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Abstract: One of the major challenges in Structural Monitoring of mechanical structures is
the derivation of meaningful information from sensor data. This work investigates a hybrid
data processing approach for material-integrated Structural Health and Load Monitoring
systems by using self-organizing mobile multi-agent systems (MAS), and inverse numerical
methods providing the spatial resolved load information from a set of sensors embedded in
the technical structure with low-resource agent processing platforms scalable to microchip
level, enabling material-integrated real-time sensor systems. The MAS is deployed in a het-
erogeneous environment and offers event-based sensor preprocessing, distribution, and pre-
computation. Inverse numerical approaches usually require a large amount of computational
power and storage resources, not suitable for resource constrained sensor node implementa-
tions. Instead, the computation is partitioned into spatial off-line (outside the network) and
on-line parts, with on-line sensor processing performed by the agent system. A unified mul-
ti-domain simulation framework is used to profile and validate the proposed approach.

Keywords: Structural Health Monitoring, Sensor Network, Mobile Agent, Heterogeneous
Networks, Embedded Systems, Inverse Numerical Computation, Multi-Domain Simulation

1. Introduction

Structural Monitoring of mechanical structures allows to derive not just loads by using Load Moni-
toring (LM), but also their effects to the structure, its safety, and its functioning from sensor data,
offering some kind of Structural Health Monitoring (SHM). A Load Monitoring system is a basic com-
ponent of a SHM system, which provides spatial resolved information about loads (forces, moments,
etc.) applied to a technical structure, with applications ranging from robotics to building monitoring.

One of the major challenges in SHM and LM is the derivation of meaningful information from sensor
input. The sensor output of a SHM or LM system reflects the lowest level of information. Beside tech-
nical aspects of sensor integration the main issue in those applications is the derivation of a information
mapping function Map(s,E) : s x E — i that basically maps the raw sensor data input s, a n-dimensional
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vector consisting of n sensor values, on the desired information #, a m-dimensional result vector. The
result of the computed information commonly depends on some abstract environmental setting E (see
Fig. 1) arising in all technical systems, i.e., the disturbance of data caused by communication, data
processing, energy supply, or temporal and spatial data distribution. The goal of the mapping function it
to reduce the data dimension significantly, i.e., m << n.

This work investigates a hybrid data processing approach for material-integrated LM systems by
using self-organizing and event-driven mobile multi-agent system (MAS), with agent processing plat-
forms scaled to microchip level which offer material-integrated real-time sensor systems, and inverse
numerical methods providing the spatially resolved load information from a set of sensors embedded in
the technical structure. Such inverse approaches usually require a considerable amount of computa-
tional power and storage resources, not very well matching resource constrained sensor node
implementations. Instead, off-line computation is performed, with on-line sensor processing by the
agent system. Commonly off-line computation operates on a continuous data stream requested by the
off-line processing system delivering sensor data continuously in fixed acquisition intervals, resulting
in high communication and computational costs. In this work, the sensor preprocessing MAS delivers
sensor data event-based if a change of the load was detected (feature extraction), reducing network
activity and energy consumption significantly.Inverse numerical algorithms use matrix computations
extensively, so it is in principle possible to distribute and perform some of the matrix computations in
the sensor network offering an on-line pre-computation by the MAS. This is a main advantage over
Machine Learning methods used in LM and SHM systems [1][2][3], which are more difficult to distrib-
ute efficiently due to long distance data dependencies.
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Figure 1. Initially unknown external forces acting on a mechanical structure lead to an
deformation of the material based on the internal forces. A material-integrated active sensor
network composed of sensors, electronics, data processing, and communication, together
with mobile agents can be used to monitor relevant sensor changes with an advanced event-
based information delivery behaviour. Inverse numerical methods can compute finally the
material response. The unknown system response for externally applied load / is measured
by the strain sensor stimuli response s’ (a function of s), and finally inverse numerical meth-
ods compute an approximation /” to the applied load.
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Basically there are two different information extraction approaches for material-integrated LM sys-
tems and a possible optimization of sensor positions: (I) Those methods based on a mechanical and
numerical model of the technical structure, the Device under Test (DUT), and the sensor; (II) Those
without any or with a partial physical model. The latter class can profit from artificial intelligence,
which is usually based on classification algorithms derived from supervised machine learning or pattern
recognition using, for example, self-organizing systems like multi-agent systems with less or no a-priori
knowledge of the environment.

One common approach in SHM is the correlation of measured data resulting from an induced stimuli
at run-time (system response) with data sets retrieved from an initial (first-hand) observation, which
makes it difficult to select damage relevant features from the measurement results. Other variants are
based on statistical methods, data analysis using Fourier- or wavelet techniques, or neural network
approaches. We refer to [4][S][6][7] and [8] (Chapter 12) posing examples illustrating the variety of
possible approaches.

