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This chapter presents several main use-cases for the deployment of MAS
and Artificial Intelligence methods by providing perception either of the physi-
cal load of the environment acting on a technical structure, i.e., a robot
manipulator and its interaction with obstacles and objects, or by providing the
internal load of a structure, i.e., the deformation of structure caused by loads.
The latter case provides input for Load and Structural Health Monitoring sys-
tems (LM/SHM), e.g., used for the monitoring of aircraft wings. A distributed
deployment of industrial agents in large-scale and heterogeneous environ-
ments is presented with an adaptive and additive manufacturing use case.

The field of structural monitoring has evolved in the past 30 years, and can
be classified by the abstraction level of the information derived from the sen-
sor input, shown in Figure 14.1 [LEH13].

Agents are already deployed successfully for scheduling tasks in production
and manufacturing processes [CAR00B], and newer trends poses the suitabil-
ity of distributed agent-based systems for the control of manufacturing
processes [PEC08], facing not only manufacturing, but maintenance, evolva-
ble assembly systems, quality control, and energy management aspects,
finally introducing the paradigm of industrial agents meeting the require-
ments of modern industrial applications by integrating sensor networks.
Multi-agent systems can be successfully deployed in sensing applications, for
example, structural load and health monitoring, with a partitioning in off- and
online computations [BOS14C]. Distributed data mining and Map-Reduce
algorithms are well suited for self-organizing MAS. Cloud-based computing
with MAS, as a base for cloud-based manufacturing, means the virtualization
of resources, i.e., storage, processing platforms, sensing data or generic
information.

Fig. 14.1 Algorithmic and information level hierarchy in SHM and LM systems [LEH13]

 Level 0 - Load Detection "Something stepped on me"

 Level 1 - Damage Detection "Something is wrong"

 Level 2 - Damage Localisation "Something is wrong here"

 Level 3 - Extent of Damage "This much is wrong"

 Level 4 - Remaining Lifetime Progn. "Things will go fatally wrong soon"

 Level 5 - Self Diagnosis "Just treat me thus, and I will survive "

 Level 6 - Self Healing "Soon everything will be fine again"
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Load Monitoring
A Load Monitoring system (LM) can be considered as being the lowest part
(Levels 0-3) of a full SHM system, which provides spatial resolved informa-
tion about  loads (forces, moments, etc.) applied to a technical structure.
When implemented in robot grippers [BOS12D], such systems can  improve
grasping performance via feedback control. Another application can be
found in long distance robot manipulator structures to improve position
accuracy [MAV97]. In aerospace industry, load monitoring systems as first
step towards structural health monitoring were initially implemented in
military aircraft like the Eurofigther TYPHOON [HUN01], but have mean-
while entered the civilian market in parallel to their ongoing maturing into
true SHM systems [RUL13][SAN13].

Structural Health Monitoring
Structural Health Monitoring adds the ability to derive not just loads, but
also their effects on the structure from sensor data (Levels 3-5). Boller
[BOL09] gave a definition of a SHM system: A SHM is the integration of sens-
ing and possibly also actuation devices to allow the loading and damaging con-
ditions of a structure to be recorded, analysed, localized, and predicted in a way
that non-destructive testing (NDT) becomes an integral part of the structure and
a material.

Structural control, adaptive and morphing structures
The term structural control implies a material-inherent capability of chang-
ing structural characteristics in response to, and countering the effects of
external loads (Level 6). It is thus beyond mere sensing and thus beyond
the scope of systems addressed within this text. These however form the
necessary basis of farther-reaching adaptive systems.

Besides alleviating structural loads, structural control-like systems are fore-
seen to facilitate a fly-by-feel approach for autonomous flight of unmanned
aerial vehicles (UAVs) [SAN13]. At a second glance, this scenario can be seen
as linked to robotic tactile sensing: In both cases, a major extension of per-
ceptive capabilities at the interface between system and environment is
foreseen to support interaction with the latter, and based on it, allow for in-
creased autonomy.

Tactile Sensing
Tactile sensing (TS) systems provide extrinsic perception for robots and ro-
botic applications [CAN10], via systems commonly designated as smart or
artificial skin. Basically they deliver spatial resolved information on forces
applied to an extended but limited surface region, for example, of robot
connection elements or finger tips of a robot hand [DAH07] [VID11]. The
epubli, ISBN 9783746752228 (2018)
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finger tip example is probably what comes to mind first when thinking of
robotic tactile sensing. However, covering areas other than a fingertip with
a smart skin capable of interpreting tactile sensor data bears additional ad-
vantages: Sensor networks of this kind can provide the robotic system with
much finer information about – voluntary as well as involuntary – contacts
with its surroundings than state-of-the-art joint-integrated load monitoring
ever will. This can be exploited to enhance safety levels in robot-robot or
human-robot cooperation, but just as well to endow the robot with the ca-
pability to monitor its own actions, profiting from their success or failure via
reinforcement learning. The concept has been applied to humanoid robots
in the form of tactile sensor arrays to help monitor, control and ultimately
improve their strategy to dynamically stand up from lying on their back.
Such examples are merely a glimpse at the full potential of material-inte-
grated sensor systems. From the above, many development trends can
easily be extrapolated, like the simple change of perspective that turns ro-
botic smart skins into new kinds of tactile user interface for countless pur-
poses.

Industrial Agents
One major goal of the deployment of MAS is overcoming heterogeneous
platform and network barriers arising in large scale hierarchical and nested
network structures, consisting and connecting, e.g., the Internet, sensor
networks, body networks, production and manufacturing Cyber-Physical
System (CPS) networks. The large diversity of execution platforms, network
topologies, services provided by network nodes, and the programming en-
vironments require a unified and abstract behavioural and structural rep-
resentation model that can be delivered by industrial agents [PEC08].
epubli, ISBN 9783746752228 (2018)
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14.1 Sensorial Material I: A Flat Perceptive Sheet and Machine 
Learning

Intelligent behaviour of robot manipulators become important in unknown
and changing environments. Emergent behaviour of a machine arises intelli-
gence from the interactions of robots with its environment. Sensorial
materials equipped with networks of embedded miniaturized smart sensors
can support this behaviour. 

Environmental perception can be provided by some elastic material cover-
ing extended surface of robotic structures, e.g., intersection elements or body
covers. An integrated autonomous decentralized sensor networks can be
capable providing perception similar to an electronic skin. Each sensor net-
work is connected to strain gauge sensors mounted on a flexible polymer
surface, delivering spatial resolved information of external forces applied to
the robot arm, required for example for obstacle avoidance or for manipula-
tion of objects.

