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This chapter introduces different techniques for the optimization and the
low-power design of application-specific data processing and agent process-
ing platforms. Furthermore, agent-based energy management is introduced,
in addition to the energy management SoMAS introduced in Chapter 9.

13.1 Power Analysis and Algorithmic Selection

In contrast to various other energy management approaches targeting
algorithms and architectures with high computational effort, Smart Energy
Management (SEM) can be performed spatially at run-time by applying a
dynamic selection from a set of different (implemented) algorithms classified
by their demand of computational power, and temporally by varying data pro-
cessing rates. The smart energy management can be implemented with
decision trees, based on Quality-of-Service (QoS) and energy constraints. It
can be shown that the power and energy consumption of an application-spe-
cific SoC design strongly depends on the computational complexity of the
used algorithms.

For example, a classical Proportional-Integral-Differential (PID) controller
used for the feedback position control of an actuator requires basically only
the P-part; the I- and D-parts only increase position accuracy and response
dynamics, which are selectable. Depending on the actual state of the system
and the actual and estimated future energy deposit, suitable algorithms can
be selected and executed optimizing the QoS and the trade-off between accu-
racy and economy.

Signal and control processing can be modelled on abstract algorithmic level
using signal flow diagrams. These signal flow graphs are mapped to Petri Nets
to enable direct high-level synthesis of digital SoC circuits using a multiprocess
architecture with the Communicating-Sequential-Process model on execution
level and the high-level synthesis framework ConPro.

Power analysis using simulation techniques on digital gate-level provides
input for the algorithmic selection at run-time of the system leading to a
closed-loop design flow. Additionally, the signal-flow approach enables power
management by varying the signal flow rate, which will be discussed later.

The smart energy management using algorithmic selection relates to the
entire design flow for low-power SoC data processing and control systems,
introduced in Chapter 72, and which should be demonstrated in the following
using a concrete example. The system is modelled on an abstract level using
signal flow diagrams [BOS10D].

Figure 73.7 shows a composition of a complete feedback-controlled system
consisting of sensor signal acquisition (ADC), filtering, an error controller with
a proportional, integral, and differential sub-controller [ISE89], and finally a
signal generator (DAC) driving an actuator.
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Fig. 13.1  Composition and modelling of a digital control system with signal flow dia-
gram [BOS11B]

The controller is used to control the position of an actuator. The control
error is defined by the difference of the acquired position signal X(S) and the
desired position parameter S".

This initial specification (see also Section 5.5) is used to derive 1. A multi-
process programming model; and 2. A hardware model for an SoC design on
Register-Transfer level. Furthermore, the signal flow diagram provides input
for the energy optimization at synthesis- and run-time.

The signal flow diagram is first transformed into an S/T Petri Net rep-
resentation, which is shown in Figure 73.2. Functional blocks are mapped to
transitions, and states represent data, which is exchanged between those
functional blocks. The partitioning of functional blocks to transitions of the net
can be performed at different composition and complexity levels. The signal
flow diagram from Figure 73.7 was partitioned using complex blocks (com-
posed of low-level blocks like multipliers and adders) to reduce
communication complexity (and data processing latency).

Sensor data (X) is acquired periodically and passed to the data processing
system. A token of the net is equal to a data set of one computation pro-
cessed by the functional blocks. The functional blocks P, I, and D are placed in
concurrent paths of the net.
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channel c¢_x:int[12] with model=buffered;
channel c¢_s:int[12] with model=buffered;
channel c el,c _e2,c _e3:int[12]
channel ¢ ul,c u2,c u3:int[12]

o process p_i:
begin
reg tl,t2,z1,z2: int [DATAWIDTH4] ;
always do
begin
tl <- c_e2;
tl <- z1, 2zl <- t1;
tl <- tl1 * KI;
tl <- tl1 asr 4;
t2 <- tl + z2,
z2 <- t2;
c_u2 <- t2;
end;
end;

Fig. 13.2  Mapping of the signal flow diagram to a Petri Net and mapping of Petri Net to
communication channels and sequential processes using the ConPro pro-
gramming language [BOS11B].

The Petri Net is then used 1. To derive the communication architecture, and
2. To determine an initial configuration for the communication network. Func-
tional blocks with a feedback path require the injection of initial tokens in the
appropriate states (not required in the example).

States of the net are mapped to buffered communication channels and
transitions are mapped on concurrently executing processes - each with
sequential instruction processing - using the ConPro programming language,
shown in Figure 73.2, too. Details are discussed in Section 5.5.