Inverse methods generally belong to the first class of approaches since they are based on a mechani-
cal model T of the technical structure mapping loads to sensor signals. In this study, we consider
measurements of surface strains and aim to compute the associated spatially varying (discretized) loads
[ on the structure. The mechanical model 7 is gained from linear elasticity and can, in a discretized set-
ting, be represented by a matrix. Given a sensor signal vector s (serialization of a two-dimensional
sensor matrix .S, which is a approximately linear depending on the measured strain), inverse methods
try to stably "invert" the mapping 7, that is, to find a stable solution / to the problem 77 = s. Since meas-
ured signals and the underlying physical model always contain numerical and modelling errors, inverse
methods do not attempt to find an exact solution to the latter equation. Indeed, inversion problems, in
particular those with incomplete data, are usually extremely ill-conditioned, meaning that small errors
in the signals or the model lead to huge errors in any "solution" gained by such a naive approach.
Instead, inverse methods try to stabilize the inversion process, using, e.g., one of the following
techniques:

e A classical and well-known inversion method is Tikhonov regularization. Pick amongst all
approximated solutions to 77 = s the one that minimizes a certain functional - the simplest func-
tional to minimize would be the Tikhonov functional

2 2
[T =sf; +e|i];, M
where o > 0 and ||+||, is the 2-norm of a vector defined by Eq. (2), but different and more com-

plicated variants exist and might also be convenient choices. The latter vector norm is defined
for any dimension neN and and any vector v= (v, .., vn)Te R" by

n 12
||v||2:[zr«,- |2j : 2)
j=1

e Alternatively, consider any iterative method that minimizes the residual 7/-s and stabilize the
inversion by stopping the iteration when the norm of the residual is about the magnitude of the
expected signal and modelling error. Examples for such iterative techniques include the Land-
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weber iteration, the conjugate gradient iteration, but also recent soft shrinkage techniques, see
[9] and [10].

If the mechanical model T is linear, then the best known inversion method in the first class is the
Tikhonov regularization minimizing the quadratic functional (Eq. (1)) by solving the equivalent linear
system (T*T + o)l = T*s, where T* denotes the transpose matrix of 7. The most powerful algorithm in
the second class is, arguably, the conjugate gradient iteration. The disadvantage of inverse methods
with regard to applications based on sensor networks usually is their cost in terms of computing time
and memory requirements which definitely is a drawback for material-integrated SHM and LM sys-
tems. The possibly high computing time and memory requirements for pre-computations before
actually launching the monitoring device due to the physical and numerical model are nowadays
becoming less important due to advanced numerical simulation methods and increasing computational
power.

Reliable distributed data processing in sensor networks using multi-agent systems (MAS) were
recently reported in [11] and employed for SHM applications in [12]. An adaptive and learning behav-
iour of MAS, which is a fundamental principle in the agent model, can aid to overcome technical
unreliability and limitations [13]. Artificial intelligence and machine learning can be used in sensorial
materials without a predictive mechanical model at hand [1], which is a definite advantage for complex
materials.

Multi-agent systems can be used for a decentralized and self-organizing approach of data processing
in a distributed system like a sensor network (that is already applied in macro-scale applications, e.g., in
[14]), enabling information extraction, for example, based on pattern recognition [15], by decomposing
complex tasks in simpler cooperative agents.

In this work the behaviour of mobile agents is related to a state and is modelled with an activity-tran-
sition graph (ATG) which is implemented with the Activity-based Agent Programming Language
AAPL [16]. An activity is related with a state and actions performed by activating an activity by a tran-
sition. AAPL models can be compiled to various agent processing platform architectures including
programmable code-based stack machines [17] and non-programmable, part of each sensor node. The
non-programmable agent processing platform implements the ATG behaviour directly [16], enabling
very low-resource single microsystem platforms. In the case of the programmable agent platform the
program code implements the agent behaviour entirely. The ATG can be modified at run-time by the
agent itself using dedicated A4APL transformation statements [18]. By using program code that is exe-
cuted on a Virtual Machine (VM) this is performed by code morphing techniques provided by the VM.
Agents carrying the code, data, and already applied modifications, are capable to migrate in the network
between nodes [18]. Both processing platform architectures use token-based and pipelined agent
processing for optimized resource sharing and parallel execution.

The programmable agent processing platform used for the execution of agents is a pipelined stack-
based virtual machine, with support for code morphing and code migration. This VM approach offers
small sized agent program code, low system complexity, high data processing performance, and enables
the support of heterogeneous network ranging from microchips to the internet. The agent platform VM
can be implemented directly in hardware with a System-on-Chip design. Agents processed on one par-
ticular node can interact by using a tuple-space server provided by each sensor node. Remote
interaction is provided by signals carrying data which can cross sensor node boundaries.
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This approach provides a high degree of computational independency from the underlying platform
and other agents, and enhanced robustness of the entire heterogeneous environment in the presence of
node, sensor, link, data processing, and communication failures. Support for heterogeneous networks
considering hardware (System-on-Chip designs) and software (microprocessor) platforms is covered by
one design and synthesis flow including functional behavioural simulation. For material-integration,
there is an application specific agent processing platform that implements the agent behaviour on-chip,
offering the lowest resource and chip area requirements.

