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This chapter addresses various simulation approaches to study the opera-
tional behaviour of MAS and the agent process platform themselves,
distinguishing between behavioural and platform simulation.

11.1 The SeSAm Agent Simulator

Agent-based simulation involves different tasks [KLUO9]: The Design of a
simulation model, the implementation of a computer simulation model, the
observing and controlling of the simulation, the observing and immersive
testing, calibration and experimentation, and finally the output interpretation.

The SeSAm (Shell for Simulated Agent Systems, details can be found in
[KLUO9]) offers a GUI-based modelling, simulation, and visualization environ-
ment that was developed to address most of the previously mentioned tasks.
A SeSAm simulation model describes the elements of a multi-agent model: The
structure and dynamics of agents and their environment, the configuration of
situations, instrumentation, and the experimental setup including the
visualization.

For a runnable simulation the following parts must be addressed and the
steps must be performed [KLUO9]:

1. Modelling of the data set with built-in and user defined primitive and
data types;

2. Declaration of Agents, Resources, and the world environment provid-
ing the structure and the dynamics of the entire system to be simu-
lated;

3. Configuration and Communication (Protocol) Declaration;
4. Integration to the Simulation Run Configuration;
5. Experiment and Interface Declaration.

In SeSAm, there are agents capable of moving in a two-dimensional world. A
geometric object can be assigned to an agent, visualizing the current position
of the agent in the world. The world is treated as a non-mobile agent, too.
Finally, there are resources that are passive. The structure diagram of the
SeSAm simulation model is shown in Figure 77.7.

An agent consists of body variables, a geometric shape (optional), and a
reasoning engine describing the agent behaviour. The reasoning engine is
modelled with an activity-transition graph, similar to the AAPL model. An activ-
ity executes actions that can have different effects (the outcome):

¢ Modification of the body variables of the agent or the public visible
body variables of other agents, resources, and the world;
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Fig. 11.1  SeSAm Simulation Model Diagram

e Change of the spatial location or the geometric shape of an agent;
e Creation of new or the destruction of existing agents or resources;

e Social contact to other agents and perception by reading public visible
body variables of other agents.

In contrast to the AAPL behaviour model, there is only one control thread,
preventing the implementation of signal handlers directly. Furthermore,
SeSAm agents interaction bases on the shared memory paradigm. And finally,
the ATG cannot be modified at simulation time (no activities and no transi-
tions can be added, modified, or removed).

The SeSAm run-time simulator schedules all agent updates (executing activi-
ties) randomly. An agent update cycles starts with the world update first. This
is the only inherent synchronisation constraint in the simulation run and sim-
ulation environment seen by the agents.

epubli, ISBN 9783746752228 (2018)



S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

m Chapter 11. Simulation

11.2 Behavioural AAPL MAS Simulation

The behavioural simulation of the agents based on the AAPL model using
the SeSAm agent behaviour model, which represents only a partial subset of
the AAPL model, and hence requires the application of some transformation
rules:

a. Each AAPL agent class AC;is implemented with a SeSAm agent class S;

b. Each AAPL subclass AC; ;is implemented with a SeSAm agent class S;. At
run-time different agents exist derived from each subclass;

¢. Functions and procedures of an AAPL agent class AC; must be imple-
mented with SeSAm feature class Fj;

d. AAPL signal handlers required for the parent-child agent group com-
munication must be implemented with a separated SeSAm agent class

Sisig- At simulation time each AAPL agent having signal handlers is
associated with a shadow agent of the class S;

e. Signals € are passed by synchronized queues;

f. AAPL activities a; that contain blocking statements (tuple space access
and waiting for time-outs) require a split into a set of computational
and blocking SeSAm activities a; = {a’; , a’; 2, @’; 3..-%:

g Migration of agents is only virtual by changing the position of a SeSAm
agent and connecting the agent to the new node agent infrastructure.
Migration of agents requires the migration of the shadow agents (sig-
nal handler agents), too.

sigr

In addition to real hardware and software implemented agent processing
platforms there is the capability of the simulation of the agent behaviour,
mobility, and interaction on a functional level. The SeSAm simulation frame-
work offers the necessary platform for the modelling, simulation, and
visualization of mobile multi-agent systems deployed in a two-dimensional
world. The behaviours of agents are modelled with activity graphs (specifying
the agent reasoning machine) close to the AAPL model. Activity transitions
depend on the evaluation of conditional expressions using agent variables.
Agent variables can have a private or global (shared) scope. Basically, SeSAm
agent interaction is performed by modification and access of shared variables
and resources (static agents). In addition to the agent reasoning specification
there are global visible feature packages that define variables and function
operating on these variables. Features can be added to each agent class.
Agents can change their position in the two-dimensional world map enabling
mobility, and new agents can be created at run-time by other agents. The
SeSAm framework was chosen due to the activity-based agent behaviour and
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the data model, which can be immediately synthesized from the common
AAPL source and can be imported by the simulator from a text based file
stored in XML format. This model exchange feature allows the tight coupling
of the simulator to the synthesis framework.

In principle, AAPL activity graphs can be directly mapped on the SeSAm agent
reasoning model. But there are limitations that inhibit the direct mapping.
First of all, AAPL activities (I0/event-based) can block (suspend) the agent pro-
cessing until an event occurs. Blocking agent behaviour is not provided
directly by SeSAm. Second, the transition network can change during run-time.
Finally, the handling of concurrent asynchronous signals used in AAPL for
inter-agent communication cannot be established with the generic activity
processing in SeSAm (the provided exception handling is only used for excep-
tional termination of agents).

For this reason, the agent activity transitions including the dynamic transi-
tion network capability are managed by a special transition scheduler, shown
in Figure 77.2. This transition scheduler handles signals and timers, too, which
are processed prioritized and passed to the signal scheduler. Each agent activ-
ity is activated by the transition scheduler. After a specific activity was
processed, the transition scheduler is activated and entered again. An AAPL
activity can be split in computational and 10/event-based sub-activities in the
presence of blocking statements (e.g. in and rd tuple space interaction).

There is a special node agent implementing the tuple database with lists
(partitioned to different spaces for each dimension), and managing agents
and signals actually bound to this particular node.
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Fig. 11.2  AAPL behavioural simulation model mapped on the SeSAm MAS model
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Concurrent manipulation of lists is non-atomic operations in SeSAm, and
hence requires mutual exclusion.

The AAPL mobility, interaction, configuration, and replication statements are
implemented by feature packages.

11.3 Simulation of Real-world Sensor Networks

The simulation of the operation of entire sensor networks deploying MAS
commonly requires real data from the environmental world, which does not
exist. To overcome this limitation, the SeSAm agent simulator was embedded
in a database centric unified simulation environment, connecting the MAS
simulator with FEM and numerical computation programs (e.g., MATLAB),
shown in Figure 77.3. This approach introduces multi-domain and multi-scale
simulation capabilities.

The central part of the simulation framework is an SQL database server
enabling the data exchange and synchronization between different programs,
mainly the Multi-Agent Simulator SeSAm and the MATLAB program used, for
example, for inverse numerical computations.

saL
Sto
[] Node [ Node %’?’é
["] Agent Manager | Virtual Machine
1 Network Manager M Network Connection MATLAB Computation
W Signal Manager M Virtual Agent Process  Data Exchange
& RPC
SESAM MAS Simulator | L «aC e
I
!  Jom—

RPC
Manager « () « AFC Complier

>

saLp @»

3
Simulatio“n Control D D
L4

SHELL Soues

SEM Complier o @%
g -y B Qe _

Fig. 11.3  Simulation Framework with a database approach: Multi-Agent Simulator
SeSAm, MATLAB, and other utility programs are exchanging data and synchro-
nizing using an SQL database server, which provides an RPC interface for
synchronization, too.
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A Remote Procedure Call (RPC) interface provides synchronization between
the programs of the framework. All programs are communicating with the
database server by using named file system pipes.