The first attempt of a perceptive material was a flat rubber sheet (based on
work in [BOS11C]), which was finally bent around a technical structure, pre-
sented in Section 14.2.

Each autonomous sensor node provides communication, data processing,
and energy management implemented on microchip level. 

Commonly a high number of strain gauge sensors are used to satisfy a high
spatial resolution. The chosen approach uses advanced Artificial Intelligence
and Machine Learning methods for the mapping of only a few non-calibrated
and non-long-term stable noisy strain sensor signals to spatially resolved load
information and a decentralized data processing approach to improve robust-
ness. Robustness in the sensor network is provided by 1. Autonomy of sensor
nodes; 2. By smart adaptive communication to overcome link failures and to
reflect changes in network topology; and 3. By using intelligent adaptive algo-
rithms. It is well-known that robust cooperation and distributed data
processing is achieved by using Mobile Agent systems [WAN03]. As already
outlined in this book, the agent behaviour and cooperation is implemented on
microchip level. 

The central aim is to derive useful information constrained by limited com-
putational power and noisy sensor signals unable to be captured by a
complete system model. Machine Learning (ML) methods are capable to map
an initially unknown n-dimensional set of input signals to a m-dimensional
output set of information like the position and strength of applied forces
[MIT97].

Without any interaction and material model Machine Learning requires a
training phase. Additional material models and FEM simulation can reduce or
avoid the training phase [BOS11C].
epubli, ISBN 9783746752228 (2018)
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The training set contains recorded load positions, masses and classification
results for different load cases determined via sensor measurement. 

The hyper-elastic behaviour of polymers reduces the long-term prediction
accuracy of learned models as well as the consistency with FEM output,
requiring Machine Learning models that automatically adjust their output to
the structure’s aging process. 

14.1.1 Machine Learning and Multi-Agent Systems
Perception of a robot requires some kind of sensitive skin. The proposed

skin consists of a smart strain-gauge sensor network. Machine learning meth-
ods with prior training are used to map (classify) a set of (preprocessed and
filtered) noisy sensor signals to spatially resolved load information applied to
the skin. This approach allows usage of lower sensor density and non-cali-
brated sensors with unknown electromechanical signal model without loss of
spatial resolution. Figure 14.2 shows different machine learning approaches
(classification and regression) used for mapping of sensor signals to load
information with k-nearest-neighbourhood, decision tree, and neuronal net-
work algorithms enabling agent-based structure monitoring based on trained
(condensed) data [MIT97]. K-nearest-neighbourhood algorithms are used for
numerical regression of load position, load strength, and displacement vec-
tors, C4.5 decision trees can be used for strength classification, and neuronal
networks are suitable for numerical regression of load position and strength.

The training set is either derived by using FEM simulations or by using real
test runs and sensor measurement of the structure under test (SUT). This
training set contains all correct load positions, masses and classification
results for every load case in the load case library along with a respective 8-
dimensional strain vector. To answer a query with k-Nearest-Neighbour (k-
NN), the k entries closest to the query strain vector are selected and com-
bined into a single estimation for the target variables. Numerical regression of
the load position and mass can be achieved by calculating the weighted aver-
age, whereas discrete (e.g., Boolean) classification is possible by means of
weighted voting. For a fixed k, let {E1, .. , Ek} denote a set of the k nearest
points in the training set, (xi, yi, mi) the load coordinates and mass of Ei, and Q
R8 the query vector. The estimated load position and mass (x(Q),
y(Q),m(Q)=(xQ, yQ, mQ) for Q is calculated using inverse distance weighting,
given by Equation 14.1.
epubli, ISBN 9783746752228 (2018)
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(14.1)

The dist2(Q,Ei) function computes the squared Euclidean distance between
points Q and Ei in the 8-dimensional strain space. Weighted voting is done by
adding the weighting factors w(Ei) of all Ei that have the same classification
and then assigning to Q the classification, which gained the largest sum. In the
first experiments presented in the next section, the C4.5 decision tree learn-
ing is employed for classification only as its reliable extension to multivariate
numerical regression is more elaborate.
Now Multi-Agent Systems can be deployed for multiple purposes in such a
learning system:

1. Local acquisition and preprocessing of sensor data
2. Global Event-based distribution of sensor data and delivery of sensor

data to dedicated computational nodes, based on SoS algorithms pre-
sented in Chapter 9.

3. Distributed computation of the load vector from sensor data by using
distributed ML algorithms, as shown in Figure 14.2.

 Applied to the task of monitoring a technical structure equipped with dis-
tributed sensors, the agent may be physically situated on locations on the
latter, with its perceptions coming from different groups of sensor nodes and
communication with other agents. The group defines a region of interest
(ROI), which can be formed by sensorial events and correlation of sensor sig-
nals happening in this region. If the agent has access to a knowledge base of
facts about the structure’s geometric and mechanical characteristics as well as
cause-effect relations with respect to load introduction, it can conclude about
the current state of its environment based on its sensor input, i.e., make
sense of the sensor signals. It is the presence of this semantic level that distin-
guishes intelligent agents from nodes of the sensor network.

The sensor nodes bound to the sensor networks only provide the infra-
structure for routing and distribution of measured sensor data across the
physical object. It provides initially no way of interpreting this data, but agents
are capable of incrementally constructing a mental model of their surround-
ings over time.
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The structure can be partitioned into connected substructures, which can
be further partitioned into regions. Each region can be managed by an individ-
ual monitor agent that is assigned and that regularly adjusts its internal model
of the respective region according to its perceptions. Communication among
agents covering directly neighbouring regions enables the construction of a
(simplified) distributed global view of the entire structure state. For this pur-
pose, each monitor agent requires an appropriate description of how loads
and their effects are transmitted across the boundaries between the agent’s
region and each of the adjacent regions. That way, an agent can infer from its
local sensor input the structural state at these boundaries and send the
results to its topological neighbour agents, which in turn update their local
models by combining their own sensor data with the boundary state informa-
tion they received from their respective neighbours, and, again, pass the
updated boundary states on to these, and so forth.

A distributed load inference algorithm can be establishing by using a multi-
level hierarchy of agents and incorporating equation-based knowledge from
the FEM domain into the reasoning process. 

Fig. 14.2 Different machine learning methods (k-nn, c4.5 desc. trees, neuronal net-
works) used to retrieve load information (position and strength) and agent-
based structure monitoring based on trained data.
epubli, ISBN 9783746752228 (2018)
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This inference algorithm offers adaptive behaviour in terms of desired tem-
poral resolution and predictive precision, depending on the number of
communication rounds performed per time unit (information exchange
between agents). 

