
S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Chapter 12

Synthesis
From Programming Level to Hardware and Software Implementations 
using a Unified Database driven Synthesis Framework
The Big Picture: All together 406
SynDK: The Synthesis Development Toolkit 409
Agent and Agent Platform Synthesis 425
The Agent Simulation Compiler SEMC 436
ConPro SoC High-level Synthesis 437
Further Reading 468
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis406

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
This Chapter addresses the challenges of the high-level synthesis of AAPL
agents and the various agent processing platforms from programming level.

12.1 The Big Picture: All together

Designing and implementing MAS for multiple significantly different plat-
forms deployed in heterogeneous network environments is still a superior
challenge. A unified High-level synthesis framework should enable the design
and simulation of MAS for such a heterogeneous processing environment
including and most important hardware SoC designs using application-spe-
cific digital logic meeting the goal of miniaturization and material-integration. 

An important key feature is given by a common programming model for the
different platform approaches, effecting both the programming and synthesis
models. The principle unified synthesis flow of agent processing platforms is
shown in Figure 12.1, covering application-specific and application-independ-
ent (programmable) platform approaches. Application-specific platforms offer
the lowest resource requirements, whereas application-independent (pro-
grammable) platforms offers the highest flexibility.

There is one common agent programming language AAPL model but differ-
ent processing architectures that must be covered by the synthesis flow
creating stand-alone parallel hardware implementations, alternatively stand-
alone software implementations, and behavioural simulation models, ena-
bling the design and test of large-scale heterogeneous systems. The central
parts of the synthesis framework is the Agent Behaviour and Agent Platform
compiler, discussed in Section 12.16, summarized and shown in Figure 12.3.

Fig. 12.1 Road-map: The Simplified top-down level model hierarchy reflecting the syn-
thesis flow for the hardware implementation of agent behaviour and
processing.
epubli, ISBN 9783746752228 (2018)



12.1 The Big Picture: All together 407

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
 Application-specific agent synthesis embeds the agent behaviour in the
platform, therefore the AAPL MAS programming model is entirely synthesized
to platform building blocks, whereas the application-independent agent syn-
thesis flow creates the platform (virtual machine) and the agent behaviour
unit (program) separately, similar to a traditional hardware-software co-
design.

The Agent compilers generate software models (C, ML), simulation models
suitable for the SeSAm MAS simulator, and a high-level hardware model using
the intermediate CCSP-based ConPro programming model, synthesized by the
ConPro compiler to hardware behaviour model, discussed in Section 12.5,
which can be finally synthesized to gate-level digital logic using common FPGA
and ASIC synthesis tool chains.

There is a synthesis development kit that supports and eases the develop-
ment of large multi-compiler frameworks and glues most software
components part of the Agent synthesis framework with a unified database
approach, discussed in the next section, and summarized in Figure 12.2. A
graph-based virtual database driven hardware and software synthesis
approach (VDB) should overcome limitations in traditional compiler designs.

Fig. 12.2 System architecture of the Virtual Database (VDB) driven Synthesis Develop-
ment Kit SynDK implementing parser and formatted printer for a set of
languages L, and a set of compilers C performing operations on abstract syn-
tax trees AST (analysis, optimization, synthesis).
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis408

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Fig. 12.3 The Agent Synthesis Framework: covers the synthesis from Agent Behaviour to
Hardware, Software, and Simulation Platform levels.

 It enables common synthesis from a set of source programming models
and languages IPL to a set of destination models and languages OPL like hard-
ware behaviour models with parsers translating text to graph structured
database content and printers creating text from data base content, shown in
Figure 12.2.

AAPL AFL

OCaML

VHDL mCODE

SEM XML

EMI

VPL

VDB

AU3

VPL
VDB
Compiler 

Agent
Behaviour

Model

Hardware
Behaviour

Model

Agent
Platform

Model

CCSP
Hardware

Programming
Model

Software
Programming

Model

GUI
Programming

Model

Compiler
Programming

Model

MAS
Simulation

Model

RTL/Gatelevel
Simulation

Model

VBE
VHD

ConPro
Compiler 

SEM
Compiler 

AFC
Compiler

SiCA
Compiler

ASIMUT
Simulator

SeSAm
Simulator 

Xilinx
ISE FPGA
Synthesis 

Leonardo
Spectrum
SC-ASIC
Synthesis 

C
Compiler 

OCaML
Compiler

LaCo
Compiler 

VDB
STR

VDB
PAR

VDB
PRN

VDB
EBNF

Hardware
Gatelevel

Model

PAT

PAT
Compiler 

Simulation
Stimuli &
Patterns

APL
Compiler      AML

ML
Byte
Code

VUMRUN 
Bytecode  
VM

EXEBIT SCL RTL
Standard Cell

Library

Agent Platform
Compiler      

XML

ConPro

C

OCaML

ConPro

C

C

AutoIT
Win32
Interpreter

                        
epubli, ISBN 9783746752228 (2018)



12.2 SynDK: The Synthesis Development Toolkit 409

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
12.2 SynDK: The Synthesis Development Toolkit

12.2.1 The Graph Database centric Synthesis Approach
Large CAD programs like compiler and synthesis tools traditionally are built

from a large set of different data structures and types (by using composition
of product and sum types). They are usually implemented by partitioning the
program in different modules and components interacting with each other by
using data structures or files, too, providing some degree of coupling and cre-
ating mainly a monolithic processing system. Very complex synthesis tools
(e.g. digital logic gate-level or System-on-Chip high-level synthesis) are addi-
tionally partitioned in different independent  programs interchanging data by
using files with a well-known structure. Compiling of software or synthesis of
hardware means the transformation of a set of input languages to a set of
output languages usually performed in a pipelined data flow (different analy-
sis, verification, optimization, and synthesis passes) with different internal list-
or graph-like data structure representations. One example is the symbol table
and linked references of symbols in statements.

A graph database driven compiler and high-level synthesis tool kit SynDK
offering advanced operational resource sharing for a large set of input and
output languages was developed to provide a unified synthesis framework
and syntax-directed synthesis. The database approach is suitable for manag-
ing information with inherent graph-like nature and improves and ease the
test and debugging of new compilers and ease the addition of new language
front-ends and platform back-ends, and was a prerequisite to master the
complex agent-on-chip synthesis flow in this work. A database model should
address the structuring and description of the data, its maintainability and the
form to retrieve or query the data [ANG08]. This concludes that a database-
model is defined as a combination of three components:

1. A collection of data structures and structure types;
2. A collection of operators accessing the structures;
3. A collection of general integrity rules ensuring the satisfaction of  struc-

ture relationships and rules (schemas).

Using a database in a compiler offers relationships between input data
(parsed abstract syntax trees of a specific programming language), output
data (synthesis results), and internal data structures (product and sum types,
symbol tables) used by the compiler or synthesis tools. The data relationships
and the data content are stored in the database and structured by the data-
base-model.

In situations where information about the inter-connectivity or the topology
of the data is more important, or as important as, the data itself, graph data-
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis410

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
base-models are preferred. Introducing graphs as a modelling tool has
several advantages for this type of data [ANG08].

12.2.2 Virtual Database Organization
The Virtual Database (VDB) is organized by elements, nodes of a graph

structure, represented by internal nodes (i-nodes), shown in Figure 12.4. I-
nodes represent elements of data records, and an i-node graph of linked i-
nodes represent data structures. A database element can have attributes and
is connected with other elements by linking them with other database ele-
ments. A node element has a unique type and optionally a name or value
(type-tagged value). The links are mainly contained in the content table of an
element. Though a database element (and the i-node) is generic itself, the
content and the arrangement of elements in a graph like ordering (the struc-
ture) is constrained by types and structure relations given by a Structure Type
Definition (STD), defining the types of database elements (nodes, type kind
TYPE), the allowed element content for a specific node type (two-column row
table providing links to child elements) and row lists attaching attributes to
elements (type kind ATTR), and the order they may appear.

Attribute and content tables of an element are organized in rows, each row
consisting of two columns each storing a tagged value, explained below.

There are generic elements called directories that have no specific struc-
ture, which can link to arbitrary database content (e.g. sub-graphs, like
directories in file systems).

Fig. 12.4 Database i-node body fields and connections of i-nodes using node reference links
creating graph structures
epubli, ISBN 9783746752228 (2018)



12.2 SynDK: The Synthesis Development Toolkit 411

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
The element node (kind TYPE), attribute (kind ATTR), and symbol (terminal,
kind SYM) types are internally represented and classified by a unique tagged
numeric tuple constructor:

where SID is a unique structure type definition identifier, and TID a type
class (TYPE/ATTR/SYM) and structure specific unique type enumerator.

 New type identifiers can be added at run-time. For example, a simple
expression structure can be composed of elements, attributes, and symbols
of the following structure types:

TYPE={expr=Type(EXP,1), value=Type(EXP,2), variable=Type(EXP,3)}
ATTR={operator=Attr(EXP,1)} 
SYM={add=Sym(EXP,1), sub=Sym(EXP,2)}

These structure types have specific relations that are specified by the STD,
discussed later.

A row of a content table of an element (the node) consists of two columns,
usually specifying the type of a linked child node and the node link itself. A
row of an attribute list usually consists of the attribute type and the value,
which can be composed of a sub-structure encapsulated by a row list. There-
fore, attributes of database elements can have arbitrary nested tree
structures, too.

Regular expressions specify the possible element (node) child element
types, their order, and the possible attributes for each element type. The child
and attribute structure can be specified with repeating lists, (ordered or unor-
dered) conjunction sub-structures (product types), and disjunction lists (sum
types).

The VDB content can be mapped on, exported to, and imported from XML
files, and the Structure Type Definition schemas discussed below can be
mapped on DTD schema specifications.

12.2.3 The VDB Software Architecture
The graph-based database is the central part in the design and construction

of compilers, shown in Figure 12.5. Around the database there is a two-lay-
ered compiler architecture, consisting of native code compiler modules
programmed with the ML programming language, for example, parsers,
directly operating on the database, and interpreted compiler modules using
the VDB programming language VPL, discussed in Section 12.2.8. 

Type (SID,TID) with SID,TID  N
Attr (SID,TID)
Sym  (SID,TID)
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis412

TY

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Fig. 12.5 VDB design architecture overview and the relationship of data structures to i-
node graphs.

The advantages of this two layered compiler architecture approach are:

1. The high flexibility, interpreted versa compiled;
2. Multiple different programming languages can be supported by one

synthesis program. All compilers and all compiler modules can
exchange data through the database;

3. A VDB interface programming language (VPL) optimally matching the
database and compiler programming that eases the design, and native
code (ML) for optimized speed.

12.2.4 Structure Type Definition Schemas
A structure schema is defined by using the S language specifying the struc-

ture type definition used in the virtual database system for content
verification at run-time, for the database programming interface, and for the
construction of parsers and printers. A structure schema defines the relation-
ship of database elements, and maps data structures on database content.
Structure definitions are hierarchical. 

There are core STD modules used and shared by all compilers and program-
ming languages (or at least a subset of them), shown below. STD schemas can
be cross referenced offering forward and backward references. For example,

VDB

TYPE

ATTR SYM

INODE

RAMFILE

 Virtual Data Base 

Structure
Type Def. 

Graph

Data
Structures

Database
Node

Graphs

STD

STDSTD

REC

REC

OS

Bytecode ML VM

VPL Interpreter VM C1 C2 C3

C1 C2 C3

VDB

 Compiler 

ELEMS ATTR

NAME

TYPE

PE
epubli, ISBN 9783746752228 (2018)



12.2 SynDK: The Synthesis Development Toolkit 413

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
the SYM symbol table schema includes expressions, and the EXP expression
schema references symbols from the SYM schema.

A structure type definition schema (see Definition 12.1) is partitioned in
type, attribute, and symbol definitions, shown below. The STD uses structural
regular expression to specify the structure of the type elements. Structural
regular expressions define a list of structure elements, which can be regular
expressions, too. There are ordered and unordered structures. In ordered
structures, the elements must appear in the order they were specified. Struc-
tural regular expression are used to specify the attribute signature of
database elements (types), too. 

Def. 12.1 Structure Type Definition Language S using structural regular expressions
defining the element graph structure and the sub-structure with attributes

GEN Definition of generic attributes and elements like source
code position information attributes and transformation
elements that can added to any other element

TYP Definition of basic data types
EXP Definition of expressions
SYM Definition of symbol tables (providing symbols for

composed 
data types, storage object definitions, classes, function
interfaces, and many more)

INSTR Definition of imperative and functional statements (using
the expression module)

STRUCTURE Descriptive name −> STR identifier;
DESCRIPTION "text";
TYPES
BEGIN
   type‐name [attributes] := regular‐structure‐expression;
   ..
END;
ATTRIBUTES
BEGIN
   attr‐name := regular‐structure‐expression;
   ..
END;
SYMBOLS Regular Expressions:
BEGIN a,b,c,...    Ordered Structure
   sym−name; a&b&c&...    Unordered Structure
   .. (a|b|c|..)   Choice
END; (..)+ (..)*  Lists of Structure
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis414

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
A STD is a super-class of the commonly used DTD schema specification or
XML documents, primarily due to the lack of attribute tree structures. But a
set of STDs can be transformed to a DTD, expanding nested element attribute
structures to XML elements.