This approach has the advantage to require only a native file system inter-
face for connecting a heterogeneous program environment, supported
basically by all programs. No program modification and no special database
or inter-process communication modules are required.

11.4 PCSP Platform Simulation

This section will demonstrate that agent-based simulation is suitable to for
the simulation of the PCSP agent processing platform itself and large scale dis-
tributed networks, e.g., sensor networks, using the agent-based SeSAm
simulator. Simulation and analysis of parallel and distributed systems are a
challenge. Performance profiling and the detection of race conditions or
deadlocks are essential in the design of such systems, where the agent pro-
cessing platform is a central part. Furthermore, platform simulation allows
the estimation and optimization of static resources like agent tables or
queues, completed with the ability to study the temporal behaviour of the
entire network including communication treated as a distributed virtual
machine, e.g., identifying bottlenecks for specific task situations, hard to mon-
itor in technical systems.

Behavioural simulation [BOST4A][BOS14B] maps agents of the MAS to be
tested directly and isomorphic on agent objects of the simulation model. Plat-
form simulation uses agents to implement architectural blocks like the agent
manager or activity processes. Hence, agents of the MAS are virtually repre-
sented by the data space of the simulator, and not by the agent objects
themselves.

The simulation of the processing platform with large scale networks pro-
cessing large scale MAS aid to modify and refine the PCSP architecture, and to
tune the static resource parameters like token pool and queue sizes or activity
process replication to optimise timing. The platform simulation allows a fine-
grained estimation of the required resources.

11.4.1 The Simulation Model

The networks to be simulated (aka. the simulated world) consist of nodes
arranged in a two-dimensional mesh grid, with each node connected to his
four neighbour nodes, shown in Figure 77.4 for a 10 by 10 sensor network
with dedicated computational nodes at the outsides of the network. The
entire platform and network system is partitioned into different non-mobile
agent and resource classes (a resource is a passive agent with a data state
only):
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World Agent. The world agent creates all node agents and provides some net-
work wide services. The world agent implements a reduced physical
environment, e.g., by creating sensor signals or by disabling (destroying) con-
nections between network nodes. Connections are represented by resources
(passive agents providing only a geometric shape and body variables).

Node Agent. Each node is represented by a node agent, basically providing a
common interface to data structures and tables required by the node manag-
ers and the activity processes. The node agent creates all the platform agents
at the beginning of the simulation run.

Manager Agent. There is one "agent manager" agent for each agent class that
is supported on the network node platform.

Network Manager Agents. There are two network manager agents. One input
network manager agent handling incoming messages from neighbour nodes,
decoding messages, creating agent or signal tokens, and finally passing the
tokens to the agent or signal manager. The second output network manager
agent is responsible for encoding and sending of messages carrying agent
states or signals.

Activity Process Agents. For each agent class and each activity process of an
agent class there is one activity processing agent performing token-based
agent processing. The sub-states of an activity process are implemented by a
simple sub-state selector and token loop-backing providing a sub-state FSM.
Each activity process agent has local storage and a global visible token input
queue.

Monitor Agent. There is one monitor agent per world collecting temporal
resolved statistical data, finally writing the results to a CSV data file.

Token and Queues. The agent token queues are implemented with lists in the
body variable space of each node agent. The size of the list can be monitored
at run-time to detect resource underflow. Mutex-guarded operations
(ing,outq) allow concurrent access to the queues by different agents (man-
ager, activity processes,..). Tokens are record structures with additional
descriptive entries like the current queue they are stored in.

Virtual Agent. For visualization and debugging there is a mobile virtual agent
resource representing an agent to be processed by a specific agent node plat-
form. The virtual agent references the data and control state of an agent.
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Fig. 11.4  Simulation world of a sensor network (left) consisting of 10x10 nodes and the
network populated with non-mobile platform and virtual mobile agents (right)

11.4.2 Performance Analysis with an Use-case

The platform simulation was compared with the behavioural simulation
from previous work in Table 77.7 for the simulation of a self-organizing MAS
used for feature extraction in a sensor network. The behaviour model of the
MAS is described in detail in [BOS14B]. It bases on a distributed divide-and-
conquer approach. The number of (non-mobile) agents implementing the
processing platform depends mainly on the number of activities decomposing
the agent behaviour and the number of agent classes to be supported on the
platform. For this example, the platform simulation model requires five times
more agents and twenty times more computing time than the behavioural
model. But the required resources and computing time for the fine-grained
platform simulation is still reasonable and can be handled well with low end
computers.

The analysis of a simulation run is shown in Figure 77.5. It shows the tempo-
ral resolved analysis of the population of explorer agents of the MAS and the
utilization of the PCSP network for nodes processing actually agents. There are
nodes capable to process up to four agents simultaneous (speed-up 4, in dif-
ferent activity states and processes). The mean speed-up factor is about 1.5
for all nodes actually processing agents. Both the platform and behavioural
simulation deliver the same computational results of the distributed MAS.
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Behavioural Simula- Platform Simulation
tion
Number of Agents and static:300 agents, 700  static: 1600 agents, 700
Resources res.; dynamic: 130 res.; dynamic: 130 virtual
(dynamic=mobile) explorer agents agent resources
Simulation time including 60 simulation stepsin 280 simulation steps in
setup of simulation, witha 5 s (on 1.2 GHz Intel 60 s (on 1.2 GHz Intel
correlated cluster sce- U9300, 3GB) U9300, 3GB)
nario of 8 nodes, until
MAS has finished work.
Tab. 11.1  Comparison of behavioural and platform simulation of the same MAS
[BOS14B] using the SeSAm simulator
140 ——Agents 1 Il Peak Parallel Agent Proc.
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Fig. 11.5  Analysis of the MAS simulation: (Left) Temporal development of the agent pop-

ulation (explorer agent) and the rise of found features in the sensor network
(Right) Utilization of the platform processes (peak parallel agent processing
on one node, mean parallel active processes per node, and mean agent
tokens queued per active node).
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11.5 The SEM Simulation Programming Language

The activity-based procedural-functional SEM programming language pro-
vides statements for the description of the behaviour of state-based agents
by using activities and transitions creating an activity flow and which enable
activities. Activities and functions provide generic functional expressions and
procedural statements to perform computation and actions. The SEM pro-
gramming language is a text level design interface for the Multi-Agent System
(MAS) simulation environment SeSAm, which provides only a GUI model entry
level. It is closely related to the SeSAm agent and world model, but it is
extended with some convenient functions and statements, easing the design
of complex MAS.

11.5.1 SEM Classes Model

An agent belongs to a particular agent class defining body variables, activi-
ties, and transitions between activities, summarized in Tables 77.2 and 77.5.
The simulation world is treated as a non-mobile agent, too (without any
geometric shape associated). Resources are passive agents without a reason-
ing behaviour, consisting of data and an optional geometric shape only.
Feature classes are packages that are composed of user defined types, func-
tions, and variables, which can be imported and used by agent, world, and
other feature classes.