Experiments investigating the suitability of the previously introduced ML
algorithms for the derivation of the spatially resolved and interpolated load
vectors from the sensor data vectors were split in FEM-based training with a
metal plate model and real sensor measurements using a rubber plate.

14.1.2 Experimental Results using Machine Based Learning with Metal 
Plate

Completely noise-free strain values from a FEM simulation (performed by F.
Pantke, published in [BOS11C]) were used as the input for the machine learn-
ing process to gain a first set of reference success rates for the 200 × 300 mm
steel plate scenario and the two described machine learning algorithms. In
this case, the learned models stay valid as long as all load-induced stresses fall
within the elastic range. As the prediction accuracy can be regarded as a
measure of the general practicability of our approach, the success rates
obtained in this evaluation will be used as benchmarks for further improve-
ment of the hardware prototype as well as development of more
sophisticated machine learning approaches. 

For the sake of simplicity it was assumed that a metal plate was fixed at one
(shorter) side, hanging free with one or multiple point loads {F1(x1, y1), F2(x2,
y2) , ..} applied at different spatial positions (x,y) on the downside of the plate.
The plate is initially bent due to the gravitational forces acting on the plate,
shown in Figure 14.3.   

Fig. 14.3 The model of the experimental setup for the FEM simulation.
epubli, ISBN 9783746752228 (2018)
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Fig. 14.4 Classification results obtained with leave-one-out cross-validation on the
training set

Since only values from FEM simulation are used in the evaluation, i.e., no
comparison with measured values from the physical prototype was made, the
spike placed under the plate’s bottom face was modelled as a roller support in
the FEM model for sake of simplicity. For C4.5 and k-NN with 1 < k < 10, a
leave-one-out cross-validation (LOOCV) was conducted on the training set:
Each singleton subset of the training set was used exactly once for querying
the machine learning models constructed from its complementary set and
comparing the result with the known correct values. In addition, the models
obtained from the entire 352 element training set were queried using an
intermediate test set INT consisting of 150 g weights placed exactly at the mid-
epubli, ISBN 9783746752228 (2018)
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points between the previously defined grid positions, resulting in further 10 ×
15 load cases neither the coordinates nor masses of which appear anywhere
in the training set. 

Depending on the value chosen for k, the percentage of correct classifica-
tions achieved with k- NN varies between 89.77% and 90.91% in LOOCV and
between 92% and 93.33% for INT. The C4.5 decision tree attained 94.32% cor-
rect classifications in LOOCV and 96.22% for INT. The locations at which false
positives and false negatives were returned in LOOCV by C4.5 and k-NN with k
= 4 are shown in Figure 14.4.

Fig. 14.5 Regression error for 150 g weights placed at intermediate positions
epubli, ISBN 9783746752228 (2018)
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While at each position a 100 g and a 200 g load case were tested, no posi-
tion produced wrong classifications for both masses. The numerical
regression results obtained for the test set INT by k-NN with k = 4 are illus-
trated in Figure 14.5. The difference vectors from the actual to the estimated
load positions are shown in the bottom vector field (median length 9.09 mm,
average length 15.88 mm), whereas the absolute error in load mass estima-
tion is visualized in the upper plot (median 20.39 g, average 25.38 g). Among
all tested values for k, the median difference vector length of the load coordi-
nate regression was smallest with k = 4, while the average was smallest with k
= 2. In Figures 14.4 and 14.5, the locations of the strain sensors and the roller
support are indicated with diamond and circle symbols, respectively. The fix-
ture is located on the Y coordinate axis. It is clearly noticeable that the
regression error is largest in the vicinity of the supports.

14.1.3 Experimental Results using Machine Based Learning with a Rubber 
Plate

Preliminary experiments were performed with a flat rubber plate (equipped
with nine bi-axial strain-gauge sensors and the sensor network previously
introduced, 70 mm sensor distance) and an experimental set-up shown in Fig-
ure 14.6 with circular weights. 

Figures 14.6 and 14.7 show the analysis of the difference between meas-
ured and predicted load positions (position accuracy) retrieved by machine
learning with two different sensor array configurations. The plots show the
spatial vector difference between the predicted and observed position with a
mean value below 25 mm and 50 mm, respectively. 

Fig. 14.6 Experimental results of predicted load positions (306 g weight) with nine
strain-gauge sensor pairs mounted on backside of a rubber plate (experimen-
tal test set-up shown on right side) [BOS12F].

Camera

Rubber Plate

Sensor Network

Weight

200mm

300mm
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Fig. 14.7 Experimental results of predicted load positions (306 g weight) with only four
strain-gauge sensor pairs and ML graphical user interface (GUI, right side)
[BOS12F].

The training set consisted of two different masses (103 g and 306 g) and 150
positions. During learning mode the position (of the weight) was monitored
with a camera mounted above the rubber plate together with acquired sensor
data delivered by the sensor network.

A system with reduced number of sensors (Figure 14.7, 150 mm sensor dis-
tance) results in a decrease of prediction position accuracy in the boundary
region, but is still usable for structure load monitoring especially in the middle
area spawned by the edges of sensors.

The sensor network attached below the rubber plate consisted of nine sin-
gle sensor nodes, each equipped with Analogue-Digital conversions and
digital processing units (FPGA). Each sensor node was attached to one bi-axial
aligned strain-gauge sensor pair. The sensor nodes were arranged in two-
dimensional network, shown in Figure 14.8.

The digital processing unit of each sensor node was composed of commu-
nication modules supporting the SLIP routing protocol, introduced in Section
4.3, sensor signal acquisition with a zooming window ADC approach, noise fil-
tering modules, and an RPC layer. All processing and communication modules
were integrated in one FPGA SoC design (Xilinx Spartan 3, 1000k eq. gates) by
using the ConPro High-level synthesis approach, introduced in Section 12.5.
The nodes were connected with two unidirectional serial links. The adaptive
path finding of the SLIP protocol allowed defective connections between
nodes up to 20% with a loss of messages carrying the sensor data, which was
in this early work collected periodically by an external computer connected to
one of the sensor nodes.
epubli, ISBN 9783746752228 (2018)
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Fig. 14.8 Two-dimensional Sensor Network with autonomous sensor nodes

Sensor Signal Processing: Zooming ADC 
Resistive sensors, like strain-gauge sensors, provide only a small relative

change in resistance in the order of 1% resulting from a change of applied
load in the considered operating range of the sensor. Using bridge configura-
tion, providing a differential signal, require compensated sensors with small
tolerances in strain and zero-load resistance parameters, actually not applica-
ble to sensorial materials using, for example, printed sensors.