A STD schema can be extended (but not be changed) at run-time creating a
modified STD by adding new symbols, attributes, and types, preserving the ini-
tial (or previous) STD as a subset without violating the previous usage of STDs.
This feature offers a kind of dynamic typing system at run-time. Additional
STDs can be added at run-time, too, which can be used immediately after their
definition.

A simple structure schema definition is shown in Example 12.1.

Ex. 12.1 A simple Structure Type Definition (STD Schema) for expressions

STRUCTURE Expression −> EXP;
DESCRIPTION "Expression Structure";
TYPES
BEGIN
   element [selector? & TYP.datasubtype] := IDENT;
   expr [operator & guarded?] := (element | expr | value)+;
   value [format & time? & TYP.datasubtype] := INT|FLOAT|BOOL|STRING|CHAR;
END;
ATTRIBUTES
BEGIN
   a := INT|element|expr;
   b := INT|element|expr;
   direction := up|down;
   index := (INT|element|expr)+;
   method := IDENT;
   operator := add|sub|mul|div;
   range := a,b,direction;
   selector := (range|index|method|struct)+;
   size := INT;
   struct := IDENT;
   time := INT,(ps|ns|us|ms|sec)?;
   format := (%decimal|%float|%string|%char|%bool);
END;
SYMBOLS
BEGIN
   add;
   %bool −> FmBoolean;
   %char −> FmChar;
   %decimal −> FmDecimal;
   div;
   down;
   %float −> FmFloat;
   %hex −> FmHex;
   ...
END;
epubli, ISBN 9783746752228 (2018)



12.2 SynDK: The Synthesis Development Toolkit 415

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
12.2.5 Tagged Values
A tagged value is a sum type, shown in Definition 12.2, which encapsulates

different data values like integers, boolean, strings, but also node links, identi-
fiers, symbol, attribute, and type element identifiers (and many more) by
assigning a data type tag to the value. This tagged value is a fundamental con-
cept of the database design and the design of parsers mapping grammar to
database content, formatted printers, and the database programming lan-
guage VPL explained later.

Def. 12.2 Tagged value sum type definition and the corresponding tagged type signature

 TYPE tagged_value =             TYPE tagged_type =
   | Int (int value)                 | INT 
   | Int64 (int64 value)             | INT64
   | Float (float value)             | FLOAT
   | Char (char value)               | CHAR
   | Bool (boolean value)            | BOOL
   | String (string value)           | STRING
   | Node (node reference)           | NODE
   | Row (row value)                 | ROW
   | Rows (row list)                 | ROWS
   | Table (row array)               | TABLE
   | Ident (string value)            | IDENT
   | Type (S.id)                     | TYPE 
   | Attr (S.id)                     | ATTR 
   | Sym (S.id)                      | SYM
   | Lab (S.id)                      | LAB
   | Typid (tagged_type)             | TYPID

 TYPE row = (tagged_value,tagged_value)

12.2.6 Programming of Compilers and LaCo: The Language Compiler
An enhanced and modified OCaML programming language (based on

OCaML 3, details in [REM02]) and byte-code interpreter VM (VUM-ML, based on
[OCA03]) is used to implement the VDB and related program libraries. One
major extension of OCaML is the addition of symbolic enumeration types
required for the definition of type descriptors Type(SID,TID), Attr(SID,TID), and
Sym(SID,TID) in ML. OCaML provides functional, imperative, and object orien-
tated programming models in one consistent programming language. The ML
source code can be compiled to native machine or byte code executed by a
VM. The byte code approach is used throughout this entire work to ensure
portability and flexibility.

New compilers can either be programmed in OCaML or by using the inter-
preted VPL database programming language, introduced in Section 12.2.8. A
hybrid approach is commonly applied involving ML and VPL code, too. At least
the parser are included in the ML program itself. Programming of parsers
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis416

ge
ler

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
usually requires a large amount of time. VDB parsers map a specific program-
ming language directly to VDB elements and database content. The structure
of the database content is specified by a STD schema. Common language con-
structs like expressions are reflected by the core schema definitions.

To simplify the generation of parsers (including lexers) and formatted print-
ers, the LaCo compiler was created. 

It can map a STD schema with an extended Backhaus-Nauer Form (EBNF)
syntax specification to parsers and printers automatically, shown in Figure
12.6 on the right side. A compiler and synthesis framework program supports
the processing of multiple languages L={L1, L2, ..}, which can be input, output,
input and output, or intermediate languages.

Fig. 12.6 The Language Compiler LaCo (middle), the structure definition graphs (STD,
top) and the relationship with the database (left).

VDB

RAMFILE

Virtual
Data
Base LaCo

Langua
Compi

S P F E

Structure
Types

Lexer
Parser

Formatted
Printer

STG

STGSTG

REC

REC

ML

TYPE

ATTR SYM

INODE

ELEMS ATTR

NAME

TYPE

TYPE

EXP

TYP

INSTR

GEN

L1

EXP

TYP

INSTR

GEN

L2

EXP

TYP

INSTR

GEN

L3

EXP

TYP

INSTR

GEN

L1 L2 L3

L1

L2

L3

SYM L1

L2

L3

C1

C2

C3

mach.accu <- mach.accu
epubli, ISBN 9783746752228 (2018)



12.2 SynDK: The Synthesis Development Toolkit 417

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
 The LaCo compiler creates from a STD/EBNF definition set {S1, S2, .. , E1, E2,
..} one parser definition P and one formatted printer definition F for each
input and output programming language to be processed by a compiler. Alter-
natively, the P and F definitions can be programmed directly by the user.
Finally, LaCo compiles the P and F definitions to ML source code, which can be
integrated in a VDB-based compiler program providing access to the VPL part
of the compiler.

The EBNF specification with the E language follows the same structure exist-
ing in the S language. There are three main sections in an E specification
module: type element syntax, attribute syntax, and symbol syntax rules, again
using regular expressions.

Def. 12.3 EBNF Syntax Specification Language E

12.2.7 Abstract Syntax and VDB Graphs
A parser for a specific language, generated from an EBNF specification and

STD schemas, parses source text and generates an Abstract Syntax Graph
(AST) directly stored in the database as a database element node graph. This
approach enables syntax-driven synthesis and unifies the parser design
significantly.

SYNTAX Descriptive name;
STRUCTURE STR‐NAME; 
DESCRIPTION "text";
TYPES
BEGIN
  type‐name ::= regular‐expression .
  ..
END;
ATTRIBUTES
BEGIN
  attr‐name ::= regular‐expression .
  ..
END;
SYMBOLS
BEGIN
  sym‐name ::= regular‐expression .
  ..
END;
[ EVALUATE
  BEGIN
    eval‐rules+

  END; ]
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis418

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Fig. 12.7 Example of an AST parsed from syntax "x.[i]+(y-f(a,n-1))" and stored in the
database (ATTRIBUTES belong to the parent database element)

This syntax-driven synthesis enables the composition of complex synthesis
frameworks from a large set of different compilers, which can exchange data
though the well-structured ASTs.

Figure 12.7 shows the VDB representation of the parsed AST derived from a
simple expression.

12.2.8 VPL: VDB Programming Interface and Interpreter
VPL is an imperative high-level programming language derived from Modula

providing direct access to the virtual database VDB. Beside common impera-
tive programming statements like assignments, branches, loops, and
functions there is advanced support for database content query and modifi-
cation operations including node constructors and paths. VPL offers direct
access to structure of the content of the database, e.g., i-node graphs; by path
selectors for query and constructors insert operations.

Figure 12.8 shows the syntax-directed VPL compiler and run-time system. A
VPL source program text is parsed and stored as an AST in the database. A VPL
compiler performs semantic checking and analysis of this AST, finally linking
all functions, objects, storage objects and external library references. 

/
Registry
module_impl:Top
Help
module_impl:Expr
Example

expr
ATTRIBUTES

operator=f_add
element:x

ATTRIBUTES
selector

index
element:i

position
line=1
offset=1

expr
ATTRIBUTES

operator=f_sub
element:y
apply:f

ATTRIBUTES
arguments

element:a
expr

ATTRIBUTES
element:n
value:1

x.[i]+(y-f(a,n-1))
epubli, ISBN 9783746752228 (2018)



12.2 SynDK: The Synthesis Development Toolkit 419

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Fig. 12.8 The VPL interpreter processes pre-compiled VPL programs directly from the
database. VPL programs implement most parts of a compiler (excluding
parser) and interacts directly with the DB.

A VPL VM executes (interprets) this pre-compiled AST directly from the data-
base. VPL can call built-in custom and common compiler and library functions
(programmed in ML), and built-in ML functions can call VPL functions by invok-
ing the VPL interpreter. A pre-compiled VPL program can be saved by
dumping the database content to a file, which can be later loaded by the cus-
tom compiler to be implemented.

Data is handled in VPL by using tagged values. A tagged value is a tuple con-
sisting of a type tag and a data value. The type of a tagged value can be
extracted any time by using the x−>TYPE path selector expression. These
tagged values can be directly handled by the database VDB. Tagged values
can be composed of rows (Rows) or value arrays of tagged values (Table). A
row is a composed value of two tagged values, often used in database tables.
Database elements and their attributes have specific element types {Type,
Attr, Sym, Lab}, which can be handled by a tagged value and created by using
constructors. VPL offers overloaded operations applied to tagged values, for

VDB

TYPE

ATTR SYM

INODE

ELEMS

RAMFILE Virtual
Data
Base

ATTR

VPL
Interpreter

VPL
Code

VPL
Source

VPL
Compiler

Parser L1

Parser L2

Printer L1

Printer L2

IN

OUT

Compiler 1

Compiler
1

Compiler
2

Compiler 2

VDB Read/Write/Query
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis420

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
example, the addition operation can be used for integers, floats, strings, and
lists (rows).

There are no user defined product types. Instead object orientated pro-
gramming is used to implement record structures and operations that are
applied to the data. Primarily, the graph based VDB is used to store and han-
dle record structured data. There are simple sum types limited to constant
enumerations.

Data processing in VPL is performed always with tagged data values. That
means variables, object, and function parameters are polymorphic. Optionally
types of variables and function, procedure, and method parameters can be
restricted to a specific data type checked at run-time using type constraints
applied to variable or parameter definitions. The run-time check can be
disabled.

VPL Constructors
Constructors can be used to create rows, list of rows, element nodes, and

search patterns required for query/lookup operations applied to the database
content. The most commonly used constructor formats are summarized
below.

a:b

Row constructor consisting of two values a and b composing the row
tuple (a,b)

[a1:b1;a2:b2;…]

Row or attribute list constructor
S.t

Type constructor (Element type, attribute, or symbol, depending on
the respective structure definition)

S.t v

Attribute (row) constructor composing the row tuple (S.t,v) with a type
constructor.

S.t [a1:b1;a2:b2;…]

Alternative attribute (row) constructor composing the row tuple
S.t:[a1:b1;a2:b2;…] assigning a row list (sub-structure) to the attribute.

S.t [a][r]

S.t n [a][r]

Element (node) constructor with optional element name n, attribute
list [a], and element content table [r]. S is the structure identifier, t is
epubli, ISBN 9783746752228 (2018)



12.2 SynDK: The Synthesis Development Toolkit 421

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
the (element) type identifier. The element name n can be either an
identifier Ident "name", or any value, i.e., "string", 100.

Value v

Element EXP.value v [] [] constructor. The value v can be of any
type.

VPL Paths
Path selectors are always applied to variables referencing i-node content

(or in some cases row lists). They apply filter patterns to the current content of
the variable. Patterns can contain chained type, value, row and attribute selec-
tors. The most important path selectors are summarized below.

xp1p2..

Chained (nested) path selector. The selector elements p1, p2,.. are
applied from left to right order.

xS1.t1S2.t2..

A path selector with type constructors filtering element types, attrib-
utes, symbols, or labels (Structure S, type t).

xATTR

xATTR…

Attribute table selector of i-nodes/database elements
xROWS

xROWS…

Content table selector of i-nodes/database elements
xROWS.[i]

xATTR.[i] 

xCOLS.[i]

Table row or column index selectors. First order ROWS.[i], ATTR.[i],
and COLS.[i] selectors can be used on left-hand and right-hand side
in assignments. The first row and column index value is always 1.

xNODE

xNAME

xVALUE

xTYPE

xNAME := ..

Node selector (can be applied to a row or an i-node reference), name
filter (can be applied to i-nodes), value filter (can be applied to a row
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis422

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
or an i-node), Type kind filter (can be applied to a row, value or i-node
reference), and the modification of the i-node element name.

VPL Procedural Programming
The central programming paradigm of VPL is the composition of a compiler

(or any other program) by a set of functions operating on database elements.
User functions can be defined with a set of polymorphic typed formal param-
eters holding tagged values. The return type of a function is initially
polymorphic, too. Function parameter and return types can be type con-
strained (checked at run-time). The function definition consists of the
parameter interface, local variable definitions, and statements, shown below.

There are built-in functions and procedures providing commonly used
operations, for example, list (rows) operations.