SEM Statement Description

agent ac [(shapedef)] = Definition of an agent class consisting
definitions: of variable definitions, import of fea-
variables ture classes, activities, and transi-
import

tions. The shape definition parameter

activities . - . .
fransitions list is optional, defining the V|sual.
end; appearance of an agent (geometric
object).
world wc = Definition of a world class consisting
definitions: of variable definitions, import of fea-
variables ture classes, activities, and transi-
Al tions
activities ’
transitions
end;

Tab. 11.2  SEM Agent, Word, Resource, and Feature Class Definitions
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SEM Statement Description
resource rc [(shapedef)] = Definition of a resources class con-
definitions: sisting of variable definitions and
variables

import of feature classes. The shape

end_lmPo'ﬂt definition parameter list is optional.

)

feature fc = Definition of a feature class including
zeflmtw”s variable and function definitions.

end;

use fc; Within agent, world or feature classes

other feature classes can be
imported by using the use statement

Tab. 11.2  SEM Agent, Word, Resource, and Feature Class Definitions

SEM Statement Description

activity a = Definition of an agent activity repre-
[statements] before; senting the state of the agent. State-
| SEEEEEES ] 5 _ ments of the activity are executed in
em[ﬁtateme”ts] 2T sequential order before, immediately,
’ or after an activity was activated by a
transition.
transition (A;,Aj,cond;y); Definition of agent state transitions
transition (A;,A5); (conditionally depending on the eval-

uation of a boolean expression and
unconditional).

Tab. 11.3  SEM Class Statements

11.5.2 SEM Definitions, Expressions, Values, and Types

The SEM language supports the definition of values (immutable or mutable)
and functions in the same language style using the def statement. A function
is considered as being a dynamic value with parameters, summarized in Table
11.4.
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SEM Statement Description

type e = {X,Y,Z,..};

type r = (
x=T1,
y=T2,

IE

fun r: T *Ty*.. -> r;

def x = expr end;

def mutable x = expr end;

def private mutable x = expr end;
def x:DT = expr end,;

Definition of an enumeration (sum)
type with symbolic type elements X, Y,
Z...

Definition of a record structure type
consisting of elements x, y.. with spec-
ified data types DT. Each record type
definition introduces an automatic
definition of a type constructor func-
tion with the same name, which can
be used in expressions to create a
record type value.

Definition of global read only, global
mutable, and private data storage
objects of data type DT derived from
the initial value or specified with an
explicit type declaration.

def f = fun x,y,.. -> expr end; Definition of a (named) function with
def f = fun function parameters x, y. The data
x:Ty, type of the parameters can be speci-
)e’)‘(T%’ end_> fied explicitly by an additional type
p ? declaration. Type inference of func-
tion parameters is limited.
fun F @ T1*T2*.. -> RT ; Declaration of a function type inter-
face (supported only for built-in prim-
itive functions)
Tab. 11.4  SEM Definition of types, values, and functions

Expressions have a specific data type and are composed of values of the
same data type DT. Expressions can appear in assignments, transitions, and
conditional branch statements, summarized in Table 77.5.

The set of supported expression operators include arithmetic operators
{+,-,*,/,%}, relational operators {<,>,=,<>,>=,<=}, and Boolean operators

{and, or,not}.
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Type

integer

double

string

boolean

a list

o array

record

objin-
stance

DT ->
double
REAL ->
INT

REAL ->
INT

REAL ->
INT

REAL ->
INT

DT -> INT
DT -> CHAR

Value

'21 -1J 0) 1 )2 )3 ) 4)

-2.41,..,2.41,

abc

true, false

{vi,vy, ..}

[|V1;V2;--|]
(1]

T(V]_JVZJ")
T(e1:vq,..)

Aclass

float(x)
round(x)
trunc(x)
floor(x)
ceiling(x)
int(x)
char(x)
(x::DT)

Chapter 11. Simulation

Description

Signed integer number (decimal
format).

Floating type number (decimal
format).

String (character text array)

Boolean value.

List of values and empty list

Array of values and empty array.
There is no array type in SeSAm,
therefore it is emulated with lists
(or hash tables).

Record value constructor func-
tion for record type T with
optional labels specifying the
record element.

Instance of an agent class

Type conversion (applicable to
expressions, values, variables),
type casting (applicable to varia-
bles only).

Tab. 11.5  SEM constant values and types

All operators of an expression must have the same type. Explicit type con-
version can be used to convert a native data type to the expression type.
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Function application is provided by using the function name and an argu-
ment list, which can be empty. Arguments containing expressions are
evaluated before function application. Function applications can be embed-
ded in expressions.

11.5.3 SEM Paths

Access of objects (variables) from other agents is performed by using paths.
A path selector requires a root variable pointing to a valid simulation object.
Path selectors can be used in expressions and on the LHS of an assignment. A
variable x containing a valid simulation object reference is the root element of
the path selector, which resolves a variable vref of an agent belonging to the
specified agent or world class class:

def x:simobject = null end;
X := GetSimObjectOfClass(class,id);
x->class->vref

11.5.4 SEM lLists, lterators, Arrays

Lists are dynamic data structures, which can be modified at run-time, sum-
marized in Table 77.6. Iterators are derived from lists and are used by
iteration functions provided by SeSAm. Some functions expect lists directly,
other require conversion to an iterator object.

There is no array support in SeSAm. For this reason, arrays are emulated
using hash tables (or lists). The SEM language provides limited array support.

The access time of lists in SeSAm seems to be constant, that concludes the
SeSAm handles lists internally as arrays. But an initial allocated (empty) list
cannot be created, i.e., the creation of lists from an initial empty list has at
least linear complexity.

Type Expression/Statement Description

a list L.[expr] Selection of a list element using
L.[head] an index expression (head and
L.[tail] tail are keywords - the tail index

is evaluated at run-time).).

a list L.[expr] := expr; Modifies a selected list element
L.[head] := expr; using an index expression.
L.[tail] := expr;

a list L@{vy,Vvy, .-} Concatenation of lists

Tab. 11.6  SEM List and set type definitions
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Type Expression/Statement Description
o list e 1 L Add an element to the top of the
list L.
a list L ::+ e; Append new element e at the
L +:: e; end or before the head of the list
L.
o list X ti- L; Remove last or first element
x -0 L; form list L and assign the
removed element to the variable
X.
o }ist fun AsIterator: Functions for conversion
o iterator o list -> between iterators and lists
a iterator;
fun AslList:
o iterator ->
o list;
objin- ~class Instance of an agent class
stance

Tab. 11.6  SEM List and set type definitions

11.5.5 SEM Sequential Composition, Branches, and Loops

The programming paradigm of SeSAm is basically functional. Only actions in
activities are executed procedural. To execute a sequential list of statements
S1; So; S3;..., they must be wrapped in a block statement, and each statement
must be separated by a semicolon:

statement;

statement,;

statement,

15
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Kind
Boolean

Branch

Procedural

Boolean
Branch

Functional

Multi-value
Branch

Procedural

Multi-value
Branch

Functional

Value

if cond then
statement,
else statementy;

if cond then
expr
else expry

case expr of
| vq => stmt;;
| v, => stmt,;

end;

case expr of
| vi => expry
| v, => expr,

Description

Depending on the result of the
boolean expression cond a
branch occurs either to stat-
ment1 (expr=true) or to the
optional alternative statementO
(cond=false).