Assuming only one non calibrated and uncompensated resistive sensor, a
zooming window approach (see Equation 14.2) can be used to match an ini-
tially unknown sensor to the measurement system preserving a high and full-
range resolution, shown in Figure 14.9.

(14.2)

The data processing performs an initial (or periodically repeating) auto-cali-
bration finding the centre of the operational window by using fast settling
successive approximation, shown in Algorithm 14.1.

AD   
SLIP

RPC

LINK

AD   
SLIP

RPC

LINK

AD   
SLIP

RPC

LINK

AD   
SLIP

RPC

LINK

AD   
SLIP

RPC

LINK

AD   
SLIP

RPC

LINK

AD   
SLIP

RPC

LINK

AD   
SLIP

RPC

LINK

AD   
SLIP

RPC

LINK

SLIP

RPC

LINK

W s k s off( ) ( )= -
epubli, ISBN 9783746752228 (2018)



14.1 Sensorial Material I: A Flat Perceptive Sheet and Machine Learning 503

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Fig. 14.9 Zooming ADC system architecture used for signal acquisition of resistive sen-
sors with high relative sensitivity and auto-calibration. (ADC: Analogue-to-
Digital Converter with differential input, DAC: Digital-to-Analogue Converter)

Alg. 14.1 Auto calibration using successive approximation

1 sar  DIGITALRANGE/2;
2 DAC1  GAIN0, DAC2 <‐ 0;
3 WHILE sar <> 0 do begin
4   IF ADC > DIGITALRANGE/2 
5     THEN DAC2  DAC2 + sar ELSE DAC2  DAC2 ‐ sar;
6   sar  shift_right(sar,1); end;
7 off  DAC2‐DAC1;
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14.2 Sensorial Material II: A Flat Perceptive Plate and Inverse 
Numeric

Structural Health Monitoring (SHM) of mechanical structures allows deriv-
ing not just loads, but also their effects to the structure, its safety, and its
functioning from sensor data. A load monitoring system (LM) can be consid-
ered as being a subclass of SHM, which provides spatial resolved information
about loads (forces, moments, etc.) applied to a technical structure, e.g., the
mechanical structures of a robot manipulator arm..

One of the major challenges in SHM and LM is the derivation of meaningful
information from sensor input. The sensor output of a SHM or LM system
reflects the lowest level of information. Beside technical aspects of sensor
integration the main issue in those applications is the derivation of a mapping
function Fm(S) which basically maps the raw sensor data input S, a n-dimen-
sional vector consisting of n sensor values, to the desired information I, an m-
dimensional result vector (see Figure 14.10).

Initially unknown external forces acting on a mechanical structure lead to a
deformation of the material based on the internal forces. A material-inte-
grated active sensor network integrating sensors, electronics, data
processing, and communication, together with mobile agents can be used to
monitor relevant sensor changes with an advanced event-based information
delivery behaviour. Inverse numerical methods can compute finally the mate-
rial response. 

Fig. 14.10 A heterogeneous network environment consisting of a mechanical struc-
ture equipped with a sensorial system that reacts on externally applied
load and a processing system performing inverse numerical
computations.
epubli, ISBN 9783746752228 (2018)
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The unknown system response for externally applied load L is measured by
the strain sensor stimuli response S, finally computing an approximation of
the response L’.

It can be shown that a hybrid data processing approach for material-inte-
grated SHM and LM systems by using self-organizing and event-driven mobile
multi-agent system (MAS) is suitable for this sensing system class, with agent
processing platforms scaled to microchip level (PAVM/PCSP) which offer mate-
rial-integrated real-time sensor systems, and inverse numerical methods
providing the spatially resolved load information from a set of sensors
embedded in the technical structure. Inverse numerical approaches usually
require a large amount of computational power and storage resources,
unsuitable for resource constrained sensor node implementations. Instead,
off-line computation is performed, with on-line sensor processing by the
agent system. Commonly off-line computation operates on a continuous data
stream requested by the off-line processing system delivering sensor data
continuously in fixed acquisition intervals, resulting in high communication
and computational costs. Here the sensor preprocessing MAS delivers sensor
data event-based if a change of the load was detected (feature extraction),
reducing network activity and energy consumption of the entire system signif-
icantly. The basic SOMAS behaviour were introduced in Chapter 9.

One common approach in SHM is the correlation of measured data result-
ing from an induced stimuli at run-time (system response) with data sets
retrieved from an initial (first-hand) observation, which makes it difficult to
select damage relevant features from the measurement results. Other vari-
ants are based on statistical methods or neural network approaches. Related
work in [FRI07], [FRI01], [CAR06], and [HUH11] can be referred for examples
illustrating the variety of possible approaches. 

Inverse methods generally belong to the first class of approaches since they
are based on a mechanical model T of the technical structure mapping loads
to sensor signals. Given a sensor signal vector s (serialization of a two-dimen-
sional sensor matrix S), inverse methods try to stably "invert" the mapping T,
that is, to find a stable solution x to the problem Tx = s. Since measured sig-
nals and the underlying physical model always contain numerical and
modelling errors, inverse methods do not attempt to find an exact solution to
the latter equation. Indeed, inversion problems, in particular those with
incomplete data, are usually extremely ill-conditioned, meaning that small
errors in the signals or the model lead to huge errors in any "solution" gained
by such a naïve approach. Instead, inverse methods try to stabilize the inver-
sion process, using, e.g., one of the following techniques:

 Pick amongst all solutions to Tx = s the one that minimizes a certain
functional - the simplest functional to minimize would be the Tikhonov
functional
epubli, ISBN 9783746752228 (2018)
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(14.3)

where  > 0 and kÁk2 is the 2-norm of a vector, but different and more
complicated variants might also be convenient choices.

 Alternatively, consider any iterative method driving the residual Tl-s
and stabilize the inversion by stopping the iteration when the norm of
the residual is about the magnitude of the expected signal and model-
ling error. 

The mechanical model of the structure under investigation allows in par-
ticular the pre-computation of a sufficiently accurate discretization of the
forward mapping T linking loads with measured signals. Moreover, this pre-
computation allows associating each sensor to an individual signal level that
might potentially be critical for the entire structure (details can be found in
[BOS14C]).