Energy Analysis

The derived multiprocess programming model was synthesized to a digital
logic SoC using high-level synthesis. For simulation, gate-level synthesis was
performed with a standard logic cell technology library. The resulting net-list
was analysed with an event-driven simulator, calculating the overall cell activ-
ity for each time unit, defined by terms of cell output changes. Synthesis and
analysis were performed using the Concurrent Programming (ConPro) com-
piler and the Silicium-Compiler-and-Analyser framework (SiCA).
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Fig. 13.3  Averaged SoC cell activity correlates strongly with computation and signal/
data flow. After obtaining the fifth result value U, the | and D computational
blocks are enabled. [BOS11B]

The SoC circuit activity correlates strongly with a computation of a new data
set (with sensor data input sampled periodically) and the computation com-
plexity, shown in Figure 73.3.

The logic cell activity of the circuit has strong peaks around the computa-
tion of a new output value U. About every 140 clock cycles a new input value X
is generated, triggering the calculation of a new output value U.

The first five data sets are computed with an enabled P-part of the control-
ler only. After the fifth computation, the I and D parts were enabled, too. This
results in an increase of circuit activity of about 50%.

Unfortunately, the power dissipation cannot be estimated directly from this
cell activity. Logic cells consist of a network of (paired) transistors. Power dissi-
pation of a CMOS circuit depends proportionally from the transistor switching
activity. Simulation results for the controller are shown in Figure 73.4 (using
SiCA, too). There is only weak correlation between data processing activity
(and computation complexity) and power dissipation due to clocking activity
of registers.

Power dissipation can only be estimated from the above circuit cell activity
if clock-gated registers are assumed [XIAO2]. The principle-architecture of
gated registers is shown in Figure 73.5. The clock gating prevents switching
activity (and hence power dissipation) inside the register cell in the case of no
change of input data (D=Q).
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Fig. 13.4  Averaged SoC transistor switching activity of the circuit retrieved from simula-
tion. Power dissipation is proportional to transistor activity. [BOS11B]

Fine-grained gate-level clock gating is a requirement for the proposed low-
power design method and enables again a strong correlation between com-
putation activity (and hence algorithmic complexity) with the power
dissipation of the data processing system.

Results of such a modified control system with clock-gated registers are
shown in Figure 73.6. There is again a significant increase of transistor switch-
ing activity of about 30% if the two different computation levels (P, PID) are
compared.

The demonstrated correlation of the algorithmic and computational com-

plexity with the energy and power consumption assumed an optimized ASIC
design technology process.

Conventional Clock-Gated
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Fig. 13.5  Register Clock Gating (adapted from [XIA02]).
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Fig. 13.6  Averaged SoC transistor switching activity of the circuit retrieved from simula-
tion. Using clock-gated registers results again in strong correlation between
data processing activity (and computation complexity) and power dissipation.
[BOS11B]

In [TAS13] the algorithmic correlation was investigated for a SRAM-LUT-
based FPGA technology, showing again a significant algorithmic correlation
suitable for run-time energy management based on algorithmic selection.

Smart Energy Management at Run-time

Self-powered systems must deal with a limited amount of energy during
run-time. The energy charge in future is uncertain. Smart energy manage-
ment should handle the conjunction of energy demand and energy
conversation.

Methods from Artificial Intelligence (Al) can be used to manage energy at
runtime with dynamic parameter adaptation and algorithmic selection. Al
methods differ in complexity, thus only few are suitable to be embedded in
microchips. Suitable methods are for example constraints nets and decision
trees in conjunction with machine learning approaches.

A simulation of a complex sensor-actuator system implementing the PID
controller from Figure 73.7 should demonstrate the benefits of using a deci-
sion tree method for dynamic parameter adaptation, which can be retrieved
from machine learning. Parameters to be controlled are data processing rate
R and the algorithmic level L (1: only P, 2: P+/+D controller). The controller per-
forms minimization of the position error of the actuator, that means the
difference between a desired and a measured (angular) position.
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Fig. 13.7  Decision tree used for energy optimization at runtime based on parameters.
Input parameters: Error, Quality=Run-time/Error. Output parameters: Data
processing rate R={1,5,10,20,100}, Algorithmic level L={P:1,PID:2}

The system is charged with a stochastic energy source and discharged by
computation and actuator activity. The power and energy required for the
computation can be calculated from the results of the power analysis, the
power and energy required for actuator activity can be calculated by a simpli-
fied physical simulation.