The mechanical model of the structure under investigation allows in particular the pre-computation
of a sufficiently accurate discretization of the forward mapping 7 linking loads with measured signals.
Moreover, this pre-computation allows to associate to each sensor an individual signal level that might
potentially be critical for the entire structure.

Hence, when a load change that is potentially critical is detected by one the material-integrated sen-
sors, the signals measured by all sensors are propagated to an exterior CPU. An alternative way is that
merely those sensors noting a critical load change start to propagate their signals to the exterior CPU.
The propagated signals are then fed into a regularization scheme that is able to stably invert signals into
loads.

As discussed above, Tikhonov regularization is a feasible regularization scheme, computing an
approximation to the true load / as solution to the linear system

(T'T+a)l =T"s+al,, G)

where T* denotes the transpose of 7.

The solution to this system is hence computed rapidly with low cost if one is able to pre-compute a
singular value decomposition of the matrix 7. The disadvantage of this inversion scheme is that recon-
structions of discontinuous loads, in particular with small support, are smoothed out which makes the
precise location of the support of a load difficult. Several iterative inversion techniques such as the
steepest descent method or the conjugate gradient method applied to T*71 = T*g avoid this disadvan-
tage. Further, they merely require the ability to compute matrix-vector products and a (cheap stopping)
rule to stabilize the inversion. The class of iterative inversion methods also includes the so-called Land-
weber iteration and its variant, the so-called iterative soft shrinkage. The disadvantage of the latter two
techniques is their slow convergence, and the huge number of iterations are necessary to compute accu-
rate inversions [9][19].

Combining Self-organizing Multi-Agent Systems (SOMAS) and event-based sensor data distribution
with inverse numerical methods into a hybrid data processing approach has several advantages: First,
the (possibly distinct) critical level for an individual sensor signal can be pre-computed for each sensor
position individually. Second, depending on the a-priori knowledge on the expected loads on the struc-
ture, a suitable regularization technique can be chosen as inversion method, promoting specific features
of the expected loads. Third, the sensor positions themselves might well be optimized with respect to
the last two points, aiming for sensor positions that maximize the detectability of critical loads and/or
sensor positions that maximize the quality of load reconstructions from sensor signals.
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This work introduces some novelties compared to other data processing and agent platform
approaches and previously published work [16][18][17][20]:

e Complete multi-domain simulation of large-scale multi-agent systems, sensor networks, and
numerical computation with a unified database centric simulation environment.

e Sensor signal preprocessing at run-time inside the sensor network by using multi-agent systems.
Event-based sensor data distribution and pre-computation with agents reduces communication
and overall network activity resulting in reduced energy consumption.

e Agent mobility crossing different execution platforms in mesh-like networks and agent interac-
tion by using tuple-space databases and global signal propagation aid solving data distribution
and synchronization issues in the design of distributed sensor networks connected to generic
computer networks and the Internet.

e Enhanced inverse numeric improving stability and accuracy is used to compute the load for a
structure from noisy and incomplete sensor data.

e An advanced on- and off-line processing with off-line inverse numerical computation of
mechanical loads form on-line preprocessed sensor data allows the determination of the system
response. FEM simulation is used to 1. Retrieve the inverse numeric for real-world sensing sys-
tem; and 2. For the creation of synthetic sensor data of the technical structure in simulation.

e Rigorous analysis and evaluation of the load computation for a structure with temporal and spa-
tial disturbed or incomplete sensor input data. Temporal disturbance is caused by data distribu-
tion latencies, and spatial disturbance is caused by technical failures in the sensor network (e.g.,
communication failures).

The next sections summarize the activity-based agent processing model, available mobility and inter-
action, and the used agent processing platform architecture related to the programming model. A
summarized description of the sensor signal processing algorithms and a rigorous description of the
proposed inverse numerical methods for load computations are following, which are profiled and vali-
dated with an extensive simulation framework.

2. Agent Behaviour Model

The agent behaviour is composed and modelled with an activity graph, with activities representing
the control state of the agent reasoning engine, and conditional transitions connecting and enabling
activities, shown in Fig. 2 (detailed description in [16][20]). Activities provide a procedural agent
processing by sequential execution of imperative data processing and control statements.

The activity-graph based agent model is attractive due to the proximity to the finite-state machine
model, which simplifies the hardware implementation, but still enabling efficient software
implementations.