Hence, when a load change that is potentially critical is detected by one the
material-integrated sensors, the signals measured by all sensors are propa-
gated to an exterior CPU. An alternative way is that merely those sensors
noting a critical load change start to propagate their signals to the exterior
processing system (computer). The propagated signals are then fed into a reg-
ularization scheme that is able to stably invert signals into loads. Several
algorithms can be used at this point: A classical and well-known inversion
method is Tikhonov regularization, minimizing the quadratic Tikhonov
functional 

(14.4)

where   > 0 is a (small) regularization parameter, kÁk2 is the 2-norm, and  l0
is some a-priori guess for the exact solution. The minimum l is the unique
solution of the linear system 

(14.5)

where T* denotes the transpose of T. 
The solution to this system is hence computed rapidly with low cost if one is

able to pre-compute a singular value decomposition of the matrix T. The dis-
advantage of this inversion scheme is that reconstructions of discontinuous
loads, in particular with small support, are smoothed out which makes the
precise location of the support of a load difficult. Several iterative inversion
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techniques such as the steepest descent method or the conjugate gradient
method applied to T*Tl= T*g avoid this disadvantage. Further, they merely
require the ability to compute matrix-vector products and a (cheap stopping)
rule to stabilize the inversion. The class of iterative inversion methods also
includes the so-called Landweber iteration and its variant, the so-called itera-
tive soft shrinkage. The disadvantage of the latter two techniques is their slow
convergence, and the huge number of iterations are necessary to compute
accurate inversions [ENG96][KIR96].

Combining Self-organizing Multi-Agent Systems (SoMAS) and event-based
sensor data distribution with inverse numerical methods into a hybrid data
processing approach has several advantages: First, the (possibly distinct) criti-
cal level for an individual sensor signal can be pre-computed for each sensor
position individually. Second, depending on the a-priori knowledge on the
expected loads on the structure, a suitable regularization technique can be
chosen as inversion method, promoting specific features of the expected
loads.

Fig. 14.11 Analysis results of the agent population obtained from the multi-agent simu-
lation of the feature marking combined with the event-based data
distribution. Left: with a contiguous cluster of 8 sensors (correlated), Right: 8
sensor stimulation scattered around in the network (no correlation)
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The simulation of the full sensor processing MAS consisting of the feature
detection SoMAS (see Section 9.2) and the adaptive event-based sensor data
distribution (see Section 9.3) triggered by the feature detection SoMAS with an
exemplary sensor network poses a strong correlation of the sensor stimuli
events and the temporal and spatial population with agents. 

Figure 14.11 summarizes the analysis of the MAS simulation giving the
agent population for two different cases: (1) A correlated cluster of stimulates
sensors (left) compared with (2) An uncorrelated cluster (right). Using more
realistic sensor stimuli based on FEM simulation (based on experiments
shown in Figure 9.5) leads to similar results regarding the spatial and tempo-
ral population of agents in the network, shown in Figure 14.12 with the
corresponding exemplary load cases of the steel plate (200x300 mm, 1 mm
thickness) [BOS14F].

Five pairwise different loads l (1), .. , l (5) with different characteristics and
acting on different parts of the steel plate are used. 

The reproduction after successful feature detection leads to a significant
increase of the explorer child agent population, which has advantages only in
the occurrence of large extended correlated regions (the feature is the bound-
ary of the region).

The uncorrelated case does not trigger the creation of event and distribute
agents. The simulation results show that the temporal and spatial exploration
does not depend on the presence of a feature (correlation) if the explorer
radius is limited to one. Otherwise, either explorer reproduction or diffusion
occurs, with a temporal broadening and/or increase in the agent population.
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Fig. 14.12 Agent population of the feature detection SoMAS and event-based sensor data
distribution in the sensor network with real load cases (Li: i-th load case data
set)
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epubli, ISBN 9783746752228 (2018)



 Chapter 14. Use-Cases Environmental Perception, Load Monitoring, and Manufacturing510

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
14.3 Sensorial Material III: A Perceptive Modular Robot Arm
Intelligent behaviour of robot manipulators become important in unknown

and changing environments. Emergent behaviour of a machine arises intelli-
gence from the interactions of robots with its environment. Sensorial
materials equipped with networks of embedded miniaturized smart sensors
can support this behaviour. 

Integrated autonomous decentralized sensor networks provide perception
in a robot arm manipulator. Each sensor network is connected with a set of
strain gauge sensors mounted on a flexible polymer surface, delivering spatial
resolved information of external forces applied to the robot arm, required for
example for obstacle avoidance or for manipulation of objects.

Each autonomous sensor node provides communication, data processing,
and energy management implemented on microchip level. 

Commonly a high number of strain gauge sensors are used to satisfy a high
spatial resolution. The approach uses advanced Artificial Intelligence and
Machine Learning methods for the mapping of only a few non-calibrated and
non-long-term stable noisy strain sensor signals to spatially resolved load
information and a decentralized data processing approach to improve robust-
ness. Robustness in the sensor network is provided by 

1. Autonomy of sensor nodes; 
2. Smart adaptive communication to overcome link failures and to reflect

changes in network topology;
3. Using intelligent adaptive algorithms. Robust cooperation and distrib-

uted data processing is achieved by using Mobile Agent systems
[WAN03]. 

Agent behaviour and cooperation is implemented on microchip level
[BOS12A]. The central aim is to derive useful information constrained by lim-
ited computational power and noisy sensor signals unable to be captured by a
complete system model. Machine Learning (ML) methods are capable to map
an initially unknown n-dimensional set of input signals to a m-dimensional
output set of information like the position and strength of applied forces
[MIT97].

Without any interaction and material model Machine Learning requires a
training phase. Additional material models and FEM simulation can reduce or
avoid the training phase [BOS11C].

The training set contains recorded load positions, masses and classification
results for different load cases determined via sensor measurement. 

The hyper-elastic behaviour of polymers reduces the long-term prediction
accuracy of learned models as well as the consistency with FEM output,
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requiring Machine Learning models that automatically adjust their output to
the structure’s ageing process. 

The robot manipulator consists of actors (joint drives) and intersection ele-
ments with integrated smart sensor networks. Distributed data processing is
provided by mobile agents. The agent behaviour is implemented on hard-
ware-level and SoC designs, shown in Figure 14.13. The intersection element
connects two joint actors with a rigid double-pipe construction with sur-
rounded two opposite placed load sensitive skins (bend rubber plate),
equipped each with four strain-gauge sensor pairs (bi-axial aligned). Each sen-
sor pair is connected to a sensor node providing parallel data processing,
agent behaviour implementation, and communication/networking. All sensor
nodes are arranged in a mesh-like network connected with serial point-to-
point links. Communication is established by a smart and robust routing pro-
tocol. This application bases on the flat rubber plate experiments pointed out
in Section 14.1.