The decision tree used in the simulated system is shown in Figure 73.7. A
decision tree is system- and environment-specific and must be derived for
each different system.

Parameters are modelled with a discrete set of values related to a discrete
set of cost values, shown in Definition 73.7.The cost values are used to calcu-
late the overall runtime costs of the system. The goal is to minimize the
overall costs and to maximize the energy conversation, but still serving the
quality of the service to be provided (in this case the accurate position control
of the actuator).

Def. 13.1  System parameter value sets and related cost values.

Data processing rate R={1,5,10,50,100} [milliseconds]
R_C={100,50,10,5,1}

Algorithmic level L={1,2}
L_C={100,150} derived from power analysis

Actuator position error E={0,5,10,100} [arb. units]
E_C={0,250,500,5000}

The smart energy algorithms used for the system simulation are shown in
Algorithm 73.7. The estimate procedure calculates actual computation and
quality-of-service costs for the system, and the choose procedure calculates
optimized values for the data processing rate and algorithmic level based on
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actual system state. The costs are derived from the previous power analysis
results.

The costs function returns a linear interpolated cost value of the particular
parameter.

The basic concepts of the simulation are shown in Algorithm 73.2. The
charge procedure stores energy in the system from a random source. The con-
troller procedure implements the selectable P/PI(D) controller, and finally the
stimuli procedure simulates the simplified mechanical actor behaviour due to
a drive signal calculated by the controller.

Alg. 13.1  Smart energy management algorithm based on algorithmic selection
[BOS11B]

VAR
level,rate: actual algorithmic level and data processing rate
error: actual position control error
runtime: passed runtime in time units
energy: energy storage in arb. units
cost: quality of service costs

PROCEDURE Estimate:

for each time unit do
delta := Costs(level)*Costs(rate)+Costs(error);
energy := energy - delta;
quality := Average(runtime)/Average(cost);
runtime := runtime + 1;
cost := cost + Costs(error);
Choose(level,rate);

PROCEDURE Choose:

Use decision tree to choose optimal {level,rate} values based on
averaged quality and actual error

Alg. 13.2  System simulation algorithms [BOS11B]

VAR
pos_act,pos_set: actual and desired actuator position

PROCEDURE Stimuli:

each 500th time unit do: pos_set := -pos_set;
pos_act := pos_act + drive/4;
delta := pos_act - pos_set;

error := min 100 (abs delta);

PROCEDURE Charge:
energy := energy + Random(CHARGE_MAX)

epubli, ISBN 9783746752228 (2018)



S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems

478 Chapter 13. Energy Management

PROCEDURE Controller:
case 1 is
when 1: P-controller
for each rate time unit do:

delta := pos_act-pos_set;
S := delta*KD/100;
drive := S;

when 2: PI controller
for each rate time unit do:

delta := pos_act-pos_set;
S := delta*kD/100;
Z1’ := 71, 72’ := Z2, Z1 := delta;
T := (Z1’*KI)/100+22’;
Z2 :=T;
drive := S+T;

Figure 73.8 shows simulation results of the complex sensor-actuator system
implementing the PID controller. The system runs always out of energy if a
fixed parameter setting {Rate, Level} is used, regardless of the parameter val-
ues. In contrast the system can reach a stable state balancing energy charging
and discharging if dynamic parameter adaptation based on the decision tree
method and system feedback is used.

Energy [Arb. Units]

Dynamic Run Using

/ Decision Tree Parameter
Optimization

1.x 10°
800000 =

600000

Static Parameter Run

Rate=20, Level=1
- Rate=10, Level=1
Rate=20, Level=2
Rate=100, Level=1

400000 |

200000

Time [Arb. Units]

e B S B
500 1000 1500 2000

Fig. 13.8  System simulation with different runtime behaviours using a decision tree,
which can be retrieved by machine learning methods. Parameters: Data pro-
cessing rate={1,5,10,20,100}, Algorithmic level={P:1,PID:2} [BOS11B]
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13.1.1 Low-power Agent Processing

Dynamic algorithmic selection can be used to optimise the power consump-
tion of the agent processing at run-time. The power consumption for each
activity of an ATG of a specific agent class AC can be analysed. This analysis
marks all activities with a power weight, which can be used at run-time to esti-
mate the energy required for execution of this specific activity. Agents are
capable to adapt their behaviour based on these power weights and energy
information provided by the host, i.e., by reading an energy and energy man-
agement tuple from the his tuple-space, which was stored by a stationary
energy management agent.