An activity is activated by a transition which can depend on a predicate as a result of the evaluation
of (private) agent data related to a part of the agents belief in terms of Belief-Desire-Intention (BDI)
architecture. An agent belongs to a specific parameterizable agent class AC, specifying the behaviour,
local agent data (only visible for the agent itself), types, signals, activities, signal handlers, and
transitions.

The class AC can be composed of sub-classes, which can be independently selected. Plans are related
to AAPL activities and transitions close to conditional triggering of plans.
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Figure 2. Agent behaviour programming level with activities and transitions (44PL, left);
agent class model and activity-transition graphs (top); agent instantiation, processing, and
agent interaction on the network node level (right) [17].

This reactive behaviour can be summarized to the following operational semantic:

e Procedural data processing takes place in activities computing and changing private and global
data.

e Transitions between activities represent the progress and the external visible change of the con-
trol state of an agent. Transitions can be conditional depending on the evaluation of agent data.

e Body variables of an agent are private data only visible to the specific agent. The data content of
body variables are mobile and can be inherited by forked child agents.

e FEach agent owns a public set of agent parameters initialized on agent creation.

e Global data is exchanged by using a tuple database and synchronized and atomic read, test,
remove, and write operations.

e Agents can migrate between different physical and spatially distinguished execution platforms
by preserving and transferring the control and data state of the agent.

e The agent behaviour can be either implemented directly by the processing platform (application
specific and static platform class) or can be implemented with program code executed by a
generic agent processing platform (dynamic platform class).

e Agents can be created at run-time, regardless of the platform class. Agents can inherit the con-
trol and data state from parent agents (forking behaviour).

e Agents can communicate and synchronize peer-to-peer by using signals, which can be delivered
to remote execution nodes, too.

A short notation of A4PL used to specify the agent behaviour in this work is presented in App. A.
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3. Agent Processing Platform

There are two different agent processing platforms capable of processing of the mobile agents used in
this work: a non-programmable and a programmable platform architecture. The non-programmable
platform implements the agent behaviour for different agent classes directly, whereas the programma-
ble platform provides generic agent processing of program code supplied externally which implements
the agent behaviour of a particular agent class. Both platforms can be implemented entirely on hardware
(SoC), or software, or simulation model level. All implementations of each platform class can be
deployed and connected in a heterogeneous network environment, shown in Fig. 3. They are compatible
on operational and interface level. That means agents can migrate between different platform imple-
mentations and different host environments. The simulation of MAS can be based on a pure behavioural
model (BSIM) by simulating the agents itself or based on an architectural model by simulating the
agent processing platform (PSIM) using agents.

Tab. 1 compares the characteristics and the advantages/disadvantages of both platform architectures.
Fig. 3 shows the modelling and synthesis of agent platforms from a common model and programming
sources

‘PCSP ﬁ’ ATG o ‘PAVM ﬁ’ ® Model Level

® Programming
Level

Level

Hws || |sws @ |Hws I3 @ Synthesis

Agent Platform

PCSP o PAVM | O Architecture Level
BSIM
> A Implementation
" @ @ - ®Architecture Level
SoC PC PSIM SoC PC PSIM

Figure 3. Different agent processing platform architectures and implementations, but a
common agent behaviour model and programming sources. (PCSP: Pipelined Communicat-
ing Sequential Processes, PAVM: Pipelined Agent Forth Virtual Machine, ATG: Activity-
Transition Graph, AAPL: Agent Programming Language, HWS: Hardware Synthesis, SWS:
Software Synthesis, PSIM: Platform Simulation, BSIM: Behavioural Agent Simulation)
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Programmable PAVM

Non-programmable PCSP

Approach

Program code based approach

Data is embedded in code

Zero-operand instruction format

Stack memory centric data processing model
Platform is generic

Code embeds instructions, configuration (control
state), and data

Migration: code transfer

Application-specific approach

Platform is application-specific

Activities of the ATG are mapped to processes
Token-based agent processing

ATG reconfiguration by switching token channel
paths

Migration: data and control state transfer (including
configuration table)

Hardware

Optimized Multi Stack Machine

Each stack processor is attached to a local code
segment and two stacks shared by all agents.
There is no data segment!

Single SoC Design

Multiprocessor architecture with distributed and
global shared code memory

Multi-FSM RTL hardware architecture

Automatic Token-based agent process scheduling
and processing

Code morphing capability to modify agent
behaviour and program code (ATG modification)

Data- and code word sizes can be parameterized

Pipelined Communicating Processes Architecture
composition implementing ATG and token-based
agent processing

Single SoC Design

Optimized resource sharing - only one PCSP for each
agent class implementation required

Activity process replication for enhanced parallel
agent processing

For each agent class there is one PCSP with attached
data memory (agent data).

Single SoC Design

LUT configuration matrix approach for ATG recon-
figuration

Software

Multi-Threading or Multi-Process software archi-
tecture

Inter-process communication: queues

Software model independent from programming
language

VM sources for various programming languages:
C, ML, Javascript, ...