Fig. 14.13 Robot arm manipulator intersection element equipped with smart sensor net-
works providing perception information of external applied load forces.
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14.4 Sensorial Material IV: A Perceptive Robotic Gripper

The dynamic process of grasping different kinds of objects that are pres-
sure sensitive is difficult to handle with classical feedback controllers based
on few force sensor values acquired and processed outside of the gripper
structure. Side effects like slipping can not be detected at all or too late. Minia-
turized smart sensors embedded in structures like grippers can significantly
increase the perception of the environment with which a structure interacts.

A high-density network of strain-gauge sensors distributed in/on the grip-
per structure providing local sensor signal-to-information computation can
deliver much more suitable information. 

Traditionally, strain-gauge sensors are used to measure an applied force in
a specific direction. The analogue signal acquisition is difficult due to low
noise immunity of weak input signals. External signal acquisition with a large
distance from sensor to electronics raises noise and reduces signal-to-noise
ratio and resolution.

We propose and demonstrate the integration of an active smart sensor net-
work into a mechanical gripper structure (finger). The network consists of
several highly miniaturized low-power sensor nodes providing sensor signal
acquisition, data processing, and communication. Each sensor node can han-
dle up to two strain-gauge sensors detecting different forces at different
positions of the gripper structure. The relation between strain and force is
derived from FEM simulation of the gripper structure under certain load
conditions.

Each node performs sensor signal acquisition using a zooming ADC
approach, sensor data evaluation, and auto-calibration. Hence, non-calibrated
and non-long term-stable sensors can be integrated and used, a prerequisite
for robust sensorial materials.

It can be demonstrated that an integrated sensor network leads to increas-
ing functionality and robustness. 

A smart communication protocol is used to provide robust and fault-toler-
ant communication between nodes and an external interface, for example, a
generic processor-based controller.

Beside the collection of single force values measured at different positions
of the gripper, temporal and spatial composition information derived from
the set of measured forces can be computed using data fusion, performed by
the nodes of the sensor network itself using distributed computing algo-
rithms. These are overload conditions, force gradients, object recognition and
classification, and other higher-level information, which can be computed.

A multi-agent system is used for a decentralized and self-organizing
approach of data processing in the distributed system, i.e., the sensor net-
work, enabling the mapping of distributed data sets to related information
required for the object manipulation.
epubli, ISBN 9783746752228 (2018)



14.4 Sensorial Material IV: A Perceptive Robotic Gripper 513

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Fig. 14.14 One gripper finger equipped with a sensor network connecting nodes each
servicing a strain gauge sensor mounted on the gripper structure. The net-
work topology is shown in the lower part (mech. structure based on
[BOS12D])

Mechanical grippers are key components of handling devices in automated
assembly systems. For complex handling tasks, these grippers have to be
equipped with additional force-measuring modules. 

The proposed gripper fingers, based on work in [BOS12D], contain six sin-
gle-force sensors and can measure forces along multiple axes, shown in
Figure 14.14.

Each sensor is connected to an active sensor node consisting of signal and
data processing, communication modules, and power regulation. Each sensor
node can connect with neighbour nodes (up to four links).
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14.5 Sensor Clouds: Adaptive Cloud-based Design and 
Manufacturing

This section outlines the architecture for additive and adaptive manufactur-
ing based on a closed-loop sensor processing approach with data mining
concepts combined with Internet-of-thing architectures.

Additive and adaptive cloud-based design and manufacturing are attractive
in the field of robotics, not only limited to industrial production robotics,
mainly targeting service robots and semi-autonomous carrier robots. In
cloud-based manufacturing, the consumer of the products is integrated in the
cloud-based manufacturing process [WU12], directly involved in the manufac-
turing process using distributed cloud computing and distributed storage
solutions.

Robots can be considered as active and autonomous data processing units
that are commonly already connected to computer networks and infrastruc-
tures. Robots use inherent sensing capabilities for their control and task
satisfaction, commonly using integrated sensing networks with sensor pre-
processing, deriving some inner state of the robot, for example, mechanical
loads applied to structures of the robot or operational parameters like motor
power and temperature. The availability of the inner perception information
of robots enable the estimation of working and health conditions  initially not
fully considered at design time. The next layer in cloud-based adaptive
manufacturing can be the inclusion of the products themselves delivering
operational feedback to the current design and manufacturing process, lead-
ing to a closed-loop evolving design and manufacturing process with an
evolutionary touch, shown in Figure 14.15. This evolutionary process adapts
the product design, for example the mechanical construction, for future prod-
uct manufacturing processes based on a back propagation of the perception
information (i.e., recorded load histories, working and health conditions of the
product) collected by living systems at run-time. The currently deployed and
running series of the product enhances future series, but not in the traditional
coarse-grained discrete series iteration. This process can be considered as a
continuously evolving improvement of the robot by refining and adapting
design parameters and constraints that are immediately migrated to the man-
ufacturing process. A robot consists of a broad range of parts, most of them
are critical for system failures. The most prominent failures are related to
mechanical and electro-mechanical components, which are caused by over-
load conditions at run-time under real conditions not to be considered or
unknown at initial design time.

The integration of robots as product and their condition monitoring in a
closed-loop design and manufacturing process is a challenge and introduces
distributed computing and data distribution in strong heterogeneous pro-
cessing and network environments. One major question to be answered is the
epubli, ISBN 9783746752228 (2018)
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sensing of meaningful condensed product condition information and the
delivery to the designer and factory. It is a similar issue like arising in the Inter-
net-of-Things domain. New unified data processing and communication
methodologies are required to overcome different computer architecture and
network barriers, delivered by the unified distributed data processing model
of the mobile agents that are self-contained and autonomous virtual process-
ing units. The mobile agents represent mobile computational processes that
can migrate on the Internet and as well in sensor networks.

Multi-agent systems (MAS) represent self-organizing societies consisting of
individuals following local and global tasks and goals including the coordina-
tion of information exchange in the design and manufacturing process. 

Agents are already deployed successfully for scheduling tasks in production
and manufacturing processes [CAR00B], and newer trends poses the suitabil-
ity of distributed agent-based systems for the control of manufacturing
processes [LEI15], facing not only manufacturing, but maintenance, evolvable
assembly systems, quality control, and energy management aspects, finally
introducing the paradigm of industrial agents meeting the requirements of
modern industrial applications. The MAS paradigm offers a unified data pro-
cessing and communication model suitable to be employed in the design, the
manufacturing, logistics, and the products themselves.

