENSOR,s?); B([function () {

15 rd([’SENSOR’, ],

16 function(t) {s=t[1]}),
17 mean := (mean+s)/2; function () {mean = (mean+s)/2}]);
18 end; ¥,
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19 activity goback = goback: function () {
20 dir=opposite(dir); this.dir=opposite(this.dir);
21 end; },
22 activity deliver = deliver: function () {
23 out (MEAN,mean); out([’MEAN’,this.mean]);
24 signal($parent,DELIVER); signal(parent(),DELIVER);
25 end; 1}
26 handler S(v) = .. end; this.on = { S:function(v) {..} .. };
27 transitions = this.trans = {
28 init->move; init: function () {return move},
29 move->percept:not goback; move: function () {
30 move->move:goback and hop>0; if (!this.goback) return percept;
31 move->deliver:goback and hop=0; else if (this.goback && this.hop>0)
32 move->goback:hop=radius; return move;
33 percept->move; else if (this.goback && this.hop==0)
34 goback->move; return deliver;
35 deliver->end; else if(hop==radius)
36 return goback},
37 end; goback: move,
38 end deliver: end
39 s
40 this.next=init};

8.3 AIOS: The Agent Execution and 10 Environment

The AIOS is the main execution layer of JAM. It consists of the sandbox exe-
cution environment encapsulating an agent process, with different privileged
sub-sets depending on the agent role level (0,1,2). Furthermore, the A/OS
module implements the agent process scheduler and provides the API for the
logical (virtual) world and node composition. The sandbox environment pro-
vides restricted access to a code dictionary based on the privilege level,
enabling code exchange between agents. The A/OS is the interface and
abstraction layer between agents programmed in Agent/S and the agent pro-
cessing platform (JAM). Furthermore, it provides an interface between host
applications and JAM, shown in Figure 8.2.

The AIOS consists of various modules, with the most common modules:

e Agent Manager and Scheduler (AS)

e Tuple Space Module and data base (TS)

e Agentsignal management module (SI)

e Agent processing module (PR)

e Code Morphing and reconfiguration module (CD)
¢ Node and world management module (ND)

e Node communication module (CM)
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Fig. 8.2 The Agent Input-Output System interface between agents and the platform

8.3.1 Agent Scheduling and Check-pointing

JS has a strictly single-threaded execution model with one main thread, and
even by using asynchronous callbacks, these callbacks are executed only if the
main thread (or loop) terminates. This is the second hard limitation for the
execution of multiple agent processes within one JS JAM platform. Agents pro-
cesses are scheduled on activity level, and a non-terminating agent process
activity would block the entire platform. Current JS execution platform includ-
ing VMs in WEB browser programs provide no reliable watchdog mechanism
to handle non-terminating JS functions or loops. Although some browsers can
detect time-outs, they are only capable to terminate the entire JS program. To
ensure the execution stability of the JAM and the JAM scheduler, and to enable
time-slicing, check-pointing must be injected in the agent code prior to execu-
tion. This step is performed in the code parsing phase by injecting a call to a
checkpoint function CP() at the beginning of a body of each function con-
tained in the agent code, and by injecting the CP call in loop conditional
expressions. Though this code injection can reduce the execution perfor-
mance of the agent code significantly, it is necessary until JS platforms are
capable of fine-grained check-pointing and thread scheduling with time slic-
ing. On code-to-text transformation (e.g., prior to a migration request), all CP
calls are removed.

AIOS provides a main scheduling loop. This loop iterates over all logical
nodes of the logical world, and executes one activity of all ready agent pro-
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cesses sequentially. If an activity execution reaches the hard time-slice limit, a
SCHEDULE exception is raised, which can be handled by an optional agent
exception handler (but without extending the time-slice). This agent exception
handling has only an informational purpose for the agent, but offers the agent
to modify its behaviour. All consumed activity and transition execution times
are accumulated, and if the agent process reaches a soft run-time limit, an EOL
exception is raised. This can be handled by an optional agent exception han-
dler, which can try to negotiate a higher CPU limit based on privilege level and
available capabilities (only level-2 agents). Any ready scheduling block of an
agent and signal handlers are scheduled before activity execution.

After an activity was executed, the next activity is computed by calling the
transition function in the transition section.

In contrast to the AAPL model that supports multiple blocking statements
(e.g., 10/tuple-space access) inside activities, JS is incapable of handling any
kind of process blocking (there is no process and blocking concept). For this
reason, scheduling blocks can be used in Agent/S activity functions handled by
the A/OS scheduler. Blocking Agent/S functions returning a value use common
callback functions to handle function results, e.g., inp(pat, function(tup)
{.-H.

A scheduling block consists of an array of functions (micro activities), i.e.,
B(block) =B([function(){..}, function(){..},...]). executed one-by-
one by the A/OS scheduler. Each function may contain a blocking statement at
the end of the body. The this object inside each function always reference
the agent object. To simplify iteration, there is a scheduling loop constructor
L(init, cond, next, block, finalize) and an object iterator constructor
I(obj, next, block, finalize), used, e.g., for array iteration.

Agent execution is encapsulated in a process container handled by the
AIOS. An agent process container can be blocked waiting for an internal sys-
tem-related 10 event or suspended waiting for an agent-related AIOS event
(caused by the agent, e.g., the availability of a tuple). Both cases stop the
agent process execution until an event occurred.