Application-Specific PCSP Platform

In the case of the hardware implementation of the non-programmable
PCSP Agent Processing Platform the power analysis is performed with gate-
level simulation techniques, which provides input for the calculation of the
power weights. Usually the simulation of the entire application specific APP is
too complex. Therefore, each activity is decomposed in elementary state-
ments, which can be simulated separately.

In the case of the software implementation, the machine code is analysed
and profiled for some representative test patterns.

The Agent-based Platform simulation techniques can be used to estimate
the power weights of activities roughly for some representative test patterns.
This method gives the best balance between power analysis accuracy and
analysis complexity, which can be significantly large in the case of the hard-
ware simulation.

Programmable PAVM Platform

The programmable platform approach cannot be optimized in this way with
respect to a specific algorithm due to its generic nature. But with the analysis
of the energy requirement of specific machine instructions it is possible to
optimise the overall VM design with a back propagation of the energy infor-
mation to the software AFM/AML compiler energy optimized programs can be
created (design time). Furthermore, at run-time the energy demand can be
estimated based on the energy profiling, enabling the power efficient schedul-
ing of different agents. An agent token can be associated with an energy
parameter that can be used to provide input for decision making process
regarding the execution of an agent.
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13.2 Smart Energy Management with Artificial Intelligence

13.2.1 Introduction

Sensorial materials equipped with embedded miniaturized smart sensors
provide environmental information required for advanced machine and
robotics applications. With increasing miniaturization and sensor-actuator
density, decentralized self-supplied energy concepts and energy distribution
architectures are preferred and required.

Self-powered sensor nodes collect energy from local sources, but can be
supplied additionally by external energy sources. Nodes in a sensor network
can use communication links to transfer energy, for example, optical links are
capable of transferring energy using Laser or LE diodes in conjunction with
photo diodes on the destination side, with a data signal modulated on an
energy supply signal.

A decentralized sensor network architecture is assumed with nodes sup-
plied by 1. energy collected from a local source, and 2. by energy collected
from neighbour nodes using smart energy management (SEM). Nodes are
arranged in a two-dimensional grid with connections to their four direct
neighbours. Each node can store collected energy and distribute energy to
neighbour nodes.

Each autonomous node provides communication, data processing, and
energy management. There is a focus on single System-On-Chip (SoC) design
satisfying low-power and high miniaturization requirements.

Energy management is performed 1. for the control of local energy con-
sumption, and 2. for collection and distribution of energy by using the data
links to transfer energy.

Typically, energy management is performed by a central controller in that a
program is implemented [LAG10], with limited fault robustness and the
requirement of a well-known environment world model for energy sources,
sinks, and storage. Energy management in a network involves the transfer of
energy.

The loss of energy ¢ (in the range between 0 and 1) at each node occurring
each time when “energy” is routed along different nodes from a source to a
destination node (assuming N intermediate nodes) reduces overall efficiency
dramatically in the order of n=¢N.

By using electrical connections, only negligible loss of energy can be
expected in a distributed network, in contrast to optical and radio wave con-
nections, which have significant loss in the order of ¢ =10-30% per node.
Additionally, in the latter case there is no physical interaction between a
source and a sink node requesting energy, thus requiring active management
(routing).

To overcome these limitations and to increase operational robustness,
smart energy management is performed by using concepts from artificial
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intelligence. Initially, the sensor network is a distributed group of independent
computing nodes. Interaction between nodes is required to manage and dis-
tribute information and energy. One common interaction model is the mobile
agent.

Different kinds of agents with different behaviours are used to negotiate
energy demands and energy distribution and to implement group communi-
cation. A multi-agent system is a decentralized and self-organizing approach
for data processing in a distributed system like a sensor network.

Recent work shows the benefit and suitability of multi-agent systems used
for energy management [LAG10].

13.2.2 Communication, Data and Energy Transport

Network nodes, arranged for example in a two-dimensional mesh-network
(see Figure 73.9), can exchange data with their neighbours by using serial
communication links. There are different kinds of physical transmission tech-
nologies available: electrical, optical, and radio-wave based.

In contrast to electrical interconnect technologies, optical and radio-wave
technologies have the disadvantage of lower efficiency . This is negligible for
the exchange of information, but significant for the distribution and exchange
of energy required for the supply of nodes. Optical communication has clear
advantages such as extremely small and light-weight hardware, ultra-low
power consumption, and the ability to optimally focus and match the beam to
the transmission medium (optical fibre) [KEDO6].