The scalability of complex industrial applications using such large-scale
cloud-based and wide-area distributed networks deals with systems deploy-
ing thousands up to a million agents. But the majority of current laboratory
prototypes of MAS deal with less than 1000 agents [LEI15]. Currently, many
traditional processing platforms cannot yet handle big numbers with the
robustness and efficiency required by industry [MAR05][PEC08]. In the past
decade the capabilities and the scalability of agent-based systems have
increased substantially, especially addressing efficient processing of mobile
agents.

The programmable agent processing platform PAVM introduced in Chapter
7 can be deployed in such strong heterogeneous network environments,
ranging from single microchip up to WEB JavaScript implementations, being
fully compatible on operational and interface level. Multi-agent systems can
be successfully deployed in sensing applications, for example, structural load
and health monitoring, with a partition in off- and online computations, as
introduced in Section 14.2. Distributed data mining and Map&Reduce algo-
rithms are well suited for self-organizing MAS. Cloud-based computing, as a
base for cloud-based manufacturing, means the virtualization of resources,
i.e., storage, processing platforms, or information.

Traditional closed-loop processes request data from sources (products,
robots) by using continuous request-reply message streams. This approach
leads to a significant large amount of data and communication activity in
large-scale networks. Event-based sensor data and information distribution
epubli, ISBN 9783746752228 (2018)
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from the sources of sensing events, triggered by the data sources (the robots)
themselves, can improve and reduce the allocation of computational, storage,
and communication resources significantly.

 A cloud in terms of data processing and computation is characterized
by and composed of:

 A parallel and distributed system architecture
 A collection of interconnected virtualized computing entities that are

dynamically provisioned
 A unified computing environment and unified computing resources

based on a service-level architecture
 A dynamic reconfiguration capability of the virtualized resources (com-

puting, storage, connectivity and networks)

Cloud-based design and manufacturing is composed of knowledge man-
agement, collaborative design, and distributed manufacturing. Adaptive
design and manufacturing enhanced with perception delivered by the prod-
ucts incorporates finally the products in the cloud-based design and
manufacturing process.

Fig. 14.15 Additive and adaptive Manufacturing with back propagation of sensing data
using mobile agents from robots to the design and manufacturing process
resulting in continuous series improvements.
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Agent Classes. The entire MAS society is composed of different agent classes
that satisfy different sub-goals and reflect the sensing-aggregation-application
layer model: event-based sensor acquisition including sensor fusion (Sensing),
aggregation and distribution of data, preprocessing of data and information
mapping, search of information sources and sinks, information delivery to
databases, delivery of sensing, design, and manufacturing information, prop-
agation of new design data to and notification of manufacturing processes,
notification of designer, end users, update of models and design parameters.
Most of the agents can be transferred in code frames with a size lower than
4kB, and depends on the data pay-load they carry. At run-time, agents are
instantiated from these different classes, and agents can change to a subclass
behaviour depending on current sensing, goals, and their inner state.

Considering adaptive design and manufacturing that consumes the product
information to adapt products semi-continuously, an exponential-like
increase of data and information can be expected. 

Fig. 14.16 Effect of product life cycle data sampling on adaptive design and manufactur-
ing processes. A temporal increase in product diversity and the number of
product individuals result in an exponential-like increase of the amount and
density of sensing information processed and distributed by the MAS
[BOS14G].
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This is caused by minor revisions of products, classical happening com-
monly in monthly intervals, now shrinking to day or hour intervals, and that
result in a significant increase of diversity and the number of individuals,
shown in Figure 14.16. It is expected that this data explosion can only be han-
dled by SoMAS.

14.6 Sensor Networks: Distributed Earthquake Monitoring

Among micro-scale material-integrated sensing systems there are large-
scale wide-area sensor networks. In [BOS16C] and [BOS17C] the JAM agent
processing platform (see Section 8.1) was proposed for a seismic earthquake
monitoring system. Self-organizing mobile agents are suitable for on-line dis-
tributed seismic data evaluation and information retrieval.

The seismic stations of the South California CI network are mapped on a
two- dimensional grid with spatial proximity, shown in Figure 14.17. Each (vir-
tual) node in the network starts a resident node agent responsible for data
sampling, reduction, and for the creation and notification of a learner agent. If
the node agents detect vibration activity beyond a threshold, they will notify
the learner agents via tuple-space interaction. The learner will send out explo-
ration agents that collect neighbourhood data, finally back delivered to the
learner agent. 

One major challenge in large-scale seismic networks is data reduction. The
raw sensor data contains temporal resolved seismic recordings of at least
three sensors (horizontal East, horizontal North, and vertical acceleration sen-
sors) with a time resolution about 10ms, resulting in a very high-dimensional
data vector. Additionally, a seismic sensor samples only noise below a thresh-
old level, mainly resulting from urban vibrations and sensor noise itself. 

Fig. 14.17 Mapping of internet-connected seismic station network on 2d grid
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The vibration (acceleration) is measured in two perpendicular horizontal
and one vertical directions. This gives a significant information for an earth-
quake recognition and localization. The data reduction is performed by a
node agent present on each seismic measuring station platform. Only the
compact string patterns are used as an input for the distributed learning
approach. Based on this data, the learning system should give a prediction of
an earth-quake event and a correlation with past events. To deploy regional
learning for a spatial ROI, seismic stations should be arranged in a virtual net-
work topology with connectivity reflecting spatial neighbourhood, e.g., by
arranging all station nodes in a two-dimensional network. The virtual links
between nodes are used by mobile agents for exploration and distribution
paths. They do not necessarily reflect the physical connectivity of station
nodes. 

The deployment of agents in the network, the agent behaviour, and their
interaction performing distributed learning were already discussed in Section
10.6.4. Using JAM agents, scalable and event-based sensor data processing is
provided with Machine Learning as a platform service. Agents can carry
learned models (mobile learner) without carrying the learner code. Incremen-
tal learning avoids an accumulated database carried by agents.

In [KON16], smart phones were successfully used to enhance the earth-
quake prediction by extending the seismic database with sensor data from
mobile devices. In [POU15], an open participatory platform for privacy-pre-
serving social mining (Planetary Nervous System) was introduced, i.e.,
basically a virtualization of sensors that can profit from the proposed agent
framework. The distributed learning system deployed in the seismic station
network using the local station data can be extended by devices from such
ubiquitous networks, which can execute the learner agents collecting sensor
data (vibration, air pressure, temperature) from such devices. In contrast to
seismic stations located at fixed and well-known positions, mobile devices
change their position dynamically. 