The basic agent scheduling algorithm is shown in Algorithm 8.7 and consists
of an ordered scheduling processing type selection, i.e., partitioning agent
processing in agent activities, transitions, signals, and scheduling blocks. In
one scheduler pass, only one kind of processing is selected to guarantee
scheduling fairness between different agents. There is only one scheduler
used for all virtual (logical) nodes of a world (a JAM instance). A process priority
is used to alternate activity and signal handling of one agent, preventing long
activity and transition processing delays due to chained signal processing if
there are a large number of signals pending.
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Alg. 8.1 AIOS Agent Scheduler Algorithm [process: agent execution container, block:
external system scheduling block(s), schedule: agent scheduling block(s), sig-
nals: list of pending agent signals, blocked: process blocked and waiting for
external system 10 event, suspended: agent blocked and waiting for AIOS

event]
1 V node € world.nodes do
2 V process € node.processes do
3 e Determine what to do with prioritized conditions:
4 Order of operation selection:
5 0. Process (internal) block scheduling [block]
6 1. Resource exception handling
7 2. Signal handling [signals]
8 - Signals only handled if process priority < HIGH
9 - Signal handling increase process priority temporarily to
10 allow low-latency act/trans scheduling!
11 3. Transition execution
12 4. Agent schedule block execution [schedule]
13 5. Next activity execution
14 - Lowers process priority
15
16 if process.blocked or process.dead or
17 process.suspended and process.block=[] and process.signals=[] or
18 process.agent.next=none and process.signals=[] and process.schedule=[]
19 then do nothing
20 else if not process.blocked and process.block#[]
21 then execute next block function
22 else if agent resources check failed
23 then raise EOL exception
24 else if process.priority < HIGH and process.signals#[]
25 then handle next signal, increase process.priority
26 else if not process.suspended and process.transition
27 then get next transition or execute next transition handler function
28 else if not process.suspended and process.schedule=[]
29 then execute next agent schedule block function
30 else if not process.suspended
31 then execute next agent activity and compute next transition,
32 decrease process.priority
33

8.3.2 Agent Roles

Security is another major challenge in distributed systems, especially con-
cerning mobile agent processes. Each agent platform node (i.e, one physical
VM, with multiple JAM VMs operating on the same network node) can receive
agents originating either from inside trusting node networks or coming from
untrustful networks unknown by the VM. Generally, the VMs have no informa-
tion about other network nodes except a sub-set of network connectivity used
to receive and propagate agent code. To distinguish at least trustful and not
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trustful agents, different agent privilege levels were introduces, providing dif-
ferent A/IOS API sets.

For security reasons and to limit Denial-of-Service attacks, agent masquer-
ading, spying, or other misuse, agents have different access levels (roles).
There are four levels:

0. Guest (not trusting, semi-mobile)
1. Normal (maybe trusting, mobile)
2. Privileged (trusting, mobile)

3. System (trusting, locally, immobile)

Privilege level O is the lowest level and grants agents only computational
and tuple-space 10 statements. The lowest level does not allow agent replica-
tion, migration, or the creation of new agents. Level 1 agents can access the
common A/OS API operations and capabilities, including agent replication, cre-
ation, killing, sending of signals, and code morphing. Level 2 agents are
additionally capable to negotiate (set) their desired resources on the current
platform, i.e., CPU time and memory limits. An agent of level n may only cre-
ate agents up to level n. The highest level (3) has an extended AIOS operation
set with host platform device access capabilities. Agents can negotiate
resources (e.g., CPU time) and a level raise secured with a capability-key that
defines the allowed upgrades. The system level can not be negotiated. Level-2
agents can initially only be created inside the JAM. They can fork level-2 agents,
but after a migration the destination node decides about the privilege level
and can lower it, e.g., considering the agent source being not trustful. A
migrated agent can get a higher privilege level by negotiation, requiring a valid
platform capability with the appropriate rights. After migration, the privilege is
lost and must be re-negotiated on a new platform using capabilities. The JAM
platform decides the security level. The capability is node specific. A group of
nodes can share a common key (identified by a server port). A capability con-
sists of a server port, a rights field, and an encrypted protection field
generated with a random port known by the server (node) only and the rights
field.

Among the AIOS level, other constrain parameters can be negotiated:

e Scheduling time (maximal slice time for one activity execution, default
is 20ms)

e Run time (accumulated agent execution time, default is 2s)

e Living time (overall time an agent can exist on a node before it is killed,
default is 200s)
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e Tuple space access limits

e Memory limits (practically fuzzy, usually the entire size of the agent
code including private data, actually unlimited)

8.3.3  The Execution Platform and Networking

The JAM execution platform consists of different virtualization layers. Each
physical JAM node (a program executed on a host platform, e.g., a smart
phone or server) has a logical world consisting of logical nodes (at least one).
Agent processes are bound to and executed on one logical node at any time.
Logical nodes can be connected by using virtual circuit links (queues), and
physical nodes can be connected by using peer-to-peer network connections
(sockets, IP links, UART serial links, and so on) or the DOS layer introduced in
the next section. Agents can migrate between logical and physical nodes. The
entire JAM (excluding DOS) platform requires about 600kB JS text code only.