VPL Objects
Other than common programming languages like Java offers VPL support

for object orientated programming in addition to the procedural program-
ming model. Objects consists of private data (tagged value variables) and
methods operating on the data. Individual objects are instantiated from an
object class definition. The object class definition consists of an object class
name, optional instantiation parameters, local variables representing the
state of an object, and method definitions, modifying the state of an object.
There exist no record structure types in VPL, therefore object classes are used
instead to implement structures modified by their methods. Each object is
extended with a set of methods required for object control only applicable to
the object class type: new, fork, and destroy. The new method creates (instan-
tiate) a new object from an object class type (with arguments if required). The
new method will execute initialization instructions, if any. The destroy method
deletes an object and executed finalization instructions, if any. The fork
method creates a copy of the specified object copying the state of the object
(content of variables), too. After a fork had happened, both objects are inde-
pendent. The principle programming structure of an object class definition
and the object instantiation is shown below.

function f(p1,p2,...) procedure p(p1,p2,...)
   var lV1,lV2,lV3,...;   var lV1,lV2,lV3,...;
   statements;   statements;
   return ;   return;
end; end;
x := f(a1,a2,..); p(a1,a2,..);
epubli, ISBN 9783746752228 (2018)



12.2 SynDK: The Synthesis Development Toolkit 423

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
VPL Control and Data Processing Statements
VPL offers data processing with variables and expressions like any other

imperative programming language. In contrast to commonly used program-
ming languages most arithmetic and relational operations are polymorphic
with respect to the supported tag types. For example, the addition operation
can be used for integer, float, string, and list operands, partially with auto-
matic type conversion if possible.

12.2.9 Compiling a Compiler
The construction of a synthesis framework for a set of compilers CC={cc1

,cc2 , ..} supporting a set of languages L={l1 , l2 , ..} invokes the following steps:

1. A specification of the top-level AST structure definition schema Sl,i for
each language li, inheriting the core structures GEN, TYP, SYM, EXP,
INSTR.;

2. An EBNF syntax specification Ei for each programming language;
3. Generation of the parser and formatted printer specification (in inter-

mediate P/F language) using LaCO, one Pi/Fi for each language;
4. Optionally, editing or adding P/F specifications manually (generation of

formatted printer from S/EBNF specification not unique and not always
complete);

5. Generation of ML parser, lexer, and printer for each supported lan-
guage from the P/F specifications by using LaCo;

6. Programming of the built-in ML modules for each compiler, at least I/O
wrappers for the parser/printer access from VPL level;

7. Compiling of the ML sources (parsers, printers, and built.-in compiler
modules) producing the core VDB compiler (ML  byte code);

object oc(x1,x2,...)
   var lV1,lV2,lV3,...;
   self o;
   method m(p1,p2,..) .. end;
   initialize .. end;
   finalize .. end;
end;
o := oc.new(e1,e2,..);
o.oc.m(a1,a2,..)
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis424

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
8. Programming of the VPL modules for each compiler and compiling the
sources in the database;

9. Loading support data in the database required by the compilers, for
example, templates, libraries, definition data;

10. Saving the database to a file (binary format);
11. Testing the compiler(s). Only the ML virtual machine, the byte code ML

program, and the saved database is required, composing a multi-com-
piler synthesis framework.

12.2.10Conditional and Parametric Compiling
Compiling, for example, of agent processing platforms, commonly invokes

already modelled components, for example, a virtual machine or a tuple data-
base, preferable given in the target programming language (ConPro, C, XML,..).
Traditional pre-compiled and library based approaches are limited to static
modules. But platform and application-specific synthesis requires parametriz-
able module blocks. To offer this synthesis feature, conditional and
parametric compiling was introduced. This technique is known basically from
the preprocessor used in several programming languages and compilers. But
here the conditional and parametric compiler statements are parsed together
with the source programming language and are processed by the compiler
and synthesizer. They are available in the complete synthesis flow. Using the
VDB approach these compiler statements can easily inserted in the AST of the
source language by using generic wrapper statements defined in the GEN STD
(generic element and attribute types may appear anywhere in the structure
graphs, similar to source code positions and comment elements).  Beneath
statements there are compiler variables, part of the compiler environment,
which can be used as parameters in the source programming language.

The conditional and parametric compiling approach allows the specification
of code generators for various programming languages, used, for example, in
the programmable Agent platform synthesis, discussed in Section 12.3.2

An example for a ConPro module with parametric and conditional compile
statements is shown below. A compiler statement starts with the # character
(like conditionals processed by the C pre-processor), and a compiler parame-
ter variable is prefixed with the $ character. 

The ## operation concatenates compiler variables with identifier strings.
Parameter variables can be provided externally by a parameter file or created
by the compiler during the compilation. This approach overlays the program
code with interpreted statements.
epubli, ISBN 9783746752228 (2018)



12.3 Agent and Agent Platform Synthesis 425

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Ex. 12.2 Parametric and conditional compiler statements inserted in a program code
fragment

12.3 Agent and Agent Platform Synthesis

Agent synthesis involves the compiling of agent run-time units (i.e.,
machine code and state container) from a behavioural programming model
(here AAPL) and the design of the agent processing platform, commonly a vir-
tual machine capable to process the agent machine code.

Two different approaches must be distinguished leading to two different
synthesis flows:

1. Non-programmable and application specific agent processing plat-
forms including the description of the agent behaviour using only one
design flow;

2. Programmable generic agent processing platforms excluding the appli-
cation-specific agent behaviour with two separate design flows for the
platform (virtual machine) and the agent behaviour (machine code).

Furthermore, each approach provides hardware and software implementa-
tions (not to be confused with the agent software terminology in the second
approach). Hardware and software implementations for each approach and
platform class are compatible on the operational and communication level
and can be deployed mixed in heterogeneous networks. The next two sec-
tions discusses both synthesis flows separately.

#if $vm_static = true then
  process vm_static:
  begin
     array datasegment: reg [$ds_size] of integer[$data_width];
     ...
     #foreach $p in $processes do
       if $p##state = S_START then
       begin
         for i = 0 to $ds_size‐1 do
         begin  
           datasegment.[i] <‐ 0;
         end;
       end;
     #endfor
  end;
#else 
  ...
#endif
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis426

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
12.3.1 Non-programmable Agent Platform Synthesis
The AAPL model is a common source for the implementation of agent pro-

cessing on hardware, software, and simulation processing platforms. The
previously introduced database driven high-level synthesis approach is used
to map the agent behaviour on these different platforms, shown in Figure
12.9. The application-specific agent processing platform class implements the
agent behaviour, that means the control machine based on the ATG model,
and the data storage for a number of agents.

Fig. 12.9 PCSP Compiler Flow

                                                                                                                                      APL-PCSP Compiler

Parameterizable
Code Template
Generators

AAPL
AC 1

ConPro

C

XML
SeSAm

XML
Parameter
Set

AAPL
AC 2

AAPL
AC 3

VDB

ConPro C XML
SeSAm

AAPL
Parser

Code
Analyzer

MAS
Analyzer
Profiler

Parameter
Generator

ConPro
Generator

C
Generator

XML
Generator

PN
Compiler

Agent
Manager
Generator

Tuple DB
Generator

Comm.
Message
Generator

Simulation
Wolrd
Generator

Symbol
Linker

Process
Mapper

Transition
Mapper

PN
Analyzer

Agent
Table
Generator

Agent
Data
Generator

      HLS SEMC     

CC      
epubli, ISBN 9783746752228 (2018)



12.3 Agent and Agent Platform Synthesis 427

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Therefore, the agent processing platform required on each network node
must implement processing units for different agent classes and must be scal-
able to the microchip level to enable material-integrated embedded system
design, which represents a central design issue, further focussing on parallel
agent processing and optimized resource sharing. 

There are different internal compiler flows supporting the synthesis of
hardware and software platforms. They do not differ significantly. The simula-
tion model can be derived directly from the agent behaviour specification (the
AAPL sources) using SeSAm agents, and enabling the behavioural simulation
and testing of MAS and their algorithms. Alternatively, the PCSP agent pro-
cessing platform itself is compiled in a simulation model (using SeSAm agents),
enabling platform simulation and testing

PCSP Hardware Platform Synthesis
The HW platform design is application-specific with static resources, that

means, all supported agent classes and the maximal number of agents pro-
cessed at run-time must be fixed at design-time. All parts are integrated in
one System-on-Chip (SoC) design on RT level. 

A multi-stage High-level Synthesis approach is used to map the AAPL source
code specification to micro-chip SoC level, shown in Figure 12.10.

The AAPL sources are parsed and an AST is created that is stored in the
compiler database. The first compiler stage analyses, checks, and optimizes
the agent specification AST. The second stage is split basically in different
parts: an activity to process-queue pair mapper with sub-state expansion, a
transition network builder, manager generators, and a message generator
supporting agent and signal migration. 

This microchip-level processing platform implements the agent behaviour
with the already introduced reconfigurable pipelined communicating pro-
cesses architecture (PCSP). The activities and transitions of the AAPL
programming model are merged in a first intermediate representation by
using state-transition Petri Nets (PN), performed by a PN compiler, shown in
Figures 12.9 and 12.10.

This PN representation allows the following CSP derivation specifying the
process and communication network, and advanced analysis like deadlock
detection. Timed Petri-Nets can be used to calculate computational time
bounds to support real-time processing, performed by the time analyser. 

 Keeping the PN representation in mind, the set of activities {A1,..} is
mapped on a set of sequential processes {P1,..} executed concurrently, per-
formed by the process mapper. 
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis428

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Fig. 12.10 Synthesis Flow for the HW PCSP Agent Processing Platform

Each subset of transitions {Ti,j,..} activating one common activity process Pj
is mapped on a synchronous N:1 queue Qj providing inter-activity-process
communication, and the computational part for transitions embedded in all
contributing processes {Pi,..}, performed by the transition network mapper.
Changes (reconfiguration) of the transition network at run-time are supported
by transition path selectors, handled by the transition mapper, too. 

Each sequential process is mapped (by synthesis) on a finite-state machine
and a data path using the Register-Transfer architecture (RTL) with mutual
exclusive guarded access of shared objects, all implemented in hardware, out-
putting a ConPro programming model, finally processed by the ConPro
compiler part.

The Agent Manager (AM) is responsible for the token injection and token
passing of agents, which is generated by the Agent Manager mapper fed with
information from the MAS and PN analyser.

To handle I/O-event and migration related blocking of statements, activity
processes executing these statements are partitioned in sub-states Ai=>{ai,1,
ai,2, .. , ai,TRANS} and a sub-state machine decomposing the process in compu-
tational, I/O statement, and transitional parts, which can be executed
sequentially by back passing the agent token to the input queue of the pro-
cess (sub-state loop iteration). This task is handled by the process and
transition mappers, too. One sub-state partition example is shown below in
Example 12.3.
epubli, ISBN 9783746752228 (2018)



12.3 Agent and Agent Platform Synthesis 429

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Ex. 12.3 Sub-state and Sub-process Decomposition of an AAPL activity with blocking
statements

 

Process replication can be applied to offer parallel processing of activity
processes with high computation times to avoid data processing bottlenecks.
The replication is performed by the process mapper based on the analysis
results from the PN timing and MAS analyser.

PCSP Software Platform Synthesis
For performance reasons and the lack of fine-grained parallelism the ATG

of an agent class is implemented differently:

 Each activity of an agent class and conditional expressions are imple-
mented with functions:

Ai à FAi(){I1;I2;..;return;}
     Tx,y|Cond à FCx,y{return cond;}

 Transitions are stored in dynamic lists: 

struct tl {void (*from)(); 
           void (*to)(); 
           int (*cond)();

                     struct tl *next;};

 Modification of the transitional network modifies the transition lists;

activity init =  
  init1: dx := 0; dy := 0; h := 0;  init2   
  init2: if dir <> ORIGIN then
           moveto(dir);  init3
           init3: case dir of
                    | NORTH => backdir:=SOUTH; 
                    | SOUTH => backdir:=NORTH; 
                    | WEST =>  backdir:=EAST;  
                    | EAST =>  backdir:=WEST;  
                  end;  init4
         else
           live:=MAXLIVE; backdir:=ORIGIN;  init4
         end;
  init4: group := Random(integer[0..1023]);
         out(H,id(SELF),0);  init5
  init5: rd(SENSORVALUE,s0?);   initTRAN
  initTRAN: Transition Computation
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis430

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
 Transitions between activities are handled by a transition scheduler,
which calls the appropriate activity functions:

while(!die) {next=schedule(curr,tl); curr=next; curr()}

 Multi-threading: At run-time each agent is assigned to a separate
thread executing the transition scheduler;

 Operating system or multi-threading primitives are used to synchro-
nize agents (event, mutex, semaphore, timer);

 Creation of agents at run-time is performed by creating an agent han-
dler thread;

 Migration of agents is performed by transferring the state of the agent
(data state of all body variables and control state à next activity after
migration)

PCSP Simulation Platform
The SeSAm simulator environment [KLU09] is used to perform functional

testing and analysis of multi-agent systems operating in distributed sensor
networks.

 SeSAm models the agent behaviour with ATG, too. But: 1. The ATG is
static at simulation-time; 2. Activities may not block; 3. There are no
preemptive signal handlers.

 For this reason: a transition and signal scheduler handles the agent
processing

 Activities with blocking statements (I/O) must be split according to the
PCSP model

 Migration of agents is performed by changing the spatial location!

The simulation design flow includes an intermediate representation using
the SEM programming language, providing a textual representation of the
entire SeSAm simulation model, which can be used independently, too. Simu-
lation aspects are discussed in Chapter 11.