Depending on the result of the
boolean expression cond either
expry (cond=true) or the required
exprg (cond=false) is evaluated
and its value is returned

Different constant values are
compared with the result of the
expression expr and the respec-
tive statements are selected on
successful matching. There is no
default else case (matching all
other values)!

Different constant values are
compared with the result of the
expression expr and the respec-
tive expressions are evaluated
on successful matching. There is
no default else case (matching all
other values)! A functional case
branch must be complete and
must contain all possible cases
(so it is limited to enumeration

types)

Tab. 11.7  SEM branch statements [can be functional or procedural]
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Kind Value Description

Counting for 1 = a to | downto b The for-loop executes the loop

Loop do body statements for each ele-
statement

ment in the iterator list, either a
range of values or a set/list (vari-

} able x) of values. The loop itera-
tor variable i holds the current
value taken from the list.

done;
for 1 in x ..
for 1 in {vq,..

The range includes the limiting
values a and b.

Conditional ~ while expr do The while-loop executes the loop
Loop statement body as long as the boolean
done;

expression expr is true. The test
of the Boolean expression is per-
formed before each loop itera-
tion

Tab. 11.8  SEM loop statements

There are different loop statements available. Each loop repeats the execu-
tion of the loop body as long as a Boolean condition is satisfied. A counting
loop iterates a list of values, either specified explicitly by a set/list or implicitly
by a range set constructor.

11.5.6 SEM Shapes

Agent and resources classes are related to spatially located geometric
objects, which can be (initially) specified as a parameter list of a class.

Kind Parameter Description

Color color:color Shape colors: black, white,
grey, lightgrey, yellow,
green, blue, red, orange,
magenta, cyan

Geometry shape:shape Shape geometry: rectangle,
square, circle, ellipse

Tab. 11.9  SEM branch statements [can be functional or procedural]

epubli, ISBN 9783746752228 (2018)



S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

11.5 The SEM Simulation Programming Language

Kind Parameter Description

Geometry size:{width, height} Shape size specifying the width
and height of the shape (double
values).

Position center:{Xg, Yo} Relative shape center point (dou-
ble values).

Color fill:bool Shape fill attribute (true/false).

Tab. 11.9  SEM branch statements [can be functional or procedural]

11.5.7 SEM Example

The following example shows a fraction of a simulation model description
for a simple non-mobile agent (sampling), which collect sensor data from the
world and computes the mean value of the sampled data. Algorithm 77.7
shows the SEM program code for this agent, which uses functions from the
feature class env, shown in Algorithm 77.2. If the sampling agent detects a sig-
nificant mean value, it will create another event agent, which handles sensor
events.

Alg. 11.1  Asimple agent description in SEM

agent sampling (color:orange,shape:circle,fill:true,size:{2.0,2.0},
center:{3.0,1.0}) =
use env; 1import feature class, defines GetMatrixI,...

def mutable private mean = 0 end;

def mutable Pos = Position(0,0) end;

def mutable self:simobject = null end;

def mutable myworld:simobject = null end;
10 def mutable Parent:simobject = null end;
11 def mutable sampled = 0 end;
12 def mutable Thres = 100 end;

1
2
3
4
5 def mutable private adc = @ end;
6
7
8
9

14 activity init =

15 [

16 mean := 0;

17 self := Self();

18 myworld := GetWorld()
19 1;

20 end;

22 activity sample =
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23 [

24 adc := GetMatrixI(myworld->myworld->Sensors,
25 Pos.Y-1,Pos.X-1);
26 mean := (mean + adc)/2;

27 sampled := sampled + 1

28 1;

29 end;

30

31 activity sense =

32 [

33 if mean > Thres then

34 CreateAgent (Pos.X,Pos.Y,event)
35 1;

36 end;

37

38 activity sleep =

39 [

40 AwaitDelay(10.0)

41 15

42 end;

43

44 transition(entry,init);

45 transition(init,sample);

46 transition(sample,sense);

47 transition(sense,sleep);

48 transition(sleep,sample,blocked=false);
49 end;

50

Alg. 11.2  SEM feature class env

1 feature env =

2 def private mutable _env_tempobj:simobject = null end;
3 def mutable blocked = false end;

4

5

6 CREATE AGENT OF CLASS agentclass AND RETURN SIMOBJECT
7 def CreateAgentAndReturn =

8 fun x:integer,y:integer,

9 agentclass:objinstance ->

10 CreateObjectAndRemember(agentclass,

11 (fun obj:simobject ->

12 [

13 _env_tempobj := obj;

14 BeamTo(GetSpatialInfo(obj),

15 CreatePos((x::double)*10.0+5.0,

16 (y::double)*10.0+5.0))

17 1;)); _env_tempobj

18 end;

19

20 def AwaitDelay = fun tmo:double ->
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21 if _env_in_await then

22 [

23 if ((GetTime()-_env_start_time)>tmo) then
24 [

25 _env_in_await := false;

26 blocked := false

27 ]

28 ]

29 else

30 [

31 _env_in_await := true;

32 _env_start_time := GetTime();

33 blocked := true

34 15

35 end;

36

37 GET MATRIX ELEMENT mat(i,j) WITH col=0,..,cols-1,row=0,..,rows-1
38 def GetMatrixI = fun mat:integer list list,

39 row:integer,col:integer ->
40 GetNth(col,GetNth(row,mat))

41 end;

42 end;

11.6 SEJAM: Simulation Environment for JAM

Commonly, execution and simulation platforms are completely different
environments, and simulators are significantly slower in the agent execution
compared to real-world agent processing on optimized processing platforms.
SEJAM is a MAS Agent/S simulator implemented on top of the JAM platform
layer, executing agents with the same VM as a stand-alone agent platform
would do. This capability leads to a high-speed simulator, only slowed down
by visualization tasks and user interaction. Furthermore, multiple simulators
can be connected via a stream link (sockets, IP links, etc.), improving the simu-
lation performance by supporting parallel agent processing. Finally, the
simulator can be directly connected to any other JAM node and can be inte-
grated in real-world JAM networks.

The SEJAM simulator can be connected to SQL3 data base servers, storing
sensor and monitoring data.

There are two SEJAM implementations: (1) A curses-based text terminal ver-
sion; (2) A node-webkit version based on the webix and graphics JavaScript tool-
kits.

SEJAM1

The GUI of the SEJAM1 simulator and the simulation world is shown in Fig-
ure 77.6. The GUI consists of the simulation world, in this example composed
of 64 logical nodes connected with virtual circuit links. Each node shape pro-
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vides information about the node name in the first row, the number of agents
and tuples in the database in the second row, and some flag indicators in the
last row, e.g., flags signalling the existence of specific agents or sensor values.

On the right side there is a code and data navigator. Each node can be
selected including the world object.

The code navigator can be used to explore node and agent information in
JSON tree presentation. The bottom part of the simulator contains a logging
and message window.

Agents can write messages to this window, and a compacted JSON can be
printed from selected items in the object navigator tree.

Furthermore, agents executed in the simulator world inherit a special simu-
lation object, which can be used to get specific simulation and world
information, e.g., the current simulation step, or support for creation of
agents on a specific node, e.g., used by the world agent, that is the only agent
created and started at the beginning of the simulation. Multiple simulator
worlds (SEJAM instances) can be connected enabling the composition of com-
plex simulation worlds.
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Fig. 11.6  SEJAM1: Simulation world consisting of logical nodes populated with mobile
and non-mobile agents, indicated by markings on the bottom of the node
shape (blue rectangle)
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SEJAM2

The SEJAMZ2 Simulation Environment provides an extended visualization
world (top right window in Figure 77.7). In the show example the world con-
sists of three floors of a building. Shown are beacons (yellow triangles, each
populated with a node agent) and some mobile devices (green rectangles).