8.3.4  Agent Process Mobility and Migration

The control state of an agent is stored in a reserved agent body variable
next, pointing to the next activity to be executed. The data state of an Agent/S
agent consists only of the body variables. There are no references to variables
outside the agent process context. Migration requires a snapshot of the agent
process, in this case the agent itself, a code-to-text transformation, transpor-
tation of the text code to another logical or physical node, and a back text-to-
code conversion with a new sandbox environment. The agent object is finally
passed to the new node scheduler and can continue execution. Text code
sizes of medium complex agents (with respect to data and control space) are
reasonable low about 10kB, simpler agents tend to 1kB, that can be signifi-
cantly reduced by using LZ compression. One drawback of this method raises
with pending scheduling blocks existing still in the snapshot. They must be
entirely saved in the migrated snapshot, too, and back converted to code on
the new node. Pending scheduling blocks contain function code and hence
can increase the snapshot size significantly. Therefore, migration (using the
moveto operation) requests should not be embedded in a scheduling block.

8.3.5  Security by Capability-based Authorization and a lightweight Dis-
tributed Organization System Layer

In the simplest case JAM nodes are connected by peer-to-peer network
links. But large-scale network environments like the Internet are organized in
hierarchical graph-like structures with changing and transparent connectivity.
To organize JAM nodes in such large-scale and heterogeneous networks, an
additional Distributed Organization System (DOS) layer is required. Further-
more, large-scale networks introduce new issues in privacy, security, and
trust, which must be addressed by the DOS.
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The fundamental communication concept of the DOS - that is entirely imple-
mented in JS (see [BOS16A] for details) - are Object-orientated Remote
Procedure Calls (ORPCQ), already introduced in Section 7.8 in the JAVM platform
context. They are initiated by a client process with a transaction operation,
and serviced by a server process by a pair of get-request and put-reply opera-
tions, based on the Amoeba DOS [MUL90]. Transactions are encapsulated in
messages and can be transferred between a network nodes. The server is
specified by a unique port, and the object to be accessed by a private struc-
ture containing the object number (managed by the server), a right
permission field specifying authorized operations on the object, and a second
port protecting the rights field against manipulation (see [MUL90] for details)
using one-way encryption with a private port. All parts are merged in a capa-
bility structure [srvport]obj(rights)[protport]. The rights field can only
changed with the original secret protection port (otherwise protport is invalid).

Capabilities are also used in this work for agent-platform negotiation, with a
server port designating a platform or platform group. Agent mobility (shown
in Figure 8.3) is performed by text-code transformations and by using a run
server. A capability rights field can be used to determine the maximal privilege
level of a migrated agent process.

The integration and network connectivity of client-side application pro-
grams like Web browsers as an active agent processing platform requires
client-to-client communication capabilities, which is offered by a broker server
that is visible on the Internet or Intranet domains, shown in Figure 8.3 (left). To
provide compatibility with and among all existing browser, node.js server-side,
and client-side applications, an RPC based inter-process communication
encapsulated in HTTP messages exchanged with the broker server operating
as a router is used. Client applications communicate with the broker by using
the generic HTTP client protocol and the GET and PUT operations. RPC mes-
sages are encapsulated in HTTP requests. If there is an RPC server request
passed to the broker, the broker will cache the request until another client-
side host performs a matching transaction to this server port. The transaction
is passed to the original RPC server host in the reply of an HTTP GET operation.

There is a Directory and Name Server (DNS) providing a mapping of names
(strings) on capability sets, organized in directories. A directory is a capability-
related object, too, and hence can be organized in graph structures. DNS
server can be distributed and chained in graphs, too. A capability set binds
multiple capabilities associated with the same semantic object, e.g., a file that
is replicated on multiple file servers.

Each directory contains rows and a set of columns for each row with differ-
ent restricted row capabilities enabling rights restriction and selection of
objects and authorization key, e.g., used for agent role negotiation, privilege
granting, code dictionary access. Column selection can base on the agent priv-
ilege level.

epubli, 1SBN 9783746752228 (2018)



S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

8.4 JAM Implementations

Sandbox _ scheduler
o=
Agent ‘M‘
DOS <:| s <:|
RPC -
-
BRO Network 1
KER —— Sandbox _ gscheduler
DOS ||| DOS JS
RPC ||| RUN
= f
-

Role/Privilege Capability

% —— Data
e

Yy

Fig. 8.3 JAM agent mobility using the DOS with text-code and code-text transforma-
tions. Capabilities determine the agent process role and privilege level
granted by the sandbox environment.

8.4 JAM Implementations

The JAM platform can be deployed on a wide variety of host platforms and
operating environments.

8.4.1 JAMLIB

JamLib is an embeddable JAM module that can be integrated in any host
application. The JamLib code does not depend on special IO modules. It
depends only on the core fs and util modules (command line version for
node.js/jxcore/f[YM) or a common WEB browser environment. jamLib is
intended for integration in mobile application software. It provides a unified
interface to JAM.

A JAM instance can be created to execute Agent/S agents. A JAM object
instance provides a standard interaction interface that enables access of the
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JAM by the host application. Agent execution can be controlled by using the
create, execute, migrate, and kill methods. The tuple apace, which offers
basic agent communication, can be accessed by the host application by the
inp, out, rd, and rm methods. Callback and 10 functions for tuple space access
of JAM, agent creation, and agent migration, can be defined, shown in Example
8.2.