The mapping of the AAPL model on the SeSAm simulation model is shown in
Figure 12.11. 
epubli, ISBN 9783746752228 (2018)



12.3 Agent and Agent Platform Synthesis 431

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Fig. 12.11 Simulation of AAPL based agents in SeSAm

12.3.2 Programmable Agent Platform Synthesis
The programmable platform approach (the architecture was discussed in

Chapter 7) is close to a traditional hardware-software co-design, though the
agent processing platform (AVM) is either generic in terms of the agent behav-
iour classes, or optimized for a set of agent behaviour classes. In particular,
the main synthesis part is the generation of efficient Agent Forth machine
code form the AAPL specification. A detailed synthesis flow diagram is shown
in Figure 12.12. The Agent Forth Programming Language (AFL) is an intermedi-
ate representation of the agent behaviour derived from AAPL, used finally to
compile the machine instruction subset AML, which can be directly executed
by the AVM.

The AAPL source code, which is commonly partitioned in different agent
classes and files, is parsed by the parser generating an AST in the compiler
database. Each AST is analysed and checked for model specification and oper-
ational semantics compliance. 

Additionally, symbol tables are created and updated and references in the
AST are linked to symbols. The entire MAS is analysed to derive design param-
eters, e.g., agent classes and subclasses analysis, computation of the data
complexity, data types and sizes, tuple-space configuration, agent interaction,
and estimated computational complexity, required for further machine code
and platform synthesis. 

The software compiler transforms the AAPL programming model first in an
AFL program, which is eventually compiled to the machine instruction subset
AML. 
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis432

Param
Code
Gene

XM
Pa
Se

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Fig. 12.12 Software and Hardware Synthesis flow for the programmable Agent Forth
processing platform.

The AFL program code can be used as a secondary low-level MAS design
entry, too. The AFL compiler part must generate a boot and LUT section for
the program code frame. The AML program is a linear list of machine instruc-
tions without sub-structures and control environments like loop blocks. Most
high-level AFL instruction are transformed to sequences of AML instructions by
using transformation rule patterns, discussed below.

The platform compiler must generate the virtual machines capable to pro-
cess the agent programs, the pipelined queue interconnection network, the
local and global data memories, and the agent and communication managers.
The communication protocol implementation is rather simple in this platform
approach. It requires only the encapsulation of program code frames in mes-
sages send to a neighbour node. No routers are required.

                                                                                  APL-AFC  Software Compiler

eterizable
 Template
rators

                                                      APL-AFC  Platform Compiler

AAPL
AC 1

AFL

AML

ConPro

C

XML
SeSAm

L
rameter
t

AAPL
AC 2

AAPL
AC 3

VDB

ConPro

C

XML
SeSAm

AAPL
Parser

Code
Analyzer

MAS
Analyzer
Profiler

Parameter
Generator

AFL
Generator

AML
Generator

ConPro
Generator HLS        

CC         
C
Generator

XML
Generator

AFLAFL/AML
Parser

AFL
Analyzer

AFL-AML
Transform

AAPL-AFL
Transform

AVM
Generator

Manager &
Service
Generator

Tuple DB
Generator

Comm.
Generator

Simulation
Wolrd
Generator

Boot/LUT
Generator&
Linker

Symbol
Linker
epubli, ISBN 9783746752228 (2018)



12.3 Agent and Agent Platform Synthesis 433

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
AFL-AML Synthesis Rules
A composition with only a small set of special AFL/AML instructions provides

agent creation, forking, migration, and modification based on code morphing,
which is directly supported by the AVM.

The mapping of the operational semantics of the ATG agent behaviour and
AAPL programming model on AFL programs and finally the transformation to
AML machine code is primarily performed by the AFC compiler with the follow-
ing synthesis rules.

Common Rules
The machine language AML represents only a sub-set of the Agent Forth
programming language AFL. Common mapping rules are used to imple-
ment high-level functions with AML, shown in Table 12.1. Some instructions
are expensive to implement with AML, for example, 2swap.

AFL AML

abs DUP VAL(0) LT BRANCHZ(2) NEGATE

min OVER OVER GT BRANCHZ(2) SWAP DROP

max OVER OVER LT BRANCHZ(2) SWAP DROP

<> EQ NOT

0= VAL(0) EQ

0<> VAL(0) EQ NOT

nip SWAP DROP

tuck SWAP OVER

‐rot ROT ROT

2dup OVER OVER

2drop DROP DROP

2swap TOR ROT ROT TOR ROT ROT

2over PICK(4) PICK(4)

2>r SWAP TOR TOR

2r@ FROMR FROMR OVER OVER TOR TOR SWAP

2r> FROMR FROMR SWAP

i ONE RPICK

Tab. 12.1 AFL-to-AML synthesis rules (VAL: value literal word)
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis434

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
j VAL(2) RPICK

k VAL(3) RPICK

kill CLEAR EXIT

call(TRANS) VAL(‐1) VAL(bootsize‐1) BRANCHL

out VAL(0) OUT

mark OUT

tryin IN

in VAL(0) IN QBLOCK

tryrd RD

rd VAL(0) RD QBLOCK

rm VAL(‐2) IN

t+  VAL(1) VAL(1) BLMOD

t‐ VAL(0) VAL(1) BLMOD

t* OVER 0 VAL(‐1) VAL(0) VAL(1) BLMOD
VAL(1) VAL(1) BLMOD

?exist VAL(‐2) RD

if I1 then I2 BRANCHZ(L) I1 L:I2

if I1 else I2 then 
I3

BRANCHZ(L1) I1 BRANCH(L2) L1: I2 L2: I3

do .. loop TOR L1: FROMR OVER OVER GT BRANCHZ(L2) TOR
..
FROMR ONE ADD TOR BRANCH(L1) L2: DROP DROP

begin .. until L1: ..
BRANCHZ(L1)

var <name> 
    <datatype> [n]

VAR <#lut> <size> DATA

: <name> .. ; DEF <#lut> <size> .. [EXIT]

:%trans .. ; TRANS <#lut> <size> <boot:4> ..

AFL AML

Tab. 12.1 AFL-to-AML synthesis rules (VAL: value literal word)
epubli, ISBN 9783746752228 (2018)



12.3 Agent and Agent Platform Synthesis 435

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Agent Creation using Code Morphing
New agent processes can be created by using code templates and the cre‐
ate statement, by forking the code and the state of a currently running pro-
cess using the fork statement, or by composing a new agent class from the
current process. 

Creating new and forking child processes are implemented with the previ-
ously introduced NEW, LOAD; and RUN machine instruction sequences, de-
fined in Equations 12.1 and 12.2, respectively.

(12.1)

(12.2)

Agent Migration using Code Morphing
Process migration requires the saving of the data and control state of the
process in the frame and transition table boot sections. After the migration
had happened, the code frame is fully re-initialized including the loading of
the process parameters. This requires currently the storage of the process
parameter values on the data stack. In the future the parameter loading
should be wrapped with a dynamic block, which is disabled after first exe-
cution, but must be re-enabled before forking.

The migration is a two-stage process: the first stage is executed by the MOVE
operation, the second by the SUSPEND operation, shown in Equation 12.3.

(12.3)

a a a n acn args1 2  ..    create

VAL(0 ) NEW DUP TOR SWAP Lnoinit) OOAD FROMR VAL(0 ) RUNnew

a a a nn args1 2  ..   fork

VAL(0 ) NEW DUP TOR VAL(-1 )noinit fork)   LOAD FROMR VAL(1 ) RUNfork

dx dy  move

MOVE VAL(-1 ) SETCF VAL(1 ) STOC TOR 

RE

root codeoff

FF(p ) FETCH .. REF(p ) FETCH

VAL(n) FROMR VTOC VAL(1

1 n

fullin

)
iit ) SUSPEND
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis436

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
12.4 The Agent Simulation Compiler SEMC

The MAS simulation techniques introduced in Chapter 11 using the Agent-
based SeSAm simulator are carried out with complex simulation models. The
specification of complex simulation models require a textual programming
language representation of the simulation model (i.e., agents, worlds,
resources, ..). But the SeSAm simulator offers a GUI and graph based model-
ling approach only, unsuitable for large simulation models like them used in
this work.

For this purpose the SEM programming language was invented, compiled
by the SEMC compiler to an XML simulation model, which can be directly read
by the simulator. The block diagram of the compiler and the synthesis flow in
shown in Figure 12.13.

Different SEM input files are processes producing one simulation model file
in XML format that can be directly imported by the SeSAm simulator. It
includes SeSAm agent, resource, and world models. 

Fig. 12.13 SEM Compiler synthesis flow and architecture

                                                                                                                             SEMC Compiler

SEM

SEM

SEM

VDB

XML
SeSAm

SEM
Parser

SEM
Analyzer

Type
Checker

XML
Generator

Rule
Transfor-
mation

Simulation
Wolrd
Generator

Symbol
Linker

SeSAm
Model
Checker

SeSAm
Model
Generator

Optimizer
epubli, ISBN 9783746752228 (2018)



12.5 ConPro SoC High-level Synthesis 437

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
12.5 ConPro SoC High-level Synthesis

Today there is an increasing requirement for the development of System-
On-Chip designs (SoC) using Application-Specific Digital Circuits, with increas-
ing complexity, too, serving low-power and miniaturization demands. The
structural decomposition of such a SoC into independent sub-modules
requires smart networks and communication (Network-on-Chip, NoC) serving
chip area and power limitations. Traditionally, SoCs are composed of micro-
processor cores, memory and peripheral components. But in general,
massive parallel systems require modelling of concurrency both on control-
and data-path level. Digital logic systems are preferred for exploration and
implementation of concurrency. Traditionally, digital circuits are modelled on
hardware behaviour or gate level, but usually the entry point for a reactive or
functional system is the algorithmic level. The Register-Transfer-Logic (RTL) on
architecture and hardware level must be derived from the algorithmic level,
requiring a raise of abstraction of RTL [ZHU01].

With increasing complexity, higher abstraction levels are required, moving
from hardware to algorithmic level. Naturally imperative programming lan-
guages are used to implement algorithms on program-controlled machines,
which process a sequential stream of data- and control operations. Using this
data-processing architecture, a higher-level imperative language can be sim-
ply mapped to a lower-level imperative machine language, which is a rule-
based mapping, automatically performed by a software compiler. But in cir-
cuit design, there is neither an existing architecture nor an existing low level
language that can be synthesized directly from a higher level one. An impera-
tive programming approach provides both abstraction from hard- ware and
direct implementation of algorithms, but usually reflects the memory-mapped
von-Neumann computer architecture model. Another important requirement
of a programming language in circuit design (in contrast to software design) is
the ability to have fine-grained control over the synthesis process, usually
transparent.

Using generic memory-mapped languages like C makes RTL hardware syn-
thesis difficult due to the transparency of object references (using pointers)
preventing RTL mapping. Additionally, concurrency models are missing in
most software languages. There are many attempts to use C-like languages,
but either with restrictions, prohibiting anonymous memory access with
pointers, or using a program-controlled (multi-) processor architecture with
classical hardware-software-co-design, actually dominant in SoC-Design. But
SoC-designs using generic or application-specific processor architectures
complicate low-power designs and concurrency is coarse grained.

One example is PICO [KAT02], addressing the complete hardware design
?ow targeting SoC and customizable or configurable processors, enhanced
with custom-designed hardware blocks (accelerators). The RTL level is mod-
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis438

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
elled with C. The program-controlled approach with processor blocks enables
soft- ware compilation and unrestricted C (functions, pointers) but lacks sup-
port of true bit-scaled data objects.

Another example is SPARK [GUP04], a C-to-VHDL high-level framework, cur-
rently with the restrictions of no pointers, no function recursion, and no
irregular control-flow jumps. It is embedded in a traditional hardware-soft-
ware-co- design flow. It is based on speculative code motions and loop
transformations used for exploration of concurrency. SPARK generates pure
RTL. Only a single-threaded control flow is provided.

Though SystemC provides many features suitable for higher-level synthesis,
it is primarily used for simulation and verification, and only a subset can be
synthesized to circuits. True bit-scaled data types are supported. Concurrency
can be modelled using threaded processes, for example used in Forthes com-
mercial synthesis tool Cynthesizer [COU08]. Inter-process communication is
modelled on transaction level (TLM). SystemC provides a high- level-approach
to model hardware behaviour and structure, rather than algorithms.

None of these approaches fully satisfy the requirements for pure RTL circuit
design while using C-based languages, especially providing a consistent hard-
ware, software, and concurrency model.

Efficient hardware design requires more knowledge about objects than
classical languages like C can provide, for example, true bit-scaled registers,
access, and implementation models on architecture level (for example single
port versa dual port RAM blocks, static versa dynamic access synchronization).
The generic software approach only covers the implementation of algorithms,
but in hardware design the synthesized circuit must be connected to and
react with the outside world (other circuits, communication links and many
more), thus there must be a programming model to inter- face to hardware
blocks, consistent with the imperative programming model. Furthermore,
there must be a way to easily implement synchronization always required in
presence of concurrency (at least on control path level). A multiprocess
model, established in the software programmer community, provides a com-
mon approach for modelling parallelism, which is the preferred approach to
implement and partition reactive systems on algorithmic level.

The ConPro programming language and synthesis [BOS10A][BOS11A]
addresses the above described issues and introduces a design-methodology
of SoCs using the concurrent multiprocess model and the advanced behav-
ioural programming language discussed in detail in the Sections 5.4 and 5.8.