The black circles represent communication links of the devices, indicating
the communication range. On the left side the object explorer is shown, and
on the bottom the logging window. There is an extended simulation control
providing a parametrization of the simulation and a statistics monitor module
offering graphical plotting capabilities, e.g., of agent populations.

9 SIEJANE A0 e Es e ranlaosse) BEE
EB7F 5L 0@ & p =1 & HACOVUFO %
& i (e o Inspector % | & C @ @ Q O [ 6315ar8didec4daatecBed4fe20fah 53.562111° 8.985507" 1m Simulation World %
Bl node|f315a78didecdaad9eciedldie20tat] | [Floor 1 | TP

options

id = "6315a7 B4idcedaandecs..” A

out = undefined
position

verhose = undsfined =
&

signals =[]

timers = [|
connections
ts

port =" Wp<"

- sensors Frioor 3
B0
x=-1.7009

y=-1253% @

7= 3.40031
destroy = function () @
info = function ) World

recaive = function (msg,star)
register = function (process)
unregister = function (pracess)

node[heacen 114]

A

= > Simulafion Control %
Steps 10000 | Delay [ms)] D'ﬁme 1490701255763 Step: 59 Agents: 30
« —— Y )
2~ i a o e Systern Cansole %
: biyiti of class mobile on node Se305¢305¢305c3030dfO0fESe365¢30 (157, 223) -
rrowo of class e de 5c305¢385c3 S0fE5c3e530(1

338650 fa680(1009
90fE50305030(1060,
C303dd foofe5c3050301(1060, 84)

e o
hekenigo of class
nirususe of class
simulation at 59

e node heacon 112( )
628 ms /1 1490761255763 ms)

e B

Fig. 11.7  SEJAMZ2: JAM with extended visualization and simulation control
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Access to extended simulation objects and functions (e.g., access of data
bases or simulation control including shape modification) is granted to agents
with an extended privilege level. There is commonly a virtual world agent pro-
viding sensor data to logical nodes of the simulation world.

11.7 Multi-Domain Simulation with SEJAM2P

Agents are suitable to interact with real world environments. It is promising
to use agents to control physical structures, e.g., adaptive materials. To study
agent interaction with physical models, SEJAM2 was extended with a multi-
body physics simulation engine based on the cannon.js kernel and three.js for
3D visualization, shown in Figure 77.8. The agent and physical model simula-
tions are connected and processed simultaneously enabling agents 1. To
access the physical model for getting sensor input, e.g., strain or forces pro-
vided by virtual sensors; and 2. To access the physical model to modify it, e.g.,
by changing the stiffness of damping of springs.

The physical world consists of the mechanical structure given by a physical
model (FEM or mass-spring multi-body), sensors, and external loading having
impact on the static and dynamic reaction of the structure, including gravity.
For the sake of simplicity, the mechanical structure under test is modelled
with a mass-spring multi-body system. The multi-body physics simulation is
well-known from computer games and animations. It can be easily and effi-
ciently integrated in computational systems like MAS simulators.

Spring and gravity forces have an effect on each mass of the structure.
Therefore, the structure will swing until it converges to a static state.

A simulation model consists basically of three parts: (1) The MAS behaviour
models; (2) The JAM virtual network world; (3) The physical model. All parts are
specified in JavaScript. In this environment, the physical model can be
accessed by all agents.

Typically, the coupling of computational with physical systems by MAS and
the effect of MAS actions on the physical system should be investigated. In
Figure 77.8, a MAS is deployed in a three-dimensional mesh-grid network inte-
grated in an artificial mechanical structure. For the sake of simplicity this
structure is a plate composed of 5x4x2 mass nodes connected by springs. It is
assumed that each network node provides a JAM platform to process agents.
Each node is connected to up to six neighbours with communication links.
Additionally, each node is connected to neighbour nodes by a set of springs,
but only a sub-set is controlled by a specific computer and mass node.

In Example 77.7 a typical simulation model is shown. The simulation model
is identical to a SEJAM2 model extended with a physical model section. The
model defines two agent classes node and world and their visualization with
shapes in the classes section (line 3). Each agent class descriptor consists of
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the behaviour, visual, and optional event handler parts. All section keywords

are highlighted.

The physics section (line 29) assigns the physical model to a named scene.
There is an optional parameter section (line 34) defining simulation param-
eters that can be accessed by the model (agents) and modified at run-time

with the GUI.

The final world section (line 43) defines the construction of the MAS simula-
tion world. In this simulation, a predefined mesh-grid world is used (line 70),

composed of JAM nodes and channel links.

The agent behaviour of the node agent is shown in Example 77.2. It consists

of function constructing the agent object from this template.

Physical Structure
Mass-Spring System

Mass & |

Springs

Node
uC/Agents

SI8
:

> )

L | Network | Computational Network
Comm. | Multi-Agent System

Fig. 11.8  (Top, Left) Multi-domain simulation coupling a physics and MAS simulator.
(Right) Relation of Physical and Logical Models mapping computational on

physical mass nodes (Bottom, Left) Physical Mass-Spring Model
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Fig. 11.9  SEJAM2P: Combined Multi-body Physics and MAS simulator

The template consists of private body variables (lines 2 to 44), auxiliary
functions (lines 47 to 52) used by activity and transition functions, and finally
the activity (line 55), transition (line 307, and event handler (line 319) sections.

The last statement defines the initial activity (next). In lines 171 to 176 the
simulation parameters are accessed updating internal agent parameters.

Finally, the physical model is shown in Example 77.3, constructing a plate of
mass nodes and springs arranged on two fixed walls (see Figure 77.8, right
side). Mostly the CANNON API is used to define the physical simulation model,
extended with some MAS API functions supporting agent access of this model.

A physical mass node consists of a CANNON box defining the geometric
shape and a body defining the physical properties.

Ex. 11.1 Example of a typical SEJAM2P top-level simulation model

{
name:'My Simulation World',
classes : {
node: {
behaviour:open('node.js'),

AN WN R

epubli, 1SBN 9783746752228 (2018)



S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

11.7 Multi-Domain Simulation with SEJAM2P

6 visual:{

7 shape: 'circle’,

8 width:10, height:10, x:5, y:5,

9 fill: {color:'red', opacity: 0.5}

10 s

11 on:{

12 "TS.SIG':{

13 shape:'circle’,

14 width:6, height:6, x:5, y:5,

15 fill: {color:'black', opacity: 0.5},

16 time:10

17 ¥

18 }

19 ¥

20 world: {

21 behaviour:open('world.js'),

22 visual:{

23 shape:'circle’,

24 width:50, height:50, center:{x:0,y:0},

25 fill: {color:'green', opacity: 0.0}

26 }

27 }

28 s

29 physics:{

30 scenes:{

31 plate:open('plate.js')

32 }

33 s

34 parameter:{

35 adapt:'no’,

36 lowPassK:1.9,

37 mark: 'strain’',

38 scale:1/10,

39 update: 'dynamic', // 'static' 'dynamic'’

40 deltaPhy:5, // termination threshold with update=static
41 stepPhy:100

42},

43 world : {

44 init: {

45 agents: {

46 node:function (nodeld,position) {

47 // Create on each node a node agent, return respective
48 // agent parameters! If no agent should be created on the
49 // respective node, undefined must be returned!
50 if (nodeId!="world")