The AIOS can be extended with additional functions that can be accessed by
AgentJS agents. The extend method adds a new host application function to a
specific privilege level set. Functions added to A/OS provide agents the possi-
bility to access variables and functions outside of the sandbox and the A/OS!
An AIOS function may not return references to functions or external objects
(variables)! This would violate the sandbox approach. Especially external func-
tion references would be unusable after an agent has migrated. Extension
functions cannot access the agent object itself.

Agent mobility requires the transfer of agent code in textual JSON+ format
snapshots from one JAM node to another. A host application must provide a
way to send a text message to a specified destination, and to pass text mes-
sages containing JSON+ agent snapshots to the JAM. Received snapshots can
be executed by simply calling the JAM method migrate. Received signals can
be passed by the signal method to the JAM execution engine. In the other
direction, the host application must provide a connection to the outside
world. This is done by the connections option passed during the JAM
instantiation.

Ex. 8.2 Simple JamLib usage

var Jam = require('pathto/jamlib');

1

2

3 Send agent data in JSON+ format to node specified by dest (string path)
4 function send (data,dest) {

5 Send data ..

6 return data.length;

7

8

}

9 Test if a destination 1is reachable.
10 function link (dest) {

11 return true;

12 1}

14 Define a tuple provider function
15 function provider(pat) {
16 switch (pat.length) {

17 case 2:
18 switch (pat[@]) {
19 case 'SENSOR2':
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20 return [pat[0], (256*rnd())|0];
21 }

22 break;

23 }

24 %}

25

26 Define a tuple consumer function

27 function consumer(tuple) {

28 switch (tuple.length) {

29 case 3:

30 switch (tuple[0]) {
31 case 'ADC':

32 console.log('Host application got '+tuple);
33 return true;

34 }

35 break;

36 }

37 return false;

38 }

39

40 Create JAM 1instance
41 var myJam = Jam.Jam({

42 connections : {
43 path: {send:send,link:1link}
4},

45 consumer:consumer,

46 print:console.log,

47 provider:provider,

48 verbose:0,

49 1);

560 myJam.init();

51 myJam.start();

52

53 Define a simple agent class template
54 function ac(argl,arg2) {
55 this.x=argl;

56 this.y=arg2;

57 this.act = {

58 init: function () {log('init '+this.x)},

59 comp: function () {this.x++;this.y--;log(this.x+"', '+this.y)},
60 wait: function () {sleep(1000);}

61 }s

62 this.trans = {

63 init: function () {return comp},

64 comp: function () {return wait},

65 wait: function () {return comp}

66 s
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67 this.next="1init’;

68 }

69

76 Create agent on this JAM instance (root node) directly using the
71 constructor function

72 var al = myJam.createAgent(ac,[1,2],1);

73

74 Or compile the agent class constructor and add it to the world Library
75 myJam.compileClass(ac);

76 Create agent using the loaded agent class identified by the class name

77 var a2 = myJam.createAgent(’ac’,[1,2],1);

8.4.2 JAMSH: JAM Shell

The JAM shell provides an interpreter API for the JAM library. The supported
shell commands that can be executed via the shell command line or from a
script file are summarized in Definition 8.7.

Def. 8.1 JAM shell commands

Shell Commands

add({x,y})
Add a new logical (virtual) node

connect({x,y},{x,y})

Connect two logical nodes
connected(to:dir)

Check connection between two nodes
compile(function)

Compile an agent class constructor function
create(ac:string,args:*[]|{},level?:number,node?)

Create an agent from class @ac with given arguments @args and @level
exit

Exit shell
extend(level:number|number[],name:string,function,argn?:number|num-
ber[])

Extend AIOS
http(ip,dir,index?)

Create and start a HTTP file server
inp(pattern:[],all:boolean)

Read and remove (a) tuple(s) from the tuple space
kill(id)

Kill an agent
link(to:dir)

Connect two phyiscal nodes

log(msg)
Agent logger function
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open(file:string)

Open an agent class file
out(tuple:[])

Store a tuple in the tuple space
port(dir,options,node)

Create a new physical communication port
rd(pattern:[],all:boolean)

Read (a) tuple(s) from the tuple space
rm(pattern:[],all:boolean)

Remove (a) tuple(s) from the tuple space
script(file:string)

Load and execute a jam shell script
setlog(<flag>,<on>)

Enable/disable logging attributes
signal(to:aid,sig:string|number,arg?:*)

Send a signal to specifid agent
start()

start JAM
stats(kind:"process

Return statistics
stop()

stop JAM
ts(pattern:[],callback:function(tuple)->tuple)

Update a tuple in the space (atomic action) - non-blocking
time()

print AIOS time
unlink(to:dir)

Disconnect remote endpoint
verbose(level:number)

Set verbosity level

" | nnodell | llvmn

An example script is shown below in Example 8.3. The script defines an
agent class constructor function fib that is immediately compiled and ana-
lysed. Finally, the JAM scheduler loop is started and an agent is instantiated
from the previously installed agent class.