 The synthesis flow is defined by a set of rules  shown in Equation (12.4).
Each set consists of subsets, which can be selected by parameter settings (for
example, scheduling like loop unrolling, or different allocation rules) on pro-
gramming block level.
epubli, ISBN 9783746752228 (2018)



12.5 ConPro SoC High-level Synthesis 439

ate
tion

s

ass 1

ass 2

ass 3

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
(12.4)

12.5.1 Synthesis Flow
The processing architecture of the ConPro compiler and the synthesis flow

is shown in Figure 12.14. The synthesis process is a traditional software com-
piler flow with an intermediate representation (Synthesis layer 1, preserving
parallel processing and CSP related features). There is a broad range of back-
ends supporting software output, too (Synthesis layer 3).

Fig. 12.14 Design flow using the high-level synthesis framework ConPro that maps the
parallel CCSP programming model to SoC-RTL hardware and alternative soft-
ware targets.

Synthesis : CP AST
CODE RTLχ χ μ χ χ

1 2
3 4

¾ ®¾¾¾¾ ¾ ®¾¾¾¾¾
¾ ®¾¾¾¾¾ ¾ ®¾¾¾¾¾¾

ì
í
ï

îï

ì

í
ïï

î
ï
ï

VHDL

C OCaML

C OCaML

/

/

Parser

SoC
Hardware

Program
Software

Intermedi
Representa

Analysi
ConPro
Source Analysis

AST

Transformation
Optimization

Abstract Syntax Tree AST

AST Synthesis P
μCode SynthesisTransformation

Optimization

Referenzstack
Scheduler

Basicblock
Scheduler Synthesis PExpression

Scheduler

μCode

EMI
Source

Parser Analysis
μCode
Source

FSM&Datapath
Synthesis

Rules

VHDL
Synthesis

Toolchain
Script Generator Synthesis P

Rules Code 
Templates

μCode
Source

C/ML
Synthesis

Rules

Rules

Rules

Constraints

μCode

AST

μCode
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis440

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
The synthesis of RTL digital logic circuits from high-level imperative ConPro
program sources passes different phases:

1. First, the source code is parsed and analysed. For each process, an
abstract syntax graph (AST) preserving complex statements is built.
Global and local objects are stored in symbol tables (one globally for
module level, and one for each process level).
First optimizations are performed on the process instruction graph, for
example, constant folding and dead object checking, and elimination
of those objects and superfluous statements. 
Several program transformations (based on rules and pattern match-
ing) are performed, for example inference of temporary expressions
and registers. 
A symbolic source code analysis method, called reference stack sched-
uler [KU92], examines (local) data storage objects and their history in
expressions. The reference stack scheduler analyses the evaluation of
data storage expressions with an expression stack, one for each
object.
The reference stack transforms a sequence of storage assignments
with expressions ={1, 1, ..} of a particular storage object  to
a sequence of immutable and unique symbolic variables i : {11,
21 , ..}. The aim is to reduce statements (using backward substitu-
tion and constant folding) and superfluous storage. The reference
stack scheduler has an ALAP scheduling behaviour.

2. After the analysis and optimization on instruction graph level, the com-
plex instructions (ranging from expressions to loops) of the AST are
transformed into a linear list of  Code instructions. The Code level is
an intermediate representation of the program code, used in software
compilers, too, though no architecture-specific assumption is made on
this level, except constraints to the control flow. The Code can be
exported and imported, too. This feature enables a different en- try
level for other programming language front-ends, for example, func-
tional languages [SHA98].
This intermediate representation allows more fine-grained optimiza-
tion, allocation, and scheduling. The transformation from the syntax
graph to Code infers auxiliary instructions and register (suppose for-
loops that require initialization, conditional branching, and loop-coun-
ter statements).
Parallelism on data path level is provided by a bind instruction that
binds multiple instructions to one execution step or one FSM state
epubli, ISBN 9783746752228 (2018)



12.5 ConPro SoC High-level Synthesis 441

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
(one time unit).
The transformation is based on a set of rules , consisting of
default rules and user-selectable rules (constrain rules). This is the first
phase of architecture synthesis by replacing the paradigms of the
source language with paradigms of the target machine, in this case a
FSM with statements mapped on states and expressions mapped to
the data path (RTL). Additionally, the first phase of allocation is per-
formed here.
Data path concurrency is explored either by user-specified bounded
blocks or by the basic block scheduler. This scheduler partitions the
Code instructions into basic blocks. These blocks have only one con-
trol path entry at the top and one exit at the tail. The instructions of
one basic block (called major block) are further partitioned into minor
blocks (containing at least one instruction or a bounded block). From
these minor blocks data dependency graphs (DDG) are built. Finally,
the scheduler selects data-independent instructions from these DDGs
with ASAP behaviour.

3. After the first synthesis level, the intermediate μCode is mapped on an
abstract state graph RTL using a set of rules , again consisting of
default and user-selectable rules. A final conversion step emits VHDL
code. This design choice provides the possibility to add other/new
hardware languages, like Verilog, without changing the main synthesis
path. 
The rule set determines resource allocation of temporary registers and
functional blocks providing different allocation strategies: shared versa
non-shared objects and flat versa shared functional operators and
inference of temporary registers. Shared registers and functional
blocks introduce signal selectors inside the data path.
The RTL units are partitioned into a state machine FSM (two hardware
blocks, one transitional implementing the state register and one com-
binational implementing the state switch network), providing the con-
trol path, and the data path (consisting of transitional and
combinational hardware blocks, implementing functional operators,
access of global resources and local registers).

4. Using the default set of rules, each Code instruction (except those in
bounded blocks) is mapped to one state of the FSM requiring one time
unit ( 1 clock cycle execution time, depending on object guards and
process blocking). Scheduling is mainly determined by the rule set
, rather than by .
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis442

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Although no traditional iterative scheduling and allocation strategies are
applied in this compiler flow, the non-iterative constraint-selective and rule-
based synthesis approach provides inherent scheduling and allocation with
strong impact from different optimizers. To summarize, there are different
levels of scheduling and allocation:
Reference Stack Scheduler

Operates on syntax graph level and tries to reduce statements, functional
operators, and storage, and has impact on scheduling and allocation.

Basic Block Scheduler
Operates on intermediate Code level and tries to reduce operational time
steps of statements and has only impact on scheduling.

Expression Scheduler 
To satisfy timing and longest combinational path constraints, mainly clock-
driven, complex, and nested flat expressions must be partitioned into sub-
expressions using temporary registers and expanded scheduling. This
scheduler has impact  on both scheduling and allocation.

Optimizer
Classical constant folding, dead code and object elimination, and loop/
branch-invariant code transformations further reduce time steps and re-
sources (operators and storage).

Synthesis Rules
But finally the largest impact on scheduling and allocation comes from the
set of synthesis rules  =   

12.5.2 Microcode Intermediate Representation
ConPro source code is parsed and analysed in the first compilation stage

into symbol lists and syntax graphs of complex instructions or environments
for each process. In the secondary compilation stage, the process instruction
graph structure is flattened in a linear list of microcode program instructions
(CODE). 

The main advantage of this approach is the simplified processing of a linear
list of simple instructions from a small set rather than a complex graph struc-
ture with different complex programming environments and control
statements, for example for-loops. Furthermore, this micro-code approach
offers additionally the synthesis and implementation of microprocessor cores
with a more common traditional hardware/software co-design, which is not
considered here, but enables future extensions of the synthesis flow. 

The set of CODE instructions are summarized in Table 12.2.The first two
instructions relate to the data path, the jump instructions relate to the control
path. The function application instruction is required for the access of
epubli, ISBN 9783746752228 (2018)



12.5 ConPro SoC High-level Synthesis 443

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Abstract Data Type Objects (ADTO) and their implementation. The ADTOs are
commonly global resources that are shared by multiple processes. They
require mutual exclusion synchronization and can provide higher level inter-
process communication.

Instruction Description Operand Description

MOVE(dst,src) Data transfer 
dst  src

$immed.[i] Temporary symbolic 
variable used imme-
diately in the next 
instruction(s)

EXPR(dst,
     op1,
     operation,
     op2)

Evaluate expres-
sion and assign 
result to dst.

$temp.[i] Temporary storage 
register

BIND(N) Bind the following N 
instruction to one 
bounded block.

$alu.[i] Shared ALU

JUMP(target) Branch to program 
position target

DT{DT[N]} Data type

FALSEJUMP(
  cond:target)

Branch to program 
position target if 
cond is false

ET{DT[N]} Expression data type

FUN(name[,arg]) Object operation or 
function application

TC{DT[N]} Data type conversion

label: Symbolic instruc-
tion (branch target) 
label

SPECIAL(
  instruction)

Internal usage

NOP No operation place 
holder

Tab. 12.2 Language syntax of CODE instructions: Left() instructions, (Right) oper-
and formats
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis444

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
The special and label instruction are auxiliary instructions. The bind instruc-
tion provides a way to bind data path instructions, which should be executed
concurrently, either specified explicitly on programming level or implicitly
derived by a scheduler and optimizer exploiting parallelism on data path level.

One obvious disadvantage of this approach is the lost of parallelism inside a
process block, because each instruction or operation occupies at least one
time step. To preserve parallelism on process instruction level, the bind
instruction was introduced. This instruction binds the N following data path
instructions into a group, and all instructions of the group are executed in one
time step concurrently (perhaps higher number of clock cycles required due
to guarding and blocking constraints). 

Operands of CODE instructions can be registers, variables, signals, or tem-
porary (symbolic) variables with additional information about data (DT) and
expression types (ET) attached (sub-typing), required for type and data width
conversion (TC) of operands to target object (LHS) types. More information
are available about locality and LHS (write reference) or RHS (read reference)
attributes, and if a shared ALU is used for an expression evaluation. The
CODE instructions provides initial scheduling and allocation information for
the following RTL synthesis including expression transformations.

12.5.3 Synthesis Rules
The simplest core set of synthesis rules applied to source code in the HLS is

summarized below.
Rule P: Process

Each sequential ConPro process is mapped on one RTL block, with a
FSM offering the control flow of the computation and a behaviour
given by a state-transition-graph =(,), and a data path . The set of
control states is ={, , ..}, and the set of control state transitions is
E.
The entire RTL block is composed of combinational and transitional
hardware blocks, HW=(  ).

Rule SI: Storage
There are only registers  with independent data widths in the range
[1..Wmax] bits.
reg name: DT[width];

Rule SII: Storage Resource Sharing and Allocation
There is no resource sharing: For each register r (which is used) a
transitional hardware block  is allocated.
FUN ALLOCATESTORAGE :  {r1, r2, .. |  ri }   { 1, 2, ..| i }
epubli, ISBN 9783746752228 (2018)



12.5 ConPro SoC High-level Synthesis 445

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Rule SIII: Statement Scheduling
Each instruction i from the set of elementary statements  is mapped
on one state of the control flow =(,) of the FSM. The set of ele-
mentary statements consists of   = {Assignment, Expression
Evaluation, Conditional Branch, Unconditional Branch}.
FUN SCHEDULE : {i1, i2, .. |  ii }   { 1, 2, ..| i }

Rule SIV: Data path
The data path  is decomposed to relation with the control state set
.

Rule SV: Expression Resource Sharing and Allocation
There is no resource sharing. For each functional operator op
(which is used) a combinational hardware block  is allocated. The set
of operators  consists of  ={+,‐,*,/,and,  or,  not,  shiftl,

shiftr}.
FUN ALLOCATEEXPR :  {op1, op2, .. |  opi }   { 1, 2, ..| i }

Rule SVI: Complex Statements
Complex statements i, for example, loops, are decomposed in a
sequence of elementary statements using a synthesis decomposition
rule : i{i1, i2, .. | i}. The set of complex statements consists of
={If-Then-Else, Case-Select, For-Loop, While-Loop, ..}.
The transformation rules for some complex statements are shown in
Table 12.3 below.
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis446

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Rule SVII: States and Transitions
Each state i has always a successor state j with ji, except j=i iff the
current statement execution is blocked by a guard of a global object
(satisfaction of the guard condition). A state transition can be condi-
tional, given by the state transition function COND(i, j , cond)
satisfying a precondition cond or unconditional given by the function
NEXT(i, j) (execution of an ordered statement sequence).
FUN TRANSITION: (i,j)  {{NEXT(i, j),COND(i, j , cond)}}
There is a start and an end state (0, ) assigned to each sequential
process. There is at least one state transitions to another state outgo-
ing from each state, except for the end state , which has only an
outgoing self transition.

Statement Transformation

for cni = a to b do Bi ALLOCATE: cni á ri á i
TRANSFORM:     cni  a;
        LOOPi: eval(cni < b)?,
               falsejump EXITi;
               Bi;
               cni  cni + 1;
               jump LOOPi;
        EXITi: ...

if ei then Bi,1 else Bi,2 TRANSFORM: EVAL(ei)?,
           falsejump LBi,2;
           Bi,1;
           jump EXITi;
     LBi,2: Bi,2;
     EXITi: ...

match ei with 

when v1 : Bi,1

when v2 : Bi,2

... 

when others : Bi,n

TRANSFORM: eval(ei=v1)?,
           falsejump LBi,2;
           Bi,1;
           jump EXITi;
     LBi,2: eval(ei=v2)?,
           falsejump LBi,3;
           Bi,2;
           jump EXITi;
           ...
     LBi,n: Bi,n;
     EXITi: ...