The mobile learner carrying an already learned spatially local model in a
specific region, can migrate to mobile devices in this region and performs fur-
ther learning or prediction. The extension of earthquake analysis with a large
number of ubiquitous mobile devices can aid to improve disaster manage-
ment significantly by providing spatially fine resolved sensor and event data
covered by a high node density. Furthermore, facility sensor networks can be
included providing additional information about the buildings (health) state
(illustrated in Figure 14.18).

The JAM platform fits well in such large-scale strong heterogeneous and
changing environment consisting of a broad diversity of devices: Seismic sta-
tions in buildings connected via the Internet, seismic stations on sea
connected via satellite links or radio, servers, mobile devices connected via
mobile networks or WLAN.
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Fig. 14.18 Combining seismic monitoring networks with ubiquitous sensing by smart-
phones

14.7 Crowd Sensing

Most crowd sensing platforms are using cloud- or centralized data base
approaches for the aggregation and processing of user and sensor data, e.g.,
McSense [CAR13] or Nervousnet [POU15], based on a client-to-server architec-
ture, though supporting distributed pre-processing. 

The Planetary Nervous System (Nervousnet) is an environment and platform
consisting of sensors that process a set of input streams of data generated
from physical or virtual sensors. The environment defines the context within
that the virtual sensor operates to generate its output stream [POU15].

The platform provides ubiquitous social mining as a public service. Sensing
systems consist of three different functional layers: Sensing, Aggregation, and
Application. All three layers can be represented by virtual sensors and agents.
Data sharing, data collection, and data fusion are main building blocks of such
a system. In contrast to traditional embedded sensor networks, social mining
in public networks requires privacy rules, as discussed in [MUS16]. Sensing
devices, e.g., smart phones, commonly interact with a Cloud-like service archi-
tecture (device-to-cloud communication). Crowd sensing has already been
successfully applied to different purposes. Discussed in the previous section,
in [KON16], smart phones were used to compose a seismic network in urban

Smart Phone
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environments for spatially fine-grained earthquake monitoring. But as in the
current Nervousnet approach, the distributed data is evaluated either locally
or at a central instance. With the emerging IoT, Crowd Sensing is extended by
Things Sensing. 

Cloud-based computing with MAS, e.g., as a base for crowd sensing and
participatory social mining use cases, means the virtualization of resources,
i.e., storage, processing platforms, sensing data or generic information.
Mobile Agents reflect a mobile service architecture. Commonly, distributed
perceptive systems are composed of sensing, aggregation, and application
functional layers.

The scalability of complex ubiquitous applications using such large-scale
cloud-based and wide area distributed networks deals with systems deploying
thousands up to a million agents. 

The JAM platform and mobile JAM agents can be used to combing the con-
cept of virtual sensors, crowd sensing, and distributed event-based data
processing in string heterogeneous environments, shown in Figure 14.19. 

Fig. 14.19 Unified Mobile Network/IoT/Cloud Distributed Perception and Information
Processing with mobile agents using the JavaScript (JS) Agent Machine Plat-
form (JAM) and the Nervousnet Service as the organizational layer composed
of virtual sensors, represented with JAM agents. 
epubli, ISBN 9783746752228 (2018)



 Chapter 14. Use-Cases Environmental Perception, Load Monitoring, and Manufacturing522

S. Bosse, Unified Distributed Sensor and Environmental Information Processing with Multi-Agent Systems
Agents operating on a particular node (e.g., a mobile device) can interact
and synchronize by using tuple-spaces as a suitable MAS interaction and co-
ordination paradigm in loosely coupled, changing, and self-organizing MAS.

Virtual Sensors and Agents
Large-scale sensing application can be composed of virtual sensors. A vir-

tual sensor is a software component being the core cell of the Nervousnet
platform. Each software component is treated as a sensor, processing an
input stream and computing an output stream. Each physical sensor is a "data
stream" transformer, too, but based on physical principles. A virtual sensor is
a processing system as well as a data storage (data base). In this work, virtual
sensors are represented by mobile agents, performing the sensing, aggrega-
tion, and application (or delivery) of accumulated and processed sensor data.
As discussed in the next section, these agents are highly portable and can be
executed by a wide range of devices including smart phones. The mobility
enables self-organizing and adaptive mining systems controlled by environ-
mental constraints rather than by individual users. In [MUS16], users using a
smart phone App. are considered as agents. This role is replaced in this work
by the deployment of agents that perform tasks autonomously. 

The agents interact with each other by accessing tuple spaces or by
exchanging signals. The advantage of tuple spaces and mobile agents is the
generative nature. A sensor data tuple can be stored in an environment with-
out physical sensors by mobile agents, enabling the access of remote sensor
data by other agents. In the original Nervousnet platform, mobile Apps. deliver
sensor data to the Nervousnet data bases, and access control is performed by
the Nervousnet platform. The autonomy of agents and the anonymous nature
of tuples introduce privacy issues, which require dedicated privacy control
mechanisms. Although data encryption can be used to protect sensor data, a
privacy protection layer applied to sensor data without encryption stripping
private device and user data can be considered as a more powerful and useful
technique. One private information still exists: The location of agents and the
sensor data they collect from devices, which can be easily recognized by
mobile agents applying path tracing and other relative localization methods.
Therefore, agents require encrypted keys to access personal and sensitive
sensor data on mobile devices, granted by the user or trusted platform. 

The principle Nervousnet architecture composed of virtual sensors and the
JAM agent relationship are shown in Figure 14.20. The architecture is hierar-
chical and can be extended easily with additional virtual sensors. Virtual
sensors are deployed in mobile, traffic, and ubiquitous environments. Upper-
level virtual sensors provide storage, sharing, and analytic services. Virtual
sensors and virtual sensor agents represent the sensing, aggregation, and
applications layers of crowd sensing systems. 
epubli, ISBN 9783746752228 (2018)
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Fig. 14.20 (Top) Hierarchical sensor aggregation by virtual sensors (Nervousnet architec-
ture [POU15]) that can be implemented by JAM agents [BOS17A] (Bottom)
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Crowd sensing applications are mainly operating in public environments.
There is not always Internet connectivity via mobile networks. For this reason,
a beacon network, e.g., established via Bluetooth, can be used to connect
mobile devices. Since beacons can have Internet connectivity or not, mobile
JAM agents can be used to transport data between mobile devices and the
Internet, shown in Figure 14.21 (piggyback approach). 

A mobile device entering the communication range of a beacon can send
out exploration agents that collect and deliver sensor data, finally carried to
another beacon area. Data can be exchanged between different agents via
tuple spaces.

Fig. 14.21 Principle network topology with spatially distributed beacons (non-mobile)
and mobile devices, the MAS and the agent-node interactions. 
epubli, ISBN 9783746752228 (2018)
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