51 return {level:1,args:[

52 {x:position.x,y:position.y,z:position.z,
53 adapt:'local', // false, // 'local', 'global’
54 mark:'strain',

55 negotiate:false,

56 eps:0.02,

epubli, ISBN 9783746752228 (2018)



S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
lo1
102
103
104
105
106
107
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verbose:0,
//scale:0.03
scale:0.5

b3 b

¥
world: function(nodeId) {

if (nodeId=='world') return {level:3,args:[{model:model}]};
}
¥
physics: function (phy) {
phy.changeScene('plate’, {stiffness:70});
}

meshgrid : {

// y-axis

rows:5,

// X-axis

cols:4,

//z-axis

levels:2,

// all z-level networks arranged in a matrix
matrix:[[0,0],[200,0]],

node: {
// Node ressource visual object
visual : {
shape: 'rect’,
width:30, height:30,
fill: {color:'green', opacity: 0.5}

}
¥
// Link port connectors
port: {

type: 'unicast’,

place: function (node) {return [
{x:-15,y:0,id: '"WEST"'},
{x:15,y:0,id: "EAST '},
{x:0,y:-15,id: 'NORTH"},
{x:0,y:15,id: 'SOUTH'},
{x:-15,y:-15,id:"UP'},
{x:15,y:15,id: 'DOWN"}

11,

visual: {
shape: 'rect’,
fill: {color:'black', opacity: 0.5}, width: 5, height: 5

}
¥
// Connections between nodes (with virtual port connectors)
link : {

// Link resource visual object
connect: function (nodel,node2,portl,port2) {return true},
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108 type: 'unicast’, // unicast multicast
109 visual: {

110 shape: 'rect’,

111 fill: {color:'#888"', opacity: 0.5}, width: 2
112 }

113 }

114 },

115 map: function () {

116 return [

117 model.world.nodes.world(200,280),

118 ]

119 },

120 nodes: {

121 world: function (x,y) {

122 return {

123 id:'world',

124 X:iX, Yy,

125 visual: {

126 shape:'icon',icon: 'world’,

127 label:{text:'World', fontSize:14},
128 width:50, height:50,

129 fill: {color:'black', opacity: 0.5}
130 }

131 }

132 }

133 }

134}

135 }

Ex. 11.2 The node agent behaviour model

1 function node(options) {
2 this.location={x:options.x,y:options.y,z:options.z};
3 this.myNode=none;

4 this.mySensors= {};

5 this.sensors={};

6 this.sensorse={};

7 this.sensorsN=0;

8 this.springs={};

9 this.action="wait"';

10 this.child=none;

11 this.objPhy = none;

12 this.pending=0;

13 this.verbose=options.verbose || false;
14 this.strain = undefined;

15 this.strain® = undefined;

16 this.strainS = undefined;

17 this.strainDelta=0;

18 this.force = undefined;

19 this.force@ = undefined;
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this.forceV
this.energy
this.wait=0;
this.swapped=0;
this.votes=[];
this.swapPending=0;

undefined;
0;

this.settings = {
adapt : options.adapt||'no',
eps : options.eps || 0.2, // |strain-strain@| notify threshold
energyThres : 3,
mark: options.mark || 'force’,
lowPassK:1.9,
negotiate : options.negotiate||false,
scale : options.scale || 1@,
strainHigh : 5,
strainThres: 2.0,
strainLow : 0.5,
stiffnessHigh : 80,
stiffnessLow : 30,
swapHighEnergy:true,
vote:10 // |stiffness-stiffnesVote| vote threshold

42
43
44
45
46
47

}

this.stiffness = 0;
this.stiffnessVote = 0;

// Auxiliary functions

this.ofVec = function (o) {..};
this.toVec = function (o) {..};
this.equalVec = function (vi,v2) {..};
this.formatVec = function (v) {..};
this.parseVec = function (s) {..};

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
76

this.
this

this.

init: function () {

strainTostiffness = function (s) {..};
.filter = function (v,vo,k) {..};

this.myNode=myNode();

this.sensors={}; this.stiffness=0;

this.objPhy=simu.simuPhy.get(this.myNode);

log('Starting at '+this.location.x+','+this.location.y+', "'+
this.location.z+' on node '+this.myNode);

negotiate('CPU',10000000) ;
negotiate('SCHED',100000);

if (this.objPhy) iter(this.objPhy.springs,function (s,sp) {

this.springs[sp]={stiffness:s.stiffness,alive:-1,flag:false};
this.stiffness += s.stiffness, n++;
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71 this.stiffness /= n;

72 s

73

74 percept: function () {

75 this.action="percept’;

76 alt(

77 [['SPRING', , ],

78 ['SENSOR', , 1,

79 ['VOTE', ,_1,

80 ['SWAP', , 1,

81 ['STIFFNESS', ]

82 ], function(ta) {

83 if (!ta) return;

84 iter(ta, function (t) {

85 var p,vote;

86 switch (t[0]) {

87 case 'SENSOR':

88 // Sensor data from neighbour nodes

89 p=t[1];

90 this.action="process';

91

92 if (this.sensors[p]) this.sensors@[p]=this.sensors[p];
93 this.sensors[p]=copy(t[2]);

94 if (!this.sensors[p].stiffness)

95 this.sensors[p].stiffness=this.springs[p].stiffness;
96 if (this.sensors@[p] == undefined ||

97 this.sensors@[p].strain != this.sensors[p].strain)
98 this.action="process’;

99 break;

100 case 'SPRING':

101 // Single spring setting

102 p=t[1];

103 this.springs[p]=copy(t[2]); this.action="adapt’;
104 break;

105 case 'VOTE':

106 // Vote for node stiffness?

107 if (this.votes.length==0) timer.add(300, 'ELECTION");
108 vote={to:t[1],vote:t[2]};

109 vote.vote.from=vote.vote.to;

110 vote.vote.to=undefined;

111 this.votes.push(vote);

112 break;

113 case 'SWAP':

114 // Neighbour node votes (?+-) for stiffness swapping
115 vote={to:t[1],vote:t[2]};

116 vote.vote.from=vote.to;

117 vote.vote.to=undefined;

118 switch (vote.vote.type) {

119 case 'SWAP?':

120 this.votes.push(vote); this.action="swap';
121 break;
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122 case 'SWAP+':

123 this.stiffnessVote=vote.vote.stiffness;
124 this.action="adapt'; this.swapPending--;
125 break;

126 case 'SWAP-':

127 this.swapPending--;

128 break;

129 }

130 break;

131 case 'STIFFNESS':

132 this.stiffness=t[1];

133 if (this.objPhy) iter(this.objPhy.springs,function (s,sp) {
134 this.springs[sp]={stiffness:this.stiffness,
135 alive:-1,flag:false};
136 1)

137 break;

138 }

139 })s

140 },true);

141 },

142

143

144 process : function () {

145 var i=0,v,p,s,_strain=0, forceV=Vec3(0,0,0),id=this.myNode;
146 this.action="percept'; this.strainS=0;

147

148 // Update strain value

149 this.energy=0;

150 this.sensorsN=0;

151 for(p in this.sensors) {

152 v=this.parsevec(p);

153 _forcev = _forceV.vadd(Vec3(v[@],v[1],v[2])

154 .scale(this.sensors[p].strain*
155 this.sensors[p].stiffness));
156 s=this.sensors[p].strain;