Tab. 12.3 Synthesis transformation for complex ConPro statements. Nota-
tion is B: statement blocksCODE:  x  y; á MOVE(y,x); eval(?),
falsejump L; á BIND(2); EXPR(t,); FALSEJUMP(t,L)
epubli, ISBN 9783746752228 (2018)



12.5 ConPro SoC High-level Synthesis 447

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Ex. 12.4 CODE synthesis from ConPro program snippet (nop instructions are
removed during the CODE optimization and state compaction)

CONPRO
s <‐ 0;
for i = 1 to 10 do
begin
  t <‐ 1;
  s <‐ s + i;
  if s = 0 then
    t <‐ 2;
  end;
end;

MICROCODE

  data:
register LOOP_i_0: int[8]

  code:
i1_assign:
  move (s,0)
i1_assign_end:
  nop
i2_for_loop:
  move (LOOP_i_0,1)
i2_for_loop_cond:
  bind (2)
  expr ($immed.[1],10, > =,LOOP_i_0)
  falsejump ($immed.[1],%END)
i3_assign:
  expr (s,s,+,LOOP_i_0:I8)
  nop
i3_assign_end:
  nop
i4_branch:
  bind (2)
  expr ($immed.[1],s,=,0)
  falsejump ($immed.[1],i2_for_loop_incr)
i4_branch_end:
  nop
i2_for_loop_incr:
  bind (3)
  expr (LOOP_i_0,LOOP_i_0,+,1)
  nop
  jump (i2_for_loop_cond)
i2_for_loop_end:

Advanced synthesis rules include basic block scheduling (on AST and CODE
level), reference stack based optimization (in AST level), and resource sharing
(especially concerning temporary storage), discussed in the next Sections.
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis448

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Rule SOI: Extended set of storage objects
The set of storage objects is extended with variables stored in RAM
blocks and selected by their address

Rule SOII: Resource sharing
Inside processes local storage like temporary registers can be reused
for several computations. Furthermore, operations (arithmetic, rela-
tional, boolean) can be shared with an ALU approach, using one or
multiple ALU blocks.

Rule SOIII: State compaction
The set of control states and the state-transition graph of each pro-
cess derived from statement sequences and complex statement
decomposition can be reduced by merging control and data state-
ments. This is mainly performed on CODE level.

Rule SOIV: Optimization
Several traditional optimization techniques like rescheduling (Refer-
ence Stack approach), constant folding, and dead object/code
optimization can improve SoC resource requirements and execution
times significantly, including basic block parallelization, discussed in
the next sections.

12.5.4 Reference Stack (RS) Optimizer and Scheduler
The symbolic RS method offers storage and control flow optimization on

AST level using an automatic scheduling approach, which is divided into two
passes:

1. Merging of expressions with ALAP scheduling behaviour on abstract
syntax tree level to resolve constant and register/variable folding
beyond the initial instruction boundaries. The reference stack method
merges expressions to meta expressions as large as possible, leading
to optimised results in constant folding. All assignments of registers
and variables are delayed on this level as late as possible. Real data
transfer with register/variable assignments are scheduled only on
global block, branch and loop boundaries. 

2. Post scheduling of these (large) meta expressions with control step
assignments depending on the chosen expression scheduling and allo-
cation model on intermediate microcode level. In the case of a flat
model, the meta expressions are scheduled in one time step. In the
case of a two-ary or shared ALU model, the expression consisting of N
epubli, ISBN 9783746752228 (2018)



12.5 ConPro SoC High-level Synthesis 449

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
two-ary operations is scheduled in N time steps with temporary regis-
ters transfers.

Basically the RS algorithm (explained in Definition 12.4) transforms a
sequence of modifications of mutable storage objects into a sequence of
immutable symbolic variables, shown in Example 12.5. The flush of storage
assignments is delayed as late as possible. Control statements can trigger a
flush depending on the occurrence of storage objects in conditional and loop
body blocks. The algorithm in Definition 12.4 is advanced version adapted
from [KU92].

Ex. 12.5 Possible outcomes (right) of a source code block (left) using the reference
stack analysis and optimization (case 2: y is not referenced after this block
and has no side effects). Bottom: Transformation of mutable storage to
immutable symbolic variables

x  a + b + 1;         ¶ y  a + b + c;
y  x + 1 + c;      á        x  y;
x  y ‐ 2;             · x  a + b + c;

DEF x0 = a + b + 1
DEF y0 = x0 + 1 + c
DEF x1 = y0 ‐ 2 T(x)=[x1,x0]

Def. 12.4 RS Algorithm

1. Each data object x is traced with its own reference stack T:

T(x)=[rei-1; rei-2; ... ; re0]

(Left element is the top of the stack, re is a reference expression of type stack-
element)

Data objects x
  register, variable 

Reference Expressions
  TYPE stack = stackelement list
  TYPE stackelement =
    | RS_self(obj)
    | RS_expr(expr)
    | RS_branch(stack list)
    | RS_loop(stack)
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis450

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
    | RS_ref(stackelement reference list)

2. An assignment

xi  (x1, x2 ,...) 

is delayed as late/last as possible (ALAP).
3. A new reference stack for object x is created on the first occurrence of x on

LHS in an assignment:

xi  (x1, x2 ,...) á T(xi)=[RS_expr()]

4. A new reference stack for object x is created on the first occurrence of x on
the RHS in an assignment or an expression:

T(xi)=[RS_self(x)]

5. Each new assignment to a storage object x updates the reference stack by
pushing the new expression (RHS of assignment) on the stack T(x).

xi  n(x1, x2 ,...) á T(xi)=[RS_expr(n), ..]

6. Each occurrence of a storage object in an expression is marked (in the AST)
with a reference to the current top element of the reference stack for this ele-
ment (with top=n-1 and n stack elements): T(x1)top

n(x1, x2 ,...) á n(x1:T(x1)top, x2 : T(x2)top, ...)

Inside branches or loops the RS_ref([stack references]) is placed on the refer-
ence stack T(x) for objects only referenced but not modified inside branches
or loops, which is an important information for scheduling decisions (an RS
flush, see next step).

7. Flush all delayed assignments at the end of the outer scheduling block and if
there are no control statements like branches and loops before. After a flush
has happened, the top of the reference stack is now RS_self. Resolve
dependencies of objects and stack top expressions, sort assignments before
flushing in correct dependency order. 
Relocate all references RS_ref pointing to other stack elements in expres-
sions in the flushed assignments.
epubli, ISBN 9783746752228 (2018)



12.5 ConPro SoC High-level Synthesis 451

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Example

x  12;  . delay assignment, T(x)=[12]
y  x + 1;  . delay assignment, T(y)=[x0+1]
x  v;  . delay assignment, T(v)=[v], T(x)=[v0,12]
a  y ‐ 1;  . delay assignment, T(a)=[y0‐1]

á flush all delayed assignments with stack relocation and 
   constant folding:

y  y0=x0+1=12+1=13;
a  a0=y0‐1=x0+1‐1=12;
x  x1=v0=v;

8. Branches

i. Evaluate all conditional blocks Bcond, i of the branch, with total b dif-
ferent blocks, each for one branch condition, j=0...b-1. Each condi-
tional block is handled with its own sub-stack TBcond,i(x) with n as
the number of conditional blocks:

T(x)= [RS_branch([Tn−1;Tn−2,..,T0],..]

All objects modified inside the conditional block Bcond, i get a 

RS_branch([TBcond,1= [], .., TBcond, i=[RS_expr(),..], ..]) 

stack element on the top of respective sub-stack. All further modifi-
cations are stored in this RS_branch stacks. Objects x appearing the
first time in expressions get an RS_branch([.., TBcond, i=[T(x)top], ..])
stack element. The initial top element T0 of the branch is either a
reference RS_ref to a previous expression or RS_self. The last ele-
ment is required in loop environments due to side effects.

ii. Objects only referenced in each branch, that means they were not
modified and TBcond,i=[RS_self | RS_ref] |  RS_expr for all i=0...b-
1, are transformed into references to previous stack elements:

T(x)=[RS_branch([[RS_self],[RS_self];...]),Tn-2 ,..] 
á

T(x)=[RS_branch([[RS_ref(Tn-2 )],[RS_ref(Tn-2 )];..]),Tn-2 ,..]

iii. After all conditional blocks were evaluated, objects with
RS_branch([Tn-1; Tn-2;...;T0]) and Ti [RS_self | RS_ref] |  RS_expr
(modified inside the block) must be pushed before the branch
instruction (expectation: all possible branches modify x) if there is
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis452

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
an Expression RS_expr before the actual branch stack, and at the
end of the conditional block they were modified.

iv. Modify the reference stacks: 
a.) Storage object x was not modified inside the branch, but refer-
enced:

T(x)=[RS_branch([[RS_self],..]),RS_expr(i),..]
á

T(x)=[RS_ref(RS_expr(i)),
        RS_branch([[RS_ref(RS_expr(i))], ..]),RS_expr(i), ..] 

b.) x was modified inside the branch: 

T(x)=[RS_branch([[RS_expr(j),RS_self], ..]),RS_expr(i), ..]
á

T(x)=[RS_self,
        RS_branch([[RS_expr(j),RS_self)], ..]),RS_expr(i), ..]

9. Loops

i. Evaluate all objects appearing in loop condition expressions before
the loop body block is evaluated.

ii. Evaluate the body block B of the loop. 
Objects appearing the first time in loop body expressions (and the
RHS of assignments) get a RS_loop([T0]) top stack element with
T0=RS_self. All objects modified the first time in the loop block get
a RS_loop(Tloop) expression on the top of stack. All further modifi-
cations are stored in this RS_loop(Tloop) expression.

T(x)=[RS_loop(Tloop=[..]), ..]

iii. Objects only referenced or appearing on the RHS in the loop body,
that means Tloop=[RS_self] |  RS_expr, are transformed in refer-
ences to previous stack elements, and this reference is pushed to
the stack, too:

T(X)=[RS_loop([RS_self]),Tn-2, ..]
á

T(X)=[RS_ref(Tn-2), RS_loop([RS_ref(Tn-2)]),Tn-2, ..]

iv. After the loop block was evaluated, objects with RS_loop(T) and T
[RS_self] (modified inside the block) must be pushed before the
epubli, ISBN 9783746752228 (2018)



12.5 ConPro SoC High-level Synthesis 453

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
loop instruction if there is an expression RS_expr before the actual
loop, and inside at the end of the loop block, too.

v. Modify the reference stacks: 
a.) Storage object x was not modified inside the loop body, but ref-
erenced:

T(x)=[RS_loop([RS_self]),RS_expr(i), ..]
á

T(x)=[RS_ref(RS_expr(i)),
        RS_loop([RS_ref(RS_expr(i))]),RS_expr(i), ..] 

b.) x was modified inside the loop body: 

T(x)=[RS_loop([RS_expr(j),RS_self]),RS_expr(i), ..]
á

T(x)=[RS_self,
        RS_loop([RS_expr(j),RS_self)]),RS_expr(i), ..]

12.5.5 Basic Block Scheduling and Data Path Parallelization
The basic block scheduler explores the control flow and groups data path

statements (assignments) in the largest possible statement blocks, the basic
blocks. A basic block has only one control flow entry (the first statement), and
only one exit (after the last statement). Basic blocks can be analysed regarding
the exploitation of parallel execution of the statements of a basic block by
using data dependency graphs (DDG). The DDG of a basic block is an acyclic
directed graph with nodes representing the operations (assignments) and
edges representing the data dependency of operations, determining an exe-
cution order. 

A DDG of a basic block can indeed consists of a forest of independent
graphs, and graphs with multiple root elements, shown in Figure 12.15. 

Independent operations can be scheduled and executed in one cycle with a
bounded block. The goal is to schedule k operations in a bounded block with
k={1,..,c} and c is either unlimited (maximal) or a limit of the maximal number
of parallel operations. The DDG is partitioned in levels used finally for the
scheduling. All operations belonging to one level are independent and can be
scheduled in one bounded block, shown in Definition 12.5. The level partition
is performed by computing the longest path from a root node to each deeper
node. Each node gets a marking of the longest path from a root node reaching
this node, which is the equal to the level.

It is assumed that the parallel execution of a set of instruction contained in
a bounded block is atomic and each data transfer is only executed one time. 
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis454

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Fig. 12.15 The derivation of a DDG forest from a sequence of assignments and a possible
parallel scheduling requiring only four bounded block statements (and
cycles).

That means that expressions on the RHS of all assignments in a bounded
block are first evaluated (with the old values of all storage objects referenced
in the expressions).

Def. 12.5 A.) Partition of an ordered list of instructions K={i1; ..}, with i from the set of
statements , in a set of basic blocks B=[b1,b2,..] consisting each of an ordered
list of instructions (i;..). B.) The scheduling algorithm used to parallelize data
flow independent sub-lists of instructions (i,..) mapped again to a flattened
instruction list.