Ex. 8.3 JAM shell script example

function fib(args) {
this.todo = args.val;
this.output = [];
this.f = function(n) {
return n < 2 ? n : this.f(n-2) + this.f(n-1)
}

this.act = {
calculate: function() {
var n = head(this.todo)
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this.todo = filter(this.todo, function(elem) { return elem !=n })
var result = this.f(n)
this.output.push(result)

¥

print: function() {
var next = head(this.output)
this.output = filter(this.output, function(elem) {

return elem != next });

log(next)

}

}

this.trans = {
calculate: function() {
return empty(this.todo) ? print : calculate

}s
print: function() {

if(empty(this.output)) {
log('Killing agent')
kill()

}

return print

}
}

this.next = calculate

}

compile(fib)
start()

on(’1link+’,function () {
create('fib', {val: [10, 5]})

})s
port(DIR.IP(°134.102.219.1:10001°));

1ink (DIR.IP(’10.102.1.2:10001°));

8.4.3 JAMAPP: JAM Application Program

The JAM App provides a GUI for the JAM library and is available for node.js
(jxcore) and WEB browser. The JAM App has a multi-page view and provides
configuration (setup), network control, JAM control and diagnostics, agent con-

trol and information, and message logging.
The WEB browser version is a mixed HTML/CS/JS application and includes

JAM (JAM library) accessed by only one HTML page. The entire WEB package
can be loaded from a http server running inside a JAM shell. The size of the
entire WEB package is only about 1MB ensuring fast loading and includes the

entire GUI framework.
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Fig. 8.4 (Top) Browser version of the JAMapp with multi-page navigation (Bottom) Ter-
minal version of the JAMapp

8.4.4 ]S Execution Platforms

Originally, JAM was executed on node.js or by a WEB browser JS engine. On
some host platforms the more portable jxcore VM was used. Basically, node.js
and jxcore add an event-processing and IO layer on the top of a core JavaScript
engine providing asynchronous (callback-based) 10 and event processing.
They use Googles V8 JavaScript engine offering just-in-time (JIT) native code
compilation. But both V8-based execution platforms require a substantial
amount of memory, even on start-up (about 30-50M), see the following per-
formance evaluation section. On low-resource platforms, used, e.g., in the loT
with less than 128MB RAM, the V8 engine with its JIT approach cannot be
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used. To deploy JAM on low-resource platforms, the JVM execution engine was
developed. JVM is based on Samsungs jerryscript engine and the /oT.js project.
JVM is a byte code engine that compiles JS directly to byte code from a parsed
AST. This byte code can be stored in a file and loaded at run-time. JVM is well
suited for embedded and mobile systems, e.g., the Raspberry Pl Zero
equipped with an ARM processor. JVM has approximately 10 times lower
memory requirement and start-up time compared with nodes.js.

8.4.5 JAM Connectivity

JAM agents are mobile, i.e., a snapshot of an agent process containing the
entire data and control state including the program specifying the agent
behaviour, can migrate to another JAM platform. JAM provides a broad range
of connectivity, shown in Figure 8.5, available on a broad range of host plat-
forms. There is Peer-to-Peer (P2P) connectivity between neighbour nodes by
using, e.g., serial links used in mesh-grid networks, and wide-area connectiv-
ity, i.e., Internet, by using the Distributed Organization System layer (DOS) and
a broker server.

In P2P connectivity, JAM nodes communicate via the Agent Management
Port (AMP). AMP provides messaging between JAM nodes for agent migration,
signal and tuple migration, and agent control. AMP messages can be trans-
ferred via any stream-like link. Additionally, an external monitor program
(debugger) can connect to a JAM node via AMP.

‘ JAM Inter-node Connectivity ]

[ I RS232 Buffer ‘ '

AMP (virtual) Do i_g
.
| | |

FIFO | UDP HTTP
RS232

Unicast ( Multicast | | | |
S ~——— FIFO UDF TCP FIFO UDP TCP HTTP

P2P ‘ Broker

Fig. 8.5 JAM Connectivity (P2P: Peer-to-Peer, AMP: Agent Management Port, DOS: Dis-
tributed Organization Layer)
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On the Internet IP-based protocols are commonly used to provide AMP
message passing between JAM nodes using UDP, TCP, or HTTP protocols. One
common issue are private or virtual networks with Network Address Traversal
(NAT). To establish UDP communication between NAT networks, an external
public rendezvous broker providing UDP hole punching techniques can be
used. In this case, JAM nodes register on the broker with their node name, and
other JAM nodes can connect to the (IP hidden) JAM nodes by their node
names. The broker supports domain services (partitioning of nodes in
domains/groups, e.g., based on GPS data).

8.5 Performance Evaluation

In [BOS16A] and [BOS17A], the performance of JAM was evaluated on dif-
ferent host platforms and using different JS VMs.

The JAM platform was evaluated with different benchmark tests executed
on different host platforms (A & B), in terms of Clouds low-resource and in
terms of loT mid-resource systems. Please note that the measurement results
depend on the JS VM garbage collector algorithm and activity at run-time.