Sharing of one interconnect medium for both data communication and
energy transfer significantly reduces node and network resources and com-
plexity, a prerequisite for a high degree of miniaturization required in high-
density sensor networks embedded in sensorial materials. Point-to-point con-
nections and mesh-network topologies are preferred in high-density
networks because they allow good scalability (and maximal path length) in the
order of ®(log N), with N as the number of nodes.

Figure 73.9 shows the main building blocks of a sensor node, the proposed
technical implementation of the optical serial interconnect modules, and the
local energy management module collecting energy from a local source, for
example a thermo-electric generator, and energy retrieved from the optical
communication receiver modules. The data processing system can use the
communication unit to transfer data (D) and superposed energy (E) pulses
using a light-emitting or laser diode. The diode current, driven by a differen-
tial-output sum amplifier, and the pulse duration time determine the amount
of energy to be transferred. The data pulses have a fixed intensity several
orders lower than the adjustable energy pulses. On the receiver side, the
incoming light is converted into an electrical current by using a photo diode.
The data part is separated by a high-pass filter, the electrical energy is stored
by the harvester module.
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Fig. 13.9  Network topology (left) and sender and receiver blocks (right) used for data
and energy transmission between neighbour nodes that are connected in the
network.

Information and energy is carried with agents that are encapsulated in mes-
sages routed in the network from a source to a destination node using, for
example, a simple delta-routing path protocol.

13.2.3 Multi-Agent Interaction Model and Implementation

Having the technical abilities explained in the previous section, it is possible
to use active messaging to transfer energy from good nodes having enough
energy towards bad nodes, requiring energy. An agent can be sent by a bad
node to explore and exploit the near neighbourhood. The agent examines
sensor nodes during path travel or passing a region of interest (perception)
and decides to send agents holding additional energy back to the original
requesting node (action). Additionally, a sensor node is represented by a node
agent, too. The node and the energy management agents must negotiate the
energy request.

The agents have a data state consisting of data variables and the control
state, and a reasoning engine, implementing behaviours and actions. Table
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13.7 explains different agent behaviour required for the smart energy man-
agement (see page 485).

A node having an energy level below a threshold can send a help agent with
a delta-distance vector specifying the region of interest in a randomly chosen
direction. The help agent hops from one sensor node to the next until the
actual delta-vector is zero. If there is a good node found, with local energy
above a specified threshold, the help agent persists on this node and tries to
send periodically deliver agents transferring additional energy to the origina-
tor node. An additional behaviour, help-on-way, changes the deliver agent
into an exploration agent, too. Such a modified agent examines the energy
level of nodes along the path to the destination. If a bad node was found, the
energy carried with the agent is delivered to this node, instead to the original
destination node. A more general AAPL agent model of this SoS is discussed in
detail Section 9.3.

This approach is independent of the agent processing platform and the
mobile agents can be processed on both proposed platforms (PAVM, PCSP).
Originally, this SEM approach was implemented on simplified application-spe-
cific processing platforms, shown in Figure 73.70.
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Fig. 13.10  Sensor node building blocks providing mobility and processing of multi-agent
systems: Parallel agent virtual machines, agent-processing scheduler, commu-
nication, and data processing.
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Fig. 13.11  UML activity diagram for the Smart Energy Management Agent behaviour.

In this early approach the state of an agent was completely kept in the mes-
sage transferred in the network, but not the functional behaviour. Figure
13.70 shows the execution environment for the energy management agents.
There is a message module implementing delta-distance routing (see Section
4.3.2 for a discussion), and several finite-state-machines implementing the
agent behaviour that provide virtual machines capable to process incoming
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agents. All parts are mappable on digital logic with RTL and SoC system
architectures.

Figure 73.77 shows the UML activity diagram of the reasoning engine, imple-
menting all types of agents, forming a super agent. The delta-distance or
region of interest vector (DX, DY) is modified on each message routing, the
(DX*, DY*) vector holds an unmodified copy, which is used for replies, the DE
entry specifies the requested energy, and the ENERGY entry reflects the actual
energy carried with the message (without the contribution of the data part
itself). This entry is altered each time a message is routed, respecting the
transmission efficiency e.

Agent Type  Behaviour

Request Point-to-point agent: this agent requests energy from a specific
destination node, returned with a Reply agent.