FUN PARTITION: K=[i1;i2;..]  B=[b1;b2;..] IS
  b=[]; B=[];
  WHILE K  [] DO
    k   HEAD(K), K  TAIL(K);
    IF KIND(k) = DATA THEN b  b  [k] 

               ELSE B  B  b, b  [];
  

FUN SCHEDULE: B=[b1;b2;..]  K’=[(i1,i2,..);(..);..] IS
  K=[];
   b  B DO
    DDG  Build DDG forest from b; 
    roots  List of root nodes of DDG (nodes w/o predecessor);
     {op | op  roots} DO 
       Mark(op,1);
    maxLP  0;
     {op | op  DDG\roots} DO 

(1) t1 := a+1
(2) t2 := a-1
(3) y := t1*t2
(4) x := t1
(5) t3 := f(c)
(6) z := x-y
(7) x := x+1
(8) t4 := t3-x
(9) t5 := d
(10) u :=t5*t5
(11) t6 := g(c)-1
(12) u := u-t6

1 2

34

5

67

8

9

10

11

12
epubli, ISBN 9783746752228 (2018)



12.5 ConPro SoC High-level Synthesis 455

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
       LP  0;
        {op’ | op’  roots} DO 
          LP  Max(LP,|Path(op,op’)|);
       Mark(op,LP);
       maxLP  Max(maxLP,LP);
     {level | level  {0..maxLP}} DO
       K  K  [Bind({op  DDG | Level(op) = level})]; 

12.5.6 RTL Synthesis and VHDL Model
Synthesis of Register-Transfer-Level design is enabled by a transformation

of the intermediate microcode instruction list representation to FSM and RT
Data path architecture blocks. The control and data path of the microcode
instruction list is represented using a (linear) state list. A state list consists of
concatenated state expressions, which can be considered as control flow
statements containing data flow expressions for the particular state:
A state expression of a state transition list consists of:

state_name
State name string in the format: S_i<instrid>_<instrname>_<subop>

state_next
Different control statements (Control path of the RTL):

Next(label), Next_instr
Control flow is directed to labelled state <label>. The next instruction
kind is an unresolved pointer to the next following state expression in
the list.

Branch (data list, next0, next1)
Conditional branch. Data contains the boolean expression required
for evaluating the conditional branch. Up to two possible state transi-
tions are possible.

Select (data list, case_state list)
Multi-case non-hierarchical branching. Data contains the expres-
sion(s) to which each case value(s) is (are) compared. [case_state=(data
list, next_state)]

state_data
Specification of the data path of the RTL block, e.g., different data transfer
statements, mainly handling VHDL signal assignments:

Data_in( vhdl_expr)
Input arguments for an expression, e.g., the RHS of a data transfer
statement, for example operands for the ALU.
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis456

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Data_out (vhdl_expr)
Output from an expression or operational unit is directed to the LHS
of a data transfer statement, for example the ALU output result or
the output from a global object, acting only as a resource multiplexer
(part of the combinatorial data path).

Data_trans(vhdl_expr)
LHS of an expression, transitional local register data transfer (part of
the transitional data path).

Data_signal(vhdl_expr)
Signal assignments (state dependent), static driven.

Data_cond(vhdl_expr)
Conditional expression (expression transformed VHDL If/Case).

Data_top(vhdl_expr), Data_top_def (vhdl_expr)
Entity top-level VHDL expressions and architecture definitions.

Data_def(vhdl_expr,vhdl_expr), Data_def_trans (vhdl_expr,vhdl_expr)
Default signal assignments in combinatorial and transitional data
path.

VHDL Output
Finally, VHDL entities are created from the state transition list (there is one
list for each sequential process). Additional VHDL entities are created for
modules. Global objects are implemented in the module top-level entity,
shown in Figure 12.16.

Fig. 12.16 ConPro module hierarchy and created VHDL components.

Module m1 m1.vhdl Processes

Module m2 m2.vhdl Processes Process p1 m1_p1.vhdl

Process p2 m1_p2.vhdl

Process main m1_main.vhdl
epubli, ISBN 9783746752228 (2018)



12.5 ConPro SoC High-level Synthesis 457

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
The following example poses the outline of the synthesized VHDL from a
small ConPro design consisting of three processes and two shared objects, a
register array and a semaphore used to synchronize the three processes.

Ex. 12.6 A small ConPro design and excerpt of the synthesized VHDL

ex.cp
open Core; open System; open Process; open Semaphore;

array data_in,data_out: reg[100] of int[16];
reg mon:int[16];  export mon;

object sem: semaphore with init=0;

function f(x:int[16]) return(y:int[16]): begin
     y <‐ x*x;

end;

process consumer1: begin
  sem.down();
  for i = 0 to 50 do begin data_out.[i] <‐ f(data_in.[i]); end;
  sem.up();
end;

process consumer2: begin
  sem.down();
  for i = 51 to 99 do begin data_out.[i] <‐ f(data_in.[i]); end;
  sem.up();
end;

process main: begin
  sem.init(0);
  for i = 0 to 99 do begin data_in.[i] <‐ i; end;

     consumer1.start(); consumer2.start(); sem.up();
     for i = 1 to 2 do begin sem.down(); end;
     for i = 0 to 99 do begin mon <‐ data_out.[i]; end;

end;

***********************************************************************
conpro ex.cp à
***********************************************************************

ex.vhdl
entity MOD_ex is
port(‐‐ Connections to the outside world
  signal mon_RD: out std_logic_vector(15 downto 0);
  signal CLK: in std_logic;
  signal RESET: in std_logic
);
architecture main of MOD_ex is
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis458

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
     Process instances
  component ex_FUN_f
  port(..)
  component ex_consumer1
  port(..)
  component ex_consumer2
  port(..)
  component ex_main
  port(..)
  type ARRAY_data_out_TYPE is array(0 to 99) of 

                 signed(15 downto 0);
     signal ARRAY_data_out: ARRAY_data_out_TYPE;

  ..
  signal PRO_consumer1_ENABLE: std_logic;
  signal PRO_consumer1_END: std_logic;
  signal PRO_consumer1_main_START: std_logic;
  signal PRO_consumer1_main_GD: std_logic;
  ..
begin

ex_consumer1.vhdl
entity ex_consumer1 is
port(
  Connections to external objects, components and the outside

            world
  signal ARRAY_data_out_WR: out signed(15 downto 0);
  signal ARRAY_data_out_WE: out std_logic;
  signal ARRAY_data_out_GD: in std_logic;
  signal ARRAY_data_out_SEL: out std_logic_vector(7 downto 0);
  signal MUTEX_LOCK_FUN_f_LOCK: out std_logic;
  signal MUTEX_LOCK_FUN_f_UNLOCK: out std_logic;
  signal MUTEX_LOCK_FUN_f_GD: in std_logic;
  signal SEMA_sem_DOWN: out std_logic;
  signal SEMA_sem_UP: out std_logic;
  signal SEMA_sem_GD: in std_logic;
  signal REG_RET_FUN_f_y_RD: in signed(15 downto 0);
  signal PRO_FUN_f_CALL: out std_logic;
  signal PRO_FUN_f_GD: in std_logic;
  signal ARRAY_data_in_RD: in signed(15 downto 0);
  signal ARRAY_data_in_SEL: out std_logic_vector(7 downto 0);
  signal REG_ARG_FUN_f_x_WR: out signed(15 downto 0);
  signal REG_ARG_FUN_f_x_WE: out std_logic;
  signal PRO_consumer1_ENABLE: in std_logic;
  signal PRO_consumer1_END: out std_logic;
  signal conpro_system_clk: in std_logic;
  signal conpro_system_reset: in std_logic
);
end ex_consumer1;
architecture main of ex_consumer1 is
  Local and temporary data objects
epubli, ISBN 9783746752228 (2018)



12.5 ConPro SoC High-level Synthesis 459

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
  signal LOOP_i_0: signed(7 downto 0);
  State Processing
  type pro_states is (
    S_consumer1_start, ‐‐ PROCESS0[:0]
    S_i1_fun, ‐‐ FUN22215[ex.cp:19]
    S_i2_for_loop, ‐‐ COUNT_LOOP2877[ex.cp:20]
    S_i2_for_loop_cond, ‐‐ COUNT_LOOP2877[ex.cp:20]
    S_i3_fun, ‐‐ FUN78627[ex.cp:22]
    S_i4_assign, ‐‐ ASSIGN23890[ex.cp:22]
    S_i5_fun, ‐‐ FUN19442[ex.cp:22]
    S_i6_assign, ‐‐ ASSIGN58851[ex.cp:22]
    S_i7_fun, ‐‐ FUN83891[ex.cp:22]
    S_i2_for_loop_incr, ‐‐ COUNT_LOOP2877[ex.cp:20]
    S_i8_fun, ‐‐ FUN63052[ex.cp:24]
    S_consumer1_end ‐‐ PROCESS0[:0]
    );
  signal pro_state: pro_states := S_consumer1_start;
  signal pro_state_next: pro_states := S_consumer1_start;
..
  state_transition: process(..) begin
    if conpro_system_clk'event and conpro_system_clk='1' then
      if conpro_system_reset='1' or PRO_consumer1_ENABLE='0'

                then
        pro_state <= S_consumer1_start;
      else
        pro_state <= pro_state_next;
      end if;
    end if;
  end process state_transition;

  Process implementation
  Instruction Controlpath Block ‐ The Leitwerk
  control_path: process(..) begin ..
    case pro_state is
      when S_consumer1_start => ‐‐ PROCESS0[:0]
        pro_state_next <= S_i1_fun;
      when S_i1_fun => ‐‐ FUN22215[ex.cp:19]
        if not((SEMA_sem_GD) = ('0')) then
          pro_state_next <= S_i1_fun;
        else
          pro_state_next <= S_i2_for_loop;
        end if;
      when S_i2_for_loop => ‐‐ COUNT_LOOP2877[ex.cp:20]
        pro_state_next <= S_i2_for_loop_cond;
      when S_i2_for_loop_cond => ‐‐ COUNT_LOOP2877[ex.cp:20]
        if CONST_I8_50 >= LOOP_i_0 then
          pro_state_next <= S_i3_fun;
        else
          pro_state_next <= S_i8_fun;
        end if;
      when S_i3_fun => ‐‐ FUN78627[ex.cp:22]
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis460

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
        if not((MUTEX_LOCK_FUN_f_GD) = ('0')) then
          pro_state_next <= S_i3_fun;
        else
          pro_state_next <= S_i4_assign;
        end if;
      when S_i4_assign => ‐‐ ASSIGN23890[ex.cp:22]
        pro_state_next <= S_i5_fun;
      when S_i5_fun => ‐‐ FUN19442[ex.cp:22]
        if PRO_FUN_f_GD = '1' then
          pro_state_next <= S_i5_fun;
        else
          pro_state_next <= S_i6_assign;
        end if;
      when S_i6_assign => ‐‐ ASSIGN58851[ex.cp:22]
        if ARRAY_data_out_GD = '1' then
          pro_state_next <= S_i6_assign;
        else
          pro_state_next <= S_i7_fun;
        end if;
      ..
      when S_consumer1_end => ‐‐ PROCESS0[:0]
        pro_state_next <= S_consumer1_end;
        PRO_consumer1_END <= '1';
  end process control_path;

  
  Instruction Datapath Combinational Block
  data_path: process(..) begin
    ‐‐ Default values
    SEMA_sem_DOWN <= '0';
    MUTEX_LOCK_FUN_f_LOCK <= '0';
    REG_ARG_FUN_f_x_WR <= to_signed(0,16);
    REG_ARG_FUN_f_x_WE <= '0';
    ARRAY_data_in_SEL <= "00000000";
    PRO_FUN_f_CALL <= '0';
    ARRAY_data_out_WE <= '0';
    ARRAY_data_out_SEL <= "00000000";
    ARRAY_data_out_WR <= to_signed(0,16);
    MUTEX_LOCK_FUN_f_UNLOCK <= '0';
    SEMA_sem_UP <= '0';
    case pro_state is
      when S_consumer1_start => ‐‐ PROCESS0[:0]
        null;
      when S_i1_fun => ‐‐ FUN22215[ex.cp:19]
        SEMA_sem_DOWN <= SEMA_sem_GD;
      when S_i2_for_loop => ‐‐ COUNT_LOOP2877[ex.cp:20]
        null;
      when S_i2_for_loop_cond => ‐‐ COUNT_LOOP2877[ex.cp:20]
        null;
      when S_i3_fun => ‐‐ FUN78627[ex.cp:22]
        MUTEX_LOCK_FUN_f_LOCK <= MUTEX_LOCK_FUN_f_GD;
      when S_i4_assign => ‐‐ ASSIGN23890[ex.cp:22]
epubli, ISBN 9783746752228 (2018)



12.5 ConPro SoC High-level Synthesis 461

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
        REG_ARG_FUN_f_x_WR <= ARRAY_data_in_RD;
        REG_ARG_FUN_f_x_WE <= '1';
        ARRAY_data_in_SEL <= (I_to_L(LOOP_i_0));
      when S_i5_fun => ‐‐ FUN19442[ex.cp:22]
        PRO_FUN_f_CALL <= '1';
      when S_i6_assign => ‐‐ ASSIGN58851[ex.cp:22]
        ARRAY_data_out_WR <= REG_RET_FUN_f_y_RD;
        ARRAY_data_out_WE <= '1';
        ARRAY_data_out_SEL <= (I_to_L(LOOP_i_0));
      ..
  end process data_path;