157 _strain += s;

158 this.strainS += Math.abs(s);

159 this.energy += (s*s*this.sensors[p].stiffness);
160 this.sensorsN++;

161 }

162 if (this.sensorsN>@) this.energy /= this.sensorsN;
163 if (length(this.sensors)>3) {

164 this.strain@=this.strain;

165 this.strain=_strain;

166 this.force@=this.force;

167 this.force=_forceV.length();

168 this.forceV=this.ofVec(_forceV);

169 }

170

171 if (simu.parameter('mark'))

172 this.settings.mark=simu.parameter('mark"');
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173 if (simu.parameter('scale'))

174 this.settings.scale=simu.parameter('scale');

175 if (simu.parameter('adapt'))

176 this.settings.adapt=simu.parameter('adapt');

177

178 if (!this.objPhy)

179 simu.changeVisual('node[ '+id+']",{

180 fill:{

181 color:'white',

182 opacity: 0.5

183 }

184 3

185 else {

186 v=this[this.settings.mark]?this[this.settings.mark]*
187 this.settings.scale*2-1.0:0;
188 if (v>0) v=Math.min(v,1); else v=Math.max(v,-1);

189 simu.changeVisual('node[ '+id+']",{

190 fill:{

191 color:v<@?{color: 'blue’,value:-v}:{color:'red',value:v},
192 opacity: @.5

193 }

194 })s

195 };

196

197 if (this.energy > this.settings.energyThres && this.swapPending==0)
198 this.action="notify';

199

200 this.wait=100;

201

202 if (this.strain==undefined || this.strain® == undefined ||
203 Math.abs(this.strain@-this.strain)>this.settings.eps)
204 this.action="notify’,

205 this.strainDelta=(this.strain==undefined ||

206 this.strain@==undefined)?

207 this.settings.eps*2:

208 Math.abs(this.strain@-this.strain);
209 },

210

211 notify: function () {

212 var neighbour,neighbours;

213 this.action="percept’;

214

215 // 1. Distribute Sensors

216 if (this.strainDelta>this.settings.eps)

217 {

218 iter(this.sensors,function (s,sp) {

219 var _s,vs=this.formatVec(neg(this.parseVec(sp)));

220 if (s.flag) return;

221 _s=copy(s); _s.flag=true;

222 if (this.springs[sp]) _s.stiffness=this.springs[sp].stiffness;
223 store(DIR.DELTA(this.parseVec(sp)), [ 'SENSOR',vs,_s]);
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224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

1)

this.strainDelta=0;

}

// 2. Negotiate stiffness swap votes

if (this.settings

.adapt != 'no' &&

Chapter 11. Simulation

this.energy > this.settings.energyThres && this.swapPending==0) {
// Start swap negotiation
// Select a neighbour randomly
neighbours=map(this.sensors,function (s,sp) {return sp});
neighbour=random(neighbours);
this.swapPending++;

if (this.child)

send(this.child, 'VOTE"',
{type:'SWAP?',to:neighbour,stiffness:this.stiffness,
energy:this.energy}

)5

}
¥

swap: function () {
var swapit=false;

this.action="percept’;

this.votes=map(this.votes,function (vote) {

if (vote.vote.type=="SWAP?') {

if (swapit) {

if (this.child)

send(this

.child, 'VOTE",

{type:'SWAP-"',to:vote.to,stiffness:this.stiffness,
energy:this.energy});

return;

}

swapit= this.stiffness>vote.vote.stiffness &&

this.energy<vote.vote.energy;

if (this.settings.swapHighEnergy && !swapit)

swapit=this.stiffness<vote.vote.stiffness &&

this.energy>vote.vote.energy;

if (this.child) {
send(this.child, 'VOTE",

{type:swapit? 'SWAP+':'SWAP-',to:vote.to,
stiffness:this.stiffness,energy:this.energy});

if (swapit)

this.stiffnessVote=vote.vote.stiffness;

{

this.action="adapt';
this.swapped++;

}
}

return;

}

return vote;
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275 3

276 3,

277

278 adapt: function () {

279 if (simu.parameter('lowPassK"'))

280 this.settings.lowPassK=simu.parameter('lowPassK");

281 switch(this.settings.adapt) {

282 case 'local':

283 this.stiffness=this.stiffnessVote;

284 iter(this.objPhy.springs,function (s,sp) {

285 if (!this.sensors[sp]) return;

286 s.stiffness = this.filter(this.stiffness,s.stiffness,
287 this.settings.lowPassK);
288 this.springs[sp]={stiffness:s.stiffness,alive:-1};
289 1

290 break;

291 case 'global':

292 this.stiffness=this.stiffnessVote;

293 iter(this.objPhy.springs,function (s,sp) {

294 s.stiffness = this.filter(this.stiffness,s.stiffness,
295 this.settings.lowPassK);
296 this.springs[sp]={stiffness:s.stiffness,alive:-1};
297 })s

298 break;

299 }

300 },

301

302 wait: function () {

303 sleep(this.wait);

304 }

305 };

306

307 this.trans = {

308 init: percept,

309 percept: function () { return this.action},

310 swap: function () { return this.action},

311 notify: percept,

312 process: function () { return this.action},

313 adapt: function () { return percept},

314 elect: function () { return percept},

315 wait: function () { if (this.action != 'percept') return this.action;
316 else return this.wait<=0?percept:wait}
317 };

318

319  this.on = {

320 'DELIVER': function (_sensors) {

321 var p;

322 for(p in _sensors) {

323 this.sensors[p]=_sensors[p];

324 }

325 this.pending--;
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326 3,

327 '"ALIVE': function (child) {

328 },

329 'DECLARE': function (vote) {

330 },

331 "ELECTION': function () {

332 var major=0;

333 iter(this.votes,function (vote) {

334 major += vote.vote.stiffness;

335 1

336 major /= this.votes.length;

337 major = (major + this.stiffnessVote)/2;
338 this.votes=[];

339 this.stiffnessVote=major;

340 this.action="adapt’;

341 }

342}

343 this.next=init;

344 }

Ex. 11.3 The physical simulation model constructing a plate
1 /** Defines a physical simulation scene

2 * used in teh CANNON multi-body physics simulator.
3 * Must return the physical objects that can be accessed
4 * by SEJAM agents.

5 *

6 */

7 /*

8 ¥* X <----+ Z External coordinates

9 * % |

10 *x v

11 ** Y

12 k%

13 k%

14 *¥* X <---+ z Internal coordinates

15 * % |

16 *x v

17 * % y

18 */

19

20 function (world,settings) {

21 var CANNON=world.CANNON,

22 GUI=world.GUI,1i,]j,

23 mass = (settings && settings.mass)?settings.mass:1,
24 X=settings.model.world.meshgrid.cols,
25 Y=settings.model.world.meshgrid.rows,
26 Z=settings.model.world.meshgrid.levels,
27 Height=20,

28 damping=5,

29 stiffness=settings.stiffness||20,
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30 Mass=200,

31 MC=5,

32 // hole=[1,2,0];

33 hole=none;

34

35 function matrix(n,m,k) {
36 var X,y,z,mat;

37 mat=new Array(n);

38 for(x=0;x<n;x++) {

39 mat[x]=new Array(m);
40 for(y=0;y<m;y++)

41 mat[x][y]=new Array(k);
42

43 return mat;

44 }

45

46 var constraints = [];

47 var bodies = [];

48 var springs = [];