The following host platforms were used in the following performance evalu-
ation, and one physical JAM is usually composed of a JAM world consisting of four
logical (virtual) nodes, connected in a grid (ring) with virtual circuit links (queues):

Test host platform A
Embedded System, Intel(R) Celeron(R) CPU 743 @ 1.30GHz, 2GB DRAM, node.js
v0.10.36, Sun Solaris-11 OS,

Test host platform B
Smartphone, Toughshield R500+, 1GB DRAM, Android 4.1.2, quad-core Arm Cortex
A5, ARMv7-A, 1.2GHz, jxcore v.0.10.40

Test host platform C
Hewlett-Packard HP xw9400 Workstation, AMD Opteron 2216 2.4GHz x64, node.js and JVM

Test host platform D
Lenovo, ideapad, A-10, quad-core Rockchip A9 processor running at 1.6GHz, node.js and
JVM

Test host platform E
Raspberry Pi Zero, Broadcom 1GHz ARM11, node.js

The creation (instantiation) or forking of new agents always involves a code-
to-text and text-to-code transformation using the sandbox environment. The
performance of this operation is shown in Table 8.7 and 8.2, for a small and a
complex agent class performed on a PC (A) and mobile computer (B). Below
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1000 agents/physical JAM an agent creation requires about 1-5ms, and the
memory overhead is reasonable small. Migration requires the same code
transformation, resulting in similar results, shown in Table 8.3. The ARMv7
host platform under-performs significantly compared with the x86 platform.
This has two reasons: The ARMv7 processor has smaller code/data caches
(L1:32 vs. 64kB, L2:512kB vs. 1MB), and the node.js/jxcore VM is optimized for
x86 architectures. Table 8.4 shows the agent context switch performance of
the JAM scheduler, which is very fast. Again. the ARMv7 platform under per-
forms, but is still fast enough for mobile devices. Tuple space I/0 adds only a
small overhead, as shown in Table 8.5. Finally, Table 8.6 poses the minimal
memory requirement for a JAM node with a typical agent population. Com-
monly, less than 32MB is required, confirming the suitability of JAM for low-
resource embedded systems.

The processing performance of JAM depends on the host platform (com-
puter, server, smart phone, embedded system) and the used JS engine
(node.js/V8, jxcore/N8/Spidermonkey, JVM).

Creation of Agents Time/Agent +Memory/Agent
100 A:0.7ms, B: 1.7ms A:2.0kB, B: 17.9kB
1000 A:0.7ms, B: 2.4ms A:2.9kB, B: 21.7kB
10000 A:23ms, B: 10.6ms A:18.2kB, B: 17.5kB

Tab. 8.1 Test Case 1: Agent creation on a logical (virtual) node, simple agent (text
code size 0.9kB, five activities each with two statements, two variables
and two parameters), memory: VM overhead/agent (heap+stack)

Creation of Agents Time/Agent +Memory/Agent
100 A:1.6ms, B:4.5ms A:11.5kB, B:131kB
1000 A:1.6ms, B: 5.1ms A:91kB, B: 83.8kB
10000 A:3.1ms, B:- A:80.8kB, B: -

Tab. 8.2 Test Case 2: Agent creation on one logical (virtual) node, complex
learner agent (with agent text code size 10.4kB, two sub-classes:
explorer, voter, total 20 activities, each with about 10 statements, 33
variables, and two parameters) memory: VM overhead/agent
(heap+stack)
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Initial Agents / Migrations/ Migration+ Execu- +Memory/Physi-

logical node Agent (total)  tion Time/Agent cal node

(total)

1(4) 1000 (4000) A:1.3ms, B: 4ms A:28MB, B:16MB

10 (40) 1000 (40000) A:1.0ms, B: 3.7ms A:26MB, B:17MB

100 (400) 1000 (400000) A:1.1ms, B: 3.3ms A:70MB, B:28MB
Tab. 8.3 Test Case 3: Agent migration from one logical (virtual) node to a neigh-

bour node, physical node with four logical nodes connected in a ring,
explorer agent (with agent text code size 4.3kB), n agents on each logical
node, N circular migrations in the ring network two activity executions/
agent/migration, memory: VM overhead/agent (heap+stack)

Agents / logical Scheduled Activi- Scheduling + +Memory/Physi-
node (total) ties/Agent (total) Execution cal node
Time/Agent
1(4) 20000 (80000) A:16us, B:67us  A:5MB, B: 7 MB
10 (40) 20000 (800000) A;8us, B:33us  A:6MB, B: 9MB
100 (400) 20000 (8000000) A:8us, B:29us  A:20MB, B: 9MB
Tab. 8.4 Test case 4: Agent scheduling on four logical (virtual) nodes, simple

agent (text code size 1kB, five activities each with one statement, two
variables, and two parameters), memory: VM overhead/physical node
(heap+stack)

Agents / logical  Scheduled Scheduling + 10 +Memory/Physical

node (total) Activities/ Execution Time/  node

Agent (total) Agent

1(4)

2000 (8000) A:31ps, B:15Tus A:4MB, B: 7MB

10 (40) 2000 (80000) A28ps, B:119 us A:6MB, B: 7MB
100 (400) 2000 (800000)  A:64pus,B:217us  A:26MB, B: 16MB
Tab. 8.5 Test case 5: Agent scheduling on four logical (virtual) nodes, simple

agent with Tuple Space I/0 (pairwise "out/in" in different activities) (text
code size 1kB, five activities each with one statement, two variables, and
two parameters), memory: VM overhead/physical node (heap+stack)
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1 A:23.2MB, B: 25 MB
10 A:23.7MB, B:25 MB

100 A:31.1MB, B: 38 MB
1000 A:104MB, B: 107 MB

Tab. 8.6 Test case 6: Lowest memory requirements in minimal JAM configuration
(1 world, 1 node), agent creation on one logical (virtual) node, complex
machine learner agent (text code size 10.4kB, LZ compressed size 2.1kB,
two sub-classes: explorer, voter, total 20 activities, each with about 10
statements, 33 variables, and two parameters), with VM parameter --
max-new-space-size=1024, total VM memory=heap+stack, after agent
creation.