  Instruction Datapath Transitional Block
  data_trans: process(..) begin
    if conpro_system_clk'event and conpro_system_clk='1' then
      if conpro_system_reset = '1' then
        LOOP_i_0 <= to_signed(0,8);
      else
        case pro_state is
          when S_consumer1_start => ‐‐ PROCESS0[:0]
            null;
          when S_i1_fun => ‐‐ FUN22215[ex.cp:19]
            null;
          when S_i2_for_loop => ‐‐ COUNT_LOOP2877[ex.cp:20]
            LOOP_i_0 <= CONST_I8_0;
          ..
          when S_i2_for_loop_incr => 

                      ‐‐ COUNT_LOOP2877[ex.cp:20]
            LOOP_i_0 <= LOOP_i_0 + CONST_I8_1;

ex_consumer2.vhdl
entity ex_consumer2 is ..

ex_FUN_f.vhdl
entity ex_FUN_f is
port(
  ‐‐ Connections to external objects, components and the outside 

world
  signal REG_RET_FUN_f_y_WR: out signed(15 downto 0);
  signal REG_RET_FUN_f_y_WE: out std_logic;
  signal REG_ARG_FUN_f_x_RD: in signed(15 downto 0);
  signal PRO_FUN_f_ENABLE: in std_logic;
  signal PRO_FUN_f_END: out std_logic;
  signal conpro_system_clk: in std_logic;
  signal conpro_system_reset: in std_logic
);
..

ex_main.vhdl
entity ex_main is
..
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis462

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
12.5.7 Dining Philosopher Example
Example 12.7 shows a part of the program code for the implementation of

the dining philosopher problem. This system consists of five processes con-
currently executing and implementing the action of the philosophers. They
are defined using an array construct (line 13). The instructions of each process
are processed sequentially, indicated by a semicolon after each instruction
statement. The resource management of the forks is done with semaphores
(abstract object type). Each philosopher process tries to allocate two forks, the
left- and right-hand side forks, by calling the down method for each sema-
phore. If a philosopher process succeeds, it calls the (in-lined) function eat,
and sets global registers (eating, thinking) simultaneously, indicated in the
program code by using a colon instead of a semicolon (bounded instruction
block). An event object ev is used to synchronize the start-up of the group. The
philosopher processes waiting for the event by calling the await method (line
15). The event is woken up by the main process calling the wakeup method
(line 41). All processes are started from the main process (line 40). Processes
are treated as abstract objects, too, providing a set of methods controlling the
process state.

Objects (like IPC) belong to a module, which have to be opened first (line 1).
Each module is defined by a set of EMI implementation files providing all nec-
essary information about objects of this module (like method declarations,
object access, and implementation on hardware and software level).

Ex. 12.7 Parts of a ConPro source code example: the dining philosopher problem
implementation mapped on a multiple processes using semaphores for
resource management.

1 open Core; open Process; open Semaphore; open System; open Event;
2 object ev: event;
3 array eating, thinking: reg[5] of logic;
4 export eating,thinking;
5 array fork: object semaphore[5] with 
6       Semaphore.depth=8 and Semaphore.scheduler="fifo";
7 function eat(n):
8 begin
9   eating.[n] <‐ 1,thinking.[n] <‐ 0;  
10   wait for 5;
11   eating.[n] <‐ 0,thinking.[n] <‐ 1;
12 end with inline;
13 array philosopher: process[5] of
14 begin
15   ev.await ();   synchronize all processes
16   if # < 4 then  all processes with array index lower 4
17   begin
epubli, ISBN 9783746752228 (2018)



12.5 ConPro SoC High-level Synthesis 463

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
18    always do
19    begin
20      get left fork then right
21      fork.[#].down (); fork.[#+1].down ();
22      eat (#);
23      fork.[#].up (); fork.[#+1].up ();
24    end;
25   end
26   else
27   begin
28    always do
29    begin
30      ‐‐ get right fork then left
31      fork.[4].down (); fork.[0].down ();
32      eat (#);
33      fork.[4].up (); fork.[0].up ();
34    end;
35   end;
36 end;
37 process main:
38 begin
39   for i = 0 to 4 do
40     philosopher.[i].start ();
41   ev.wakeup ();   start the game ...
42 end with schedule="basicblock";

Fig. 12.17 Process and inter-process-communication architecture of the dining philoso-
pher problem implementation from Example12.7.

OBJECT SEMA
fork [0]

OBJECT EVENT
ev

OBJECT SEMA
fork [1]

OBJECT SEMA
fork [2]

OBJECT SEMA
fork [3]

OBJECT SEMA
fork [4]

OBJECT PRO
philosopher [0]

OBJECT PRO
philosopher [4]∗∗∗∗∗ ∗∗∗∗∗

PROCESS
philosopher[0]

PROCESS
philosopher[1]

PROCESS
philosopher[2]

PROCESS
philosopher[3]

PROCESS
philosopher[4]

PROCESS
main
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis464

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
The structural CCSP model is shown in Figure 12.17. Processes are objects
and execution units, too. Each global shared object is guarded by a Mutex
scheduler resolving concurrent access by serialization.

12.5.8 Complex ConPro SoC Design Case Study
Beside results of the agent platform synthesis presented in Chapter 6 a

complete implementation of the adaptive routing SLIP protocol stack, intro-
duced in Section 4.3.3, is shown here [BOS11A].

SLIP implements smart routing of messages with -addressing of nodes
arranged in an n-dimensional network space (line, mesh, cube). The network
can be heterogeneous regarding node size, computation power, and memory.
The communication protocol is scalable regarding network topology and size. 

A node is a network service endpoint and a router, too, which must be
implemented on each network node. 

To summarize, the routing information is always kept in the packet, consist-
ing of: 

1. A header descriptor (HDT) specifying the address size class ASC, the
address dimension class ADC (for example 2 is a two-dimensional
mesh-grid);

2. A packet descriptor (PDT) with routing and path information, and finally
the data part. 

The SLIP protocol implementation must deal with the variable format of a
message. SLIP was designed for low-resource System-On-Chip implementa-
tions using ASIC/FPGA target technologies, but a software version was
required, too. To minimize the resource requirement, the hardware imple-
mentation will be usually limited in the dimensional and address space
supporting only a subset of the message space, e.g. ADC=2, ASC=8 (that
means =-128,..,127).

A node should handle several serial link connections and incoming packets
concurrently, thus the protocol stack is a massive parallel system, and was
implemented with the ConPro behavioural multiprocess model. 

The programming model implementation with partitioning of the protocol
stack in multiple processes executing concurrently and communicating using
queues is shown in Figure 12.18.

Each link is serviced by two processes: a message decoder for incoming and
an encoder for outgoing messages. A packet processor pkt_process applies a
set of smart routing computation functions (route_normal, route_opposite,
route_backward, applied in the given order until routing is possible), finding
the best routing direction. Communication between processes is imple-
mented with queues. There are three packet pools holding HDT, PDT and data
epubli, ISBN 9783746752228 (2018)



12.5 ConPro SoC High-level Synthesis 465

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
parts of packets. They are implemented with arrays. The packet processor can
be replicated to speed up processing of packets. 

Fig. 12.18 Process and inter-process-communication architecture of the SLIP protocol
stack.

PROCESS
   pkt_process

QUEUE
rx_queue[0]

OBJECT
LINK NORTH

OBJECT
LINK SOUTH

OBJECT
LINK WEST

OBJECT
LINK EAST

                  FUNCTION 
            route_normal

 PROCESS
 link_rx_proc

  PROCESS
  link_rx_proc

  PROCESS
  link_rx_proc

 PROCESS
 link_rx_proc

QUEUE
rx_queue[1]

QUEUE
rx_queue[3]

QUEUE
rx_queue[2]

QUEUE
tx_queue[0]

QUEUE
tx_queue[1]

QUEUE
tx_queue[3]

QUEUE
tx_queue[2]

PROCESS
link_tx_proc

PROCESS
link_txx_proc

PROCESS
link_tx_proc

PROCESS
link_tx_proc

QUEUE
pkt_process

                  FUNCTION 
            route_opposite

                  FUNCTION 
            route_backward

QUEUE
pkt_send[2]

QUEUE
pkt_send[3]

DELIVER MESSAGE
TO
APPLICATION
LAYER

QUEUE
pkt_send[0]

QUEUE
pkt_send[1]
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis466

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
A test setup consisting of the routing processing part of SLIP was imple-
mented A. in hardware (RTL-SoC, gate-level synthesis with Mentor Graphics
Leonardo Spectrum and SXLIB standard cell library), and B. in software
(SunOS, SunPro C compiler). A packet with ADC=2, =(2,3) and a link setup of
the node L=(-y,-x) is received on the second link (-x) [L01] and is processed first
by the route_normal rule (would require connected +x /+y links) [L03], and
finally by the route_opposite rule [L04] forwarding the modified packet to
the link_0 process [LA0].

Tables 12.4 and 12.6 show synthesis and simulation results for the hard-
ware (HW) and the operational equivalent software (SW) implementation.
They show low resource demands and latency. Different checkpoints Lxx indi-
cate the progress of packet processing. Figures in brackets give the latency
progress relative to the previous checkpoint. 

Two different storage resource models are compared: variable arrays with
RAM blocks and register arrays. Surprisingly, the register storage model is
more resource efficient than the RAM storage model. But this fact holds only
for ASIC technologies, and not for FPGA technologies with predefined func-
tional units and already contained on-chip block RAM resources. The register
storage model leads to lower computational latency of the parallel packet pro-
cessing due to the CREW access behaviour. The full design implementation
with a Xilinx Spartan III (1000k eq. gates) FPGA and the ASIC synthesis is com-
pared in Table 12.5.

Resource Variable1 Register2

Registers [FF] 767 587

Area [gates] 12475 10758

Path delay [ns] 18 16

Synthesized Source CP  
VHDL

1109  9200 
lines

1109  7900 lines

Tab. 12.4 Comparison of resources required for the HW implementation of
the routing part of SLIP implemented with a packet pool: (1) varia-
ble array, (2) register array. ASIC synthesis was performed with
Leonardo Spectrum software and SXLIB standard cell library.
epubli, ISBN 9783746752228 (2018)



12.5 ConPro SoC High-level Synthesis 467

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Resource FPGA1 ASIC2

Registers [FF] 2925 15000

LUT [#] 11261/15360 -

Area [gates] - 244 k gates 
2.5mm2  | 0.18m

Conpro Source 4000 lines, 34 processes, 30 shared 
objects (16 queues, 2 timers)

Synthesized VHDL 32000 lines

Tab. 12.5 Comparison of resources required for the full HW implementation
of SLIP including simple application layer: (1) FPGA synthesis was
performed with Xilinx ISE, (2): ASIC was performed with Leonardo
Spectrum software and SXLIB standard cell library

Checkpoint Clock Cycles1 Clock Cycles2 Machine Opera-
tions

L01 104 102 60000

L03 113 (9) 107 (5) 60019 (19)

L04 187 (74) 148 (41) 60796 (777)

LA0 235 (48) 184 (36) 62305 (1509)

Tab. 12.6 Simulation results of the HW and SW implementation of the rout-
ing part of SLIP. HW: packet pool: (1) variable array, (2) register
array, clock cycles. SW: SunPro CC, SunOS, USIII, CPU machine
operations
epubli, ISBN 9783746752228 (2018)



 Chapter 12. Synthesis468

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
12.6 Further Reading

1. S. GUPTA, R. K. GUPTA, N. D. DUTT, and A. NICOLAU, SPARK: A Paral-
lelizing Approach to the High-Level Synthesis of Digital Circuits. Kluwer
Academic Publishers, 2004, ISBN 1402078374

2. G. Ku, David C., DeMicheli, High Level Synthesis of ASICs under Timing and
Synchronization Constraints. Kluwer Academic publishers, 1992, ISBN
9781475721171

3. R. Sharp, Higher-Level Hardware Synthesis, Springer Berlin, 2004, ISBN
3540213066
epubli, ISBN 9783746752228 (2018)


	Synthesis
	12.1 The Big Picture: All together
	12.2 SynDK: The Synthesis Development Toolkit
	12.2.1 The Graph Database centric Synthesis Approach
	12.2.2 Virtual Database Organization
	12.2.3 The VDB Software Architecture
	12.2.4 Structure Type Definition Schemas
	12.2.5 Tagged Values
	12.2.6 Programming of Compilers and LaCo: The Language Compiler
	12.2.7 Abstract Syntax and VDB Graphs
	12.2.8 VPL: VDB Programming Interface and Interpreter
	12.2.9 Compiling a Compiler
	12.2.10 Conditional and Parametric Compiling

	12.3 Agent and Agent Platform Synthesis
	12.3.1 Non-programmable Agent Platform Synthesis
	12.3.2 Programmable Agent Platform Synthesis

	12.4 The Agent Simulation Compiler SEMC
	12.5 ConPro SoC High-level Synthesis
	12.5.1 Synthesis Flow
	12.5.2 Microcode Intermediate Representation
	12.5.3 Synthesis Rules
	12.5.4 Reference Stack (RS) Optimizer and Scheduler
	12.5.5 Basic Block Scheduling and Data Path Parallelization
	12.5.6 RTL Synthesis and VHDL Model
	12.5.7 Dining Philosopher Example
	12.5.8 Complex ConPro SoC Design Case Study

	12.6 Further Reading