Can be embedded in existing software

Multi-Threading software architecture

Optimization: Functional composition and implemen-
tation of ATG behaviour instead PCSP

Interprocess-communication: queues

Software model independent from programming lan-
guage
Source code for various programming languages: C,
ML, ...

Can be embedded in existing software

Simulation

Agent-based Platform simulation

Generic simulation model - can execute machine
code directly

Processor components and managers are simu-
lated with agents

Agent-based platform simulation
Application-specific simulation model

ATG activity processes are simulated with agents

Table 1. Comparison of both agent processing platform architectures and their implementa-
tions (PCSP: Pipelined Communicating Sequential Processes, PAVM: Pipelined Agent
Forth Virtual Machine)

4. Sensing with Multi-Agent Systems

Large scale sensor networks with hundreds and thousands of sensor nodes require smart data process-

ing concepts far beyond the traditional centralized approaches. Multi-Agent systems can be used to

implement smart and optimized sensor data processing in these distributed sensor networks.

In this work, three different data processing and distribution approaches are used and implemented

with agents, leading to a significant decrease of network processing and communication activity and a

significant increase of reliability and the Quality-of-Service:

1. An event-based sensor distribution behaviour is used to deliver sensor information from source

sensor to computation nodes;
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2. Adaptive path finding (routing) supports agent migration in unreliable networks with missing
links or nodes by using a hybrid approach of random and attractive walk behaviour;

3. Self-organizing agent systems with exploration, distribution, replication, and interval voting
behaviours based on feature marking are used to identify a region of interest (ROI, a collection

of stimulated sensors) and to distinguish sensor failures (noise) from correlated sensor activity
within this ROI.

Computational
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Figure 4. The logical view of a sensor network with a two-dimensional mesh-grid topology
(left) and examples of the population with different mobile and immobile agents (right):
event deliver, node, and computational processing agents. The sensor network can contain
missing or broken links between neighbour nodes.

It is assumed that sensor nodes arranged in a two-dimensional grid network (as shown in Fig. 4) pro-
viding spatially resolved and distributed sensing information of the surrounding technical structure, for
example, a metal plate. Each sensor node shall sense mechanical properties of the technical structure
nearby the node location, for example, by using strain gauge sensors. Usually a single sensor cannot
provide any meaningful information of the mechanical structures. A connected area of sensors (com-
plete sensor matrix or a part of it) is required to calculate the response of the material due to applied
forces. The computation of the material response requires high computational power of the processing
unit, which cannot offered by down-scaled single micro-chip platforms. For these reasons, sensor nodes
use mobile agents to deliver their sensor data to dedicated computational nodes located at the edges of
the sensor network, shown in Fig. 4, discussed in detail in the following sub-sections. The computa-
tional nodes arranged at the outside of the network are further divided in pre-computation and the final
computation nodes (the four nodes located at the corners of the network). The pre-computational nodes
can be embedded PCs or single micro-chips, and the computational nodes can be workstations or serv-
ers physically displaced from the material-embedded sensor network. Only the inner sensor nodes are
micro-chip platforms embedded in the technical structure material, for example, using thinned silicon
technologies.
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4.1. Event-based Sensor Data Processing with Agents

The computation of the system response information requires basically the complete sensor signal
matrix §. In traditional sensor signal processing networks this sensor matrix is updated in regular time
intervals, resulting in a high network communication and sensor node activities. In this approach pre-
sented here the elements of the sensor matrix are only updated if a significant change of specific sensors
occurred. Only the four corner computational nodes store the complete sensor matrix and perform the
inverse numerical computations, explained in Section 6.

The sensor processing uses both stationary (non-mobile) and mobile agents carrying data, illustrated
in Fig. 5 on the left side. There are two different stationary (non-mobile) agents operating on each sen-
sor node: the sampling agent which collects sensor data, and the sensing agent, which pre-processes and
interprets the acquired sensor data. If the sensing agent detects a relevant change in the sensor data, it
sent out four mobile event agents, each in another direction. The event agent carries the sensor data and
delivers it to the pre-computation nodes at the boundary of the sensor network. The agent behaviour is
specified in Alg. 2 in App. A., and an overview of the agent behaviour and the ATG can be found in
Fig. 5 on the right side.

agent event(dir)
activity init
5 Reconfiguration 1. Initialize sensor vectors ?Q
S % Replication Sx/3y
5,5 = 2. Create route structure R
o~ Move 3. Read local sensor values
S..S..S..5 @,Tuple Database ﬁ
51752753 75,4 # Signal activity move 5;'
— —_ ® Kill 1. Try to find a suitable route
S S S S to a neighbour node based
6,1 26,2 26,3 96,4 - on connectivity.
L p— 2. Move to neighbour node
arrived=false A ﬁ
S;1555S,3S54 .. die=false
71272273774 activity check ?
— p— 1. Check destination goal ©
2. If not reached, read local sensor
values and store them in the
53’1 53'2 53’3 53’4 . appropriate position in vectors S, ,,