Commonly a JS VM compiles JS source text to an intermediate Abstract-Syn-
tax-Tree (AST) representation. Simple VMs interpret this AST, enhanced VMs
compile the AST to native or virtual machine code for improved execution
performance.

JVM is a Byte-code interpreter compiling JS text code to Byte-code at run-
time directly from parsed AST, and V8-based machines are hybrid interpreters
combining Byte-code execution and just-in-time (JIT) native code generation.
Byte-code engines have the advantage over native code engines to have a
high degree of portability, but the disadvantage of slower execution speed
(~100 times). Native code engines have a much higher memory consumption,
shown in the experimental evaluation and comparison in Table &8.7.

In all benchmark experiments in Table 8.7 the JAMLIB code library was used.
The creation and migration of agents require text-to-code and code-to-text
transformations that are computational expensive (see A1 benchmark).

Though the computation speed of JVM is about 100 times slower compared
with V8 engines, the agent activity computation performance is only 3-4 times
slower (see FFT benchmark F1).

This is a result of a watchdog timer built in the JVM byte code interpreter
required by JAM for agent scheduling and time slicing.

The watchdog raises an exception if an agent activity exceeds the (negoti-
ated) time slice. In V8 engines this watchdog approach cannot be
implemented (due to the native code compilation), and must be emulated by,
e.g., check pointing, which injects checkpoint function calls in the agent code
(in all functions and loops), slowing down the agent activity execution signifi-
cantly. The watchdog extension is discussed in the next section.
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JS VM/Benchmark Host C Host D Host B Host E
JVM, A1, N4, n=100 1.6/9.7ms 4.8/21.6ms 8.4/49ms -
Creation/Migration 3/4MB 2/3MB 2/3MB

ND1, A1, N4, n=100 0.2/1.1ms - - -
Creation/Migration 27/36MB

ND2, A1, N4, n=100 0.13/Tms - - 2.2/15ms
Creation/Migration 21/32MB 15/27MB
JVM, F1, D2000, n=10 1300ms 3000ms 4200ms
Computation, 6MB 5MB 5MB

ND1, F1, D2000, n=10 400ms - - -
Computation 45MB

ND2, F1, D2000, n=10 550ms - - 300ms
Computation 35MB 40MB

Tab. 8.7 Benchmarks comparing different JS VMs. All times per agent and
action, all memory values are total JAM resident memory after the
benchmark operation, A1: Simple Explorer Agent, F1: FFT Computation
Agent, ND1:node.js v5.11, ND2: node.js v0.10, n: Number of agents, N:
Number of logical nodes, D: Size of data vector

8.5.1  Watchdog Control and Time Slicing

There are two bottlenecks in the JS VM related to agent process control
(including creation, forking, migration of agents) and agent process execution:
(1) Efficient text-code and code-text transformation (2) Time slice control of
agent activity execution using a watchdog. The fall-back solution of time slice
control working on all platforms is the injection of checkpoint function in the
agent code prior execution (used in the previously shown evaluation). The
checkpoint function reduces execution performance and slows down text-
code transformation. An advanced method is the modification of the /S VM
with built-in watchdog control. Such a watchdog and more AIOS related
enhancements were added to the jxcore and jerryscript engines leading to
AlOS-optimized jxcore+ and jvm engines (based on V8.3.28 with node.js 0.10.40
and jerryscript 1.0 with iot.js, respectively)

There are two different approaches compared in Figure 8.6.
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Fig. 8.6 Two different approaches extended common JS VMs with watchdog control:
(a) V8 Isolate used in jxcore+ (b) Watchdog control embedded in Bytecode VM
used in jym

V8 Isolate

This watchdog implementation utilizes the V8 isolated context instance for
the execution of the AIOS. An isolated instance enables the protected exe-
cution of agent code with pre-emptive termination of the code, finally
throwing JS exceptions directed to the AIOS. The termination of the agent
processing is performed by a different timer thread or a native timer. An
agent activity is executed by the JAM scheduler in an isolated container. The
watchdog is implemented with a timer started on each agent activity pro-
cessing and that terminates the agent process if a time-out occurs (time-
slice, typically 20ms). The agent activity termination is transformed in a JS
exception that is handled by the JAM scheduler.

Embedded Bytecode Interpreter
The time-out control is embedded in the Bytecode interpreter loop. On
each Bytecode command execution the process time-out is checked. If a
time-out event occurs, the Bytecode interpreter raises a JS exception direct-
ly that is handled by the JAM scheduler.
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Different benchmarks were performed with jamlib version 1.19.3 compar-
ing different JS VMs with and without watchdog control, shown in Table 8.8.