Reply Point-to-point agent: Reply agent created by a Request agent,
which has reached its destination node. This agent carries
energy from one node to another.

Help ROI agent: this agent explores a path starting with an initial
direction and searches a good node having enough energy to
satisfy the energy request from a bad node. This agent resides
on the final good node for a couple of times and creates multi-
ple deliver agents periodically in dependence of the energy
state of the current node.

Deliver Path agent: this agent carries energy from a good node to a bad
node (response to Help agent). Depending on selected sub-
behaviour (HELPONWAY), this agent can supply bad nodes first,
found on the back path to the original requesting node.

Distribute ROI agent: this agent carries energy from and is instantiated on
a good node and explores a path starting with an initial direc-
tion and searches a bad node supplying it with the energy.

Tab. 13.1  Agents with different behaviour used to manage and distribute energy (ROI:
region of interest).

13.2.4 Analysis and Experimental Results of the SEM

A first proof of concept and experimental results were achieved by using a
multi-agent simulation framework (SeSAM, see Section 77.7). The simulation
test-bed consists of a network with N=100 nodes arranged in a 10 by 10
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matrix. Each node can communicate with up to four neighbours in the direc-
tions DIR= {North, South, West, East}.

Each node N; periodically collects (store) energy from a local source having
a stochastically distributed energy spectrum in the range [0, nax]. Monte
Carlo simulation is used to specify each E; 5« before a simulation run. Data
processing, interaction with the environment (e.g. sensor acquisition), and
agents consume energy, which reduces the energy deposit £;.

Each sensor node is modelled with an agent, too. Energy management
agents and sensor node agents negotiate energy demands and communicate
by using globally shared variables. If the energy deposit of a node is below a
threshold E<E,,,, (called bad node), help agents are sent out, if E>Enigh™Egood
then distribute agents are used to distribute energy to surroundging ad
nodes. If £>Egq0q>Elow then the node is fully functional (called good node).

Assuming a specific stochastic spatial configuration {E; s}, simulation
results in Figures 73.72 and 73.73 show the benefit of energy management
using help- and distribute agents. Without energy management, there are
about 50% bad nodes (blue rectangles) never reaching an energy level above
a critical threshold. With agents, the spatial energy distribution is more regu-
lar, and the fraction of bad nodes is below 10% all the time. The Figure 73.74
compares the number of bad nodes resulting from different combinations of
agents and agent behaviours.
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Fig. 13.12  Simulation results for a network of sensor nodes arranged in 10 by 10 matrix
topology without any distributed energy management. Shown are the spatial
energy distribution after 10000 time steps (right) and the temporal population
for bad and good nodes (left).
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Fig. 13.13  (Left) Simulation results with energy management. Help, deliver, and distrib-
ute agents are used to compensate low-energy nodes. (Right) Agent
deployment in network

Using additional distribute agents results in a decrease of 30% relative to
the case using only help agents, but absolutely the benefit is below 5% and is
therefore negligible. Moreover, the fraction of all nodes with mean up-time
below a critical threshold (10%) is always below 5%.

The Figure 73.74 shows the temporal progress of total system energy in
dependency on different energy management agents, too. Due to the high
loss of energy transfer between nodes (here 20%), the total energy efficiency
is dramatically decreased compared with the case without management, and
distribute agents reduce the total system efficiency again about 50%.

The multi-agent implementation offers a distributed management service
rather than a centralized approach commonly used. The simple agent behav-
iours can be easily implemented in digital logic hardware (application-specific
platform approach).

To summarize, help agents with simple exploration and exploitation behav-
iours are suitable to meet the goal of a regular energy distribution and a
significant reduction of bad nodes unable to contribute sensor information,
but additional distribute agents create no significant benefit.
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Fig. 13.14 Comparison of total sensor network energy (left) and bad node population
(right) for different energy management agent systems

13.2.5 Algorithmic Selection and SEM

In Section 9.4 a self-organizing MAS was introduced that is capable to dis-
tribute energy between nodes of a sensor network. The algorithmic analysis
and selection approach introduced in the previous section can be a prerequi-
site for the specification of the various parameters of the mobile smart energy
management (SEM) and node energy management (SEN) agents. The SEM and
SEN agents make assumption about the cost of computation. The methods
from the previous section can be used to select different SEM and SEN behav-
iour and to compute the reward for energy distribution and help requests.
The algorithmic selection approach can be embedded in the agent transition
process to add energy saving goals that can be related to the original activity
and mobility goals.
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