541542543544 -
S5,1552553554 -

Se 1565563564 -
6,1 26,2 26,3 06,4 V activity deliver ?e
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SS.S S5,6 S5,7

S6.5 S6,6 SG.7
S7,5 S7,6 S7,7

Figure 5. Left: Sensor data distribution with event (green) and pre-processing agents (blue):
A sensor node which detected a significant change of the sensor values creates event agents
which are sent in all four directions to the network boundary (pre-computation nodes).
Right: ATG behaviour model of the event agent.

An event agent has a pre-defined path in the direction dir which is followed by the move activity as
long as there is connectivity to the next neighbour node in this direction. Normally the agent travels to
the outside of the network on the given direction by applying the route_normal routing strategy suc-
cessfully. If it is not possible to migrate in the pre-defined direction, an alternative path is chosen by
using the route_opposite routing strategy, which chooses a path away from the original destination
to bypass not connected nodes and missing communication links. Using the route_relax routing
strategy the agent is directed again to the original planned path. Making routing decisions and migration
are performed in the move activity of the agent, followed by the check activity which collects sensor
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data from the current node and checks the destination node goal, and if reached delivering the sensor
values in the deliver activity.

Each pre-computation node stores a row or a columns of the sensor matrix S. If their data changes,
the pre-computation nodes will sent out two mobile distribution agents in opposite directions, deliver-
ing a row or column of § to the final computation nodes, located at the edges of the sensor network.

4.2. Self-organizing MAS and Feature Recognition

The event-based sensor data distribution relies on well operating sensors and trustful sensor values.
Faulty or noisy sensors can disturb the further data processing algorithms (inverse numeric) signifi-
cantly and should not delivered to the computational nodes. Usually sensor values are correlated within
a spatially bounded region. The goal of the following MAS is to find the outline of extended correlated
regions of increased sensor stimuli which can be distinguished from the neighbourhood. For example,
strain gauge sensors which deliver information about mechanical distortion of a material resulting from
externally applied load forces. A single stimulated sensor cannot be a result from a mechanical load. To
find such a correlated stimulated sensor region, a distributed directed diffusion behaviour and self-
organization (see Fig. 6) are used, derived from the image feature extraction approach (proposed by
[15]). A single sporadic sensor activity not correlated with the surrounding neighbourhood should be
distinguished from an extended correlated region by marking nodes nearby the boundary of the region,
which is the feature to be detected (edge detector).

Sensor nodes detecting a significant change of their sensor values send out explorer agents which
perform the feature detection and marking. Sensors nodes sending out the feature recognition agents but
get no markings can decrease a trust probability for their sensor values for further assessment and activ-
ity planning.

The feature detection is performed by the mobile exploration agent, which supports three main dif-
ferent behaviours: exploration, diffusion, and reproduction. The diffusion behaviour is used to move
into a region, mainly limited by the lifetime of the agent, and to detect the feature, here the region with
increased mechanical distortion (more precisely the edge of such an area). The detection of the feature
enables the reproduction behaviour, which induces the agent to stay at the current node, setting a feature
marking and sending out more exploration agents in the neighbourhood. The local stimuli H(i,j) for an
exploration agent to mark a specific node with the coordinate (i,j) is given by Eq. 4.

H(, )= 2 2 A[si+u,j+Vv)-s(, j)|<8)
u=-Rv=-R (4)
s: Sensor Signal Strength

R: Square Region around (i, j)

The calculation of H at the current location (i,j) of the agent requires the sensor values within the
square area (the region of interest ROJ) R around this location. If a sensor value s(i+u,j+v) with i,j € {-
R,..,R} is similar to the value s at the current position (diff. is smaller than the parameter 8), H is incre-
mented by one.

If the H value is within a parameterized interval de=[¢g,€;], the exploration agent has detected the
feature and will stay at the current node to reproduce new exploration agents sent to the neighbourhood.
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Figure 6. Left: Feature marking of stimulated sensor clusters by using explorer agents
investigating the neighbourhood of their current position using forked child agents. On suc-
cessful feature detection explorer agents are replicated, otherwise they diffuse to the
neighbourhood to find features. Right: ATG behaviour model of the explorer agent and the

explorer child agent class branching from the percept activity.

If H is outside this interval, the agent will migrate to a neighbour different node and restarts explora-

tion (diffusion).