Benchmark Jxcore+ node.js 5.9.0 jvm node.js
1.3.3X Code CP Watchdog  0.10.40
Watchdog Code CP
creation - us - us - us -
N=1000 - MB - MB - MB
scheduling 4.6 us 2.8 us - us 2.0 us
N=100, M=1000 37 MB 38 MB - MB 26 MB
migration 560 us 750 us - 650 ps
N=100, M=100 150 MB 63 MB 62 MB
computation (fft) 26 ms 153 ms - 120 ms
N=100, M=10 110 MB 73 MB 58 MB

Tab. 8.8 Benchmarks comparing the impact of a watchdog versa code check point-
ing on performance. All times per agent and action, all memory values are
total JAM resident memory after the benchmark operation; Host: i5-4310,
2GHZ, 6GB RAM, Solaris 11.3; N: Number of agents, M: Number of
iterations

8.6 SEJAM: The JavaScript Agent Simulator

There is a simulation environment build on the top of JAM, SEJAM, discussed
in Section 77.7. The simulation environment adds a GUI with visualization
capabilities to JAM. One of the key features of SEJAM is the capability to inte-
grate the simulator in real world JAM networks (similar to hardware-in-the-
loop simulation).

Additionally, SEJAM is a multi-domain simulator that can be used to combine
MAS and physics simulation in one monolithic program.

The coupled physical and computational simulation consists of two
engines:

e Physics: Multi-body physics solver using a mesh-grid network of nodes
connected by damped springs that can be parametrized (Canon); and

e Computation: Mobile Multi-Agent Systems and Networks of JavaScript
Agent Machines processing agents.
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The simulator features a fully JavaScript based modelling and programming
environment, and SEJAM2 is programmed entirely in JavaScript, too! Agents
are deployed in ICT networks:

e Each node of the network is coupled to sensors and actuators

e Agents can access sensors and control actuators

e Sensors and actuators are modelled with multi-body physical systems
e Direct interaction between agents and physical system and vice versa

The physical model can be accessed by all agents, shown in Fig 8.7. A MAS
simulation consists of node and worker agents. There is one artificial agent
(world agent) representing the world and manages the simulation, i.e., gener-
ating and updating sensor data accessed by the node and worker agents by
using the unified tuple-space interface. The world agent can read and modify
physical simulation variables, i.e., reading strain, force parameters, and set-
ting material/structure properties (stiffness).

ST telteltel

JavaScript
HTML/CSS

CANNON

Ag Sim Phy }JavaScriptlJSON

Fig. 8.7 SEJAM2 Simulation Environment (Left) MAS (Right) Physics (Top) Agents, N:
Node, R: Mobile Worker, W: World (Middle) Model, Ag: AgentJS, Sim: Simula-
tion, Phy: Cannon Model
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T T T e T

Fig. 8.8 SEJAM?2 Simulator with a combined MAS (center) and MBP simulation (right)
based on JST//S/|SON modelling.

A snapshot of a simulation run with a plate consisting of a 8x5x3 network of
computer and mass nodes connected by springs is shown in Figure 8.8. The
objective of the complex simulation is to investigate the interaction of compu-
tational systems (agents) with sensors, actuators, and physical systems.

8.7 Heterogeneous Environments

JAM can be already deployed in heterogeneous environments composed of
devices ranging from embedded computers up to servers. But JAM requires a
JS VM that requires a substantial amount of memory and computational
power. Very low-resource host platforms like single microchip computers with
a size about Tmm? are unsuitable. The PAVM platform meets the require-
ments of very low-resource hosts. Although both platforms support agents
with nearly the same behaviour and operational model they are not compati-
ble on code level.

To enable the composition of future large-scale applications ranging from
very-low-resource nodes (1mm? computers integrated in materials, smart
materials and structures) to high-resource devices (generic computers, serv-
ers, mobile and embedded devices), both platform architectures must co-
exist supporting agent migration seamlessly. This co-existence demands a
compatibility layer by introducing an on-the-fly cross-compiler enabling agent
mobility between different platform technologies seamlessly, shown in Figure
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8.9. This just-in-time cross-compiler translates agents to AgentFORTH object
code to Agent/S text code agents and vice versa by preserving the entire agent
state. This compiler is optimally contained in JAM as a service. AgentJS is a
dynamic language with dynamic storage management, whereas AgentFORTH is
a static language with storage allocated on agent creation.

Code FORTH
Frame

PC | DS RPAVIV

PAVM
— -
JavaScnthM

ﬁnﬁ-

JavaScrlp!

Fig. 8.9 Dual-machine approach coupling JavaScript JAM and FORTH code PAVM by
using a Just-in-Time agent code cross-compiler (J2F: JavaScript-to-FORTH)

The F2J direction is always possible, but the opposite J2F direction is cur-
rently not fully defined and requires constrained JS (with pseudo-static
memory allocation).

8.8 Further Reading

1. A. Aravinth, Beginning Functional JavaScript - Functional Programming
with JavaScript Using EcmaScript 6. Apress, ISBN 97814842-26551, 2017.
(Note: JAM only supports EcmaScript 5)

2. H. Mehnert, ]. Ohlig, and S. Schirmer, Funktional programmieren lernen
mit JavaScript. O'REILLY, 2013.

3. H. Lin, Architectural Design of Multi-Agent Systems. |Gl Global, 2007, ISBN
9781599041087
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4. U. Holzle, Adaptive Optimization for Self: Reconciling High Performance
with Exploratory Programming, Stanford University, 1994.
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