49 var masses = matrix(X,Y,Z);
50 var loadings=[];

51

52 world.gravity.set(0,0,-10);
53 world.camera.position.set(150,130,70);
54 world.camera.up.set(0,0,1);

55 world.camera.fov=5.0;

56

57 var groundMaterial = new CANNON.Material("groundMaterial");
58

59 // Ground

60 var groundShape = new CANNON.Plane();

61 groundShape.color = 0x00ff00;

62 var ground = new CANNON.Body({ mass: 0, material: groundMaterial });
63 ground.addShape(groundShape);

64 ground.position.z = 9;

65 world.addBody(ground);

66 GUI.addVisual(ground);

67

68 /*

69 var fixedBody = new CANNON.Body({mass: 0,

70 material: groundMaterial });

71 var fixedPlane = new CANNON.Plane();

72 fixedPlane.color = Ox@0ffff;

73 fixedBody.addShape(fixedPlane);

74 var rot = new CANNON.Vec3(1,0,90)

75 fixedBody.quaternion.setFromAxisAngle(rot, Math.PI/2)
76 fixedBody.position.set(0,0,0);

77 */

78 function makeWalls() {

79 var h,h2;

80 var fixedBody = new CANNON.Body({mass: O,
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81 material: groundMaterial });
82 h=Height/2+2.0;

83 var fixedShape = new CANNON.Box(new CANNON.Vec3(X*2.5,2,h));
84 fixedShape.color = @x@0ffff;

85 fixedBody.addShape(fixedShape);

86 fixedBody.position.set((X-1)*2.5,0,h+0.5);

87 world.addBody (fixedBody);

88 GUI.addVisual(fixedBody);

89 fixedBody = new CANNON.Body({mass: 0,

90 material: groundMaterial });
91 fixedShape = new CANNON.Box(new CANNON.Vec3(X*2.5,2,h));
92 fixedShape.color = @x@0ffff;

93 fixedBody.addShape(fixedShape);

94 fixedBody.position.set((X-1)*2.5,(Y-1)*5,h+0.5);

95 world.addBody(fixedBody);

96 GUI.addVisual(fixedBody);

97 h2=(Z-1)*5+1;

98 fixedBody = new CANNON.Body({mass: 0,

99 material: groundMaterial 1});
100 fixedShape = new CANNON.Box(new CANNON.Vec3(X*2.5,0.5,h2/2));
101 fixedShape.color = @x@0ffff;

102 fixedBody.addShape(fixedShape);

103 fixedBody.position.set((X-1)*2.5,-1,2*h+h2/2+0.5);

104 world.addBody(fixedBody);

105 GUI.addVisual(fixedBody);

106 fixedBody = new CANNON.Body({mass: ©,

107 material: groundMaterial 1});
108 fixedShape = new CANNON.Box(new CANNON.Vec3(X*2.5,0.5,h2/2));
109 fixedShape.color = @x@0ffff;

110 fixedBody.addShape(fixedShape);

111 fixedBody.position.set((X-1)*2.5,(Y-1)*5+1,2*h+h2/2+0.5);
112 world.addBody(fixedBody);

113 GUI.addVisual(fixedBody);

114 '}

115

116 function makeLoad(x,y,r,m) {

117 var h=2;

118 if (!r) r=10;

119 var bShape = new CANNON.Cylinder(r,r,h,16);

120 bShape.color="red"';

121 var b = new CANNON.Body({ mass: m||Mass });

122 b.addShape(bShape);

123 b.position.set(x,y,Height+4.0+h/2+(Z-1)*5+1.0+0.5);

124 bodies.push(b);

125 loadings.push(b);

126 '}

127

128  function makeBox(x,y,z) {

129 var bShape = new CANNON.Box(new CANNON.Vec3(0.5,0.5,0.5));
130 var b = new CANNON.Body({ mass: mass });

131 b.addShape(bShape);
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132 b.position.set(x,y,z+Height);

133 bodies.push(b);

134 return b;

135}

136

137  function connect(bodyA,bodyB,settings) {

138 var sAB, localPivotA,localPivotB,constraint,
139 dir=new CANNON.Vec3();

140 sAB = new CANNON.Spring(bodyA, bodyB, {

141 stiffness:stiffness+(MC-2*MC*Math.random()),
142 damping:damping,

143 computeRestlLength:true

144 1)

145 // world.log(sAB.restLength);

146 springs.push(sAB /*,sBA*/);

147 world.addSpring(sAB);

148 if (!bodyA.springs) bodyA.springs={};

149 if (!bodyB.springs) bodyB.springs={};

150 bodyB.gridPosition.vsub(bodyA.gridPosition,dir);
151 bodyA.springs[dir.x+"', "+dir.y+", '+dir.z]=sAB;
152 dir=dir.negate();

153 return sAB;

154 }

155

156

157  function makePlate(1l,n,m,d) {

158 var dx=5,dy=5,dz=5,b,1i,j,k,u,

159 x=0,y=0,z=dz*m,offInd=0,bA,bB;

160 function get(i,j,k,d) {

161 if (d) i+=d[@], j+=d[1], k+=d[2];

162 if (masses[i] && masses[i][j] && masses[i][j][k])
163 return masses[i][j]1[k];

164 else return none;

165 }

166 for(k=0;k<1l;k++) {

167 z=dz*m;

168 for(j=0;j<m;j++) {

169 y=0;

170 for(i=0;i<n;i++) {

171 if (lequal([k,i,j],hole)) {

172 b=makeBox(x,y,z);

173 masses[k][i][j]=b;

174 b.gridPosition=new CANNON.Vec3(k,i,j);
175 }

176 y=y+dy;

177 }

178 z=z-dz;

179 }

180 X=x+dX;

181 }

182 for(k=0;k<m;k++) {
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for(j=0;j<n;j++) {
for(i=0;i<1l;i++) {

var vec = [
[0,1,6],
[1J1)6]J
[1,0,0],
[15'1)0])
[6,0,1],
[0,'1,1],
[_1J_1)1])
['131:1]:
[0,1,1],
[1J1)1]J
[1J0)1]J
[1;'111]

15

for(u in vec) {
bA=get(i,],k);
bB=get(i,j,k,vec[u]);
if (bA && bB) connect(bA,bB);

}

}
}
}
}
makePlate(X,Y,Z);

makeWalls();
// makeload(10,15,2,5);

for(i=0; i<constraints.length; i++)
world.addConstraint(constraints[i]);

for(i=0; i<bodies.length; i++){
world.addBody(bodies[i]);
GUI.addVisual(bodies[i]);

}

world.addEventListener("postStep",function(event){
for(var i in springs) {
springs[i].applyForce();
}
3

return {
masses:masses,
loadings:loadings,
map: function (id) {
// Map logical node [i,]j,k] to respective mass body
try { return masses[id[@]][id[1]][id[2]] } catch (e) {};
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234 }
235 }
236

237 }

238

11.8 Further Reading

1. P.-O. Siebers and U. Aickelin, Introduction to Multi-Agent Simulation,
Encyclopaedia of Decision Making and Decision Support Technologies,
2008.

2. U. Wilensky and W. Rand, An Introduction to Agent-Based Modeling -
Modeling Natural, Social, and Engineered Complex Systems with NetLogo.
MIT Press, 2015, ISBN 9780262731898

3. A. M. Uhrmacher and D. Weyns, Eds., Multi-agent systems: simulation
and applications, CRC Press, 2009, ISBN 9781420070231
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