The agent behaviour is specified in Alg. 4 in App. A., and an overview of the agent behaviour and the

ATG can be found in Fig. 6 on the right side. An initial root explorer agent is instantiated by the node

agent with a direction argument ORIGIN. This explorer agent will read the local sensor values from the

tuple database. In this work there are two strain-gauge sensors connected to each node (sensor data s,/

sy). The root agent will send out explorer child agents to all connected neighbour nodes (in activity

percept). These child agents compute a partial term of the H calculation by sending out additional

explorer child agents (in activity percept_neighbour) until the boundary of the ROI is reached. To

avoid multiple visiting of a node by different child agents of the same exploration group, a marking is

set on each visited node (a tuple with a limited lifetime removed by a garbage collector). If there is

already a marking, an explorer child agent will go back immediately to its parent agent node location

and delivers the computed partial term /4 of H(i,j). An explorer or explorer child agent which sent out

additional child agents will wait (sleep) until all child agents had returned their computation results or a

time-out occurs. Data is exchanged between child and parent agents by using the tuple space database

and synchronization (wake-up) is handled by using signals.

4.3. SoMAS Simulation and Evaluation

To evaluate the capabilities of the feature marking SOMAS introduced in the previous section, the

simulation environment described in Sec. 5. is used to carry out simulations with synthetic and real-
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world sensor data (though obtained from FEM simulation, the data sets are rather realistic including
noise).

Fig. 7 shows simulation results of a connectivity-incomplete 8x8 sensor network with a rectangular
sensor stimuli region having a sharp boundary. The network had a communication connectivity of
CN=70% (30% communication links are not operating). The creation of a root explorer agent involves
three parameters: 1. The radius R and the size Ny of the square ROI (R=1 means 9 sensor values, R=2
means 27 sensor values contributing to the A calculation); 2. The lifetime L in node distance units; 3.
The decision interval Oe=[g,€;]. In all simulations a setting of de=[3,6] was used.

With a parameter set {R=1, L=1} the sharp boundary of the sensor stimuli is detected reliable for a
cluster size of 8 and 15 sensors shown in the plots (a)-(c) and (d). Surprisingly the CL=15 cluster is not
recognized with a parameter set {R=2, L=1} (e), in contrast to the smaller cluster with CL=8. Increasing
the lifetime usually not increases the quality of feature recognition. In the case of the larger cluster size
CL=15 (f) the fuzziness of the boundary increases if the lifetime is increased.
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I R
+4++++++
+4 & ++

+4++F5 4+
+4 44+ +

(b) CL=8 R=2 L=1

+4++++++
+++++++
+++++++
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(d) CL=15 R=1 L=1 (e) CL=15 R=2 L=2 (f) CL=15 R=1 L=2

Figure 7. SOMAS Feature Marking (red circles) with a localized rectangular sensor stimuli
region having a sharp boundary (yellow dotted line). CL: Cluster size, R: Exploration
radius, L: Explorer lifetime, Network connectivity CN=70%

In Fig. 8 the feature detection is applied to data sets retrieved from load and strain simulations of a
steel plate using FEM simulation described in Sec. 6., which leads to a more continuously sensor stim-
uli distribution without having a sharp boundary.

The first data set related with a specific load case has a significant increase of sensor values at the
east side of the network. The boundary feature detection SOMAS reliable finds the west side of the
region regardless of the different parameter settings, shown in the plots (a)-(c).

The second data set and load case with a smoother sensor value distribution and a lower sensor value
gradient shows a totally different result. In plot (d) with the parameter set {R=1, L=1} the flat region is
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marked instead the sensor value gradient on the east side. This changes again with the parameter sets
{R=2, L=1} and {R=2, L=2} shown in the plots (e)-(f), now detecting the gradient boundary correctly.

The third data set and load case with a nearly constant gradient of the sensor values shows again dif-
ferent results for R=1 and R=2 settings. The R=2 setting always marks the entire network, which is
primarily a result of the decision interval setting 0. The R=1 setting finds again the west side of the
sensor stimuli related with the lowest sensor values.

To summarize the edge detection capabilities of the SOMAS are mostly suitable to recognize a stimu-
lated sensor value region and can be used for triggering of the event-based sensor data distribution and
processing described in Sec. 4.1.. The quality of the feature detection depends on the parameter set
{R,0¢}, which can be adjusted at run-time by using reinforcement learning performed by the agents
based on a quality feedback from the computational nodes.
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Figure 8. SOMAS Feature Marking (red circles) with a large area sensor stimuli region hav-
ing no clearly defined boundary (continuos change). LC: Load case, R: Exploration radius,
L: Explorer lifetime, Network connectivity CN=70%

5. Simulation

In this work a multi-domain simulation technique is used to study the effects of technical failures,
sensor noise, and computational dependencies on the computation of structure loads from disturbed and
incomplete sensor data, both in temporal and spatial dimensions. Simulation domains are related here to
different levels of the sensing environment, basically the communication network, the agent processing,
the sensing process, computational mechanics, and FEM simulation used for the computation of 7 and
delivering synthetic sensor data.
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The simulation of the data processing and the physical simulation using FEM and numerical compu-
tation approaches are combined in one unique database centric and agent-based simulation
environment.

The outcome of numerical computations depends on the sensorial input data, which can be disturbed
by the physical sensing process itself and by technical features and failures, for example, caused by
communication (temporal latency, lost of data). Commonly Monte Carlo experiments are used in simu-
lation experiments for computing some general time-dependent system function F(s,E,f) of an initial
synthetic sensor data input s={sy, s», .., 5} by adding noise 0 (e.g., common distributed) to the original
input data, 1.e., s’={s1+8;, 5,10,,.., s,70,,}, creating multiple simulation experiments with sets s’ , s,
.. of different artificially pertubated input data with variances of the original input data set and the out-
come of F:

[:F(s,E,t)—ecet 500 F(s+6,,E,),l,: F(s+6,,E,),...}

Technical - Failiure

©)

E — {Communication, Processing, Sensing}

The outcome of the sensor processing (the desired information) is the mechanical load / that depends
additionally on a particular environmental setting E, i.e., network connectivity, communication error
rates, data distribution and processing algorithms, and the processing platform lifeliness, disturbed by
probalistic processes, too. I.e., the system function F' includes the inverse computation, but additionally
technical failures arising in the sensor network, e.g., communication failures between nodes, missing or
faulty sensor data, temporal effects (collected sensor data is updated with a latency creating incomplete
input data sets at a specific time), and effects of distributed computing algorithms on the sensor data
(rounding errors, missing data, old data,..) are considered in the simulation resulting in a more realistic
simulation of a technical sensing system. This is covered by different experiments with different envi-
ronmental settings E; that parameterizes a particular simulation run. In the best case, the output of the
computation function F' should asymptotical converge to the expected information output, in the worst
case F delivers completely different results, analysed in the next sections.

The complete simulation framework is shown in Fig. 9. The central part of the simulation framework
is a SQL database server enabling the data exchange and synchronization between different programs,
mainly the Multi-Agent Simulator SeS4Am [21] and the MATLAB program used for the inverse numeri-
cal computation. A Remote Procedure Call (RPC) interface provides synchronization between the
programs of the framework. All programs are communicating with the database server by using named
file system pipes. This approach has the advantage to require only a native file system interface to con-
nect a heterogeneous program environment, supported basically by all programs. No program
modification and no special database or inter-process communication modules are required.

The behavioural simulation of the agents based on the A4PL model using the SeS4m agent behaviour
model [21] - which is only a partial sub-set of the A4PL model - requires the application of some trans-
formation rules:

a. Each A4PL agent class AC; is implemented with a SeS4m agent class SC;.

b. Each AAPL sub-class AC; ; is implemented with a SeS4m agent class SC;. At run-time different
agents exist derived from each sub-class.

c. Functions and procedures of an 44 PL agent class AC; must be implemented with SeS4Am feature
class FCi.
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d. AAPL signal handlers must be implemented with a separated SeSAm agent class SC; ;.. At sim-
ulation time each A4APL agent having signal handlers is associated with a shadow agent of the
class SC; gq-
e. Signals & are passed by synchronized queues.

f. AAPL activities a; which contain blocking statements (tuple space access and waiting for time-
outs) require a split into a set of computational and blocking SeS4m activities a; = {a’; 1, @’; 2,
a;z...}

g. Migration of agents is only virtual by changing the position of a SeSAm agent and connecting
the agent to the new node agent infrastructure, i.e., changing the data scope. Migration of agents

requires the migration of the shadow agents (signal handler agents), too.

The sensor network simulation and the SOMAS- and event-based sensor data distribution is used for
the proof and the profiling of the inverse numerical methods, discussed in Sec. 6.. Fig. 10 shows the
temporal resolved agent population (in simulation time steps) for the experiments performed for Sec. 6.
and the feature recognition marking resulting from the SOMAS feature recognition (explorer and
explorer child agents), triggering the sensor data distribution by the event and distributor agents.
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Figure 9. Simulation Framework with a database approach: Multi-Agent Simulator SeS4m,
MATLAB, and other utility programs are exchanging data and synchronizing using a SQL
database server, which provides a RPC interface for synchronization, too.
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Figure 10. Agent population of the SOMAS- and event-based sensor data distribution in the
sensor network used in the following Sec. 6.3. (L;: i-th load case data set).

6. Inverse Methods for Structural Load Monitoring

Inversion algorithms for the computation of loads from measured surface strains are based on a
mechanical model of the considered structure and require stabilization due to intrinsic ill-posedness
such that they typically rely on regularization methods [9][19]. If such a model is discretized and if a
loading on the structure is given, numerically solving the discretized system allows to approximate the
response of the structure to the load. Thus, a mechanical model first allows to simulate signals meas-
ured by sensors on or in the structure that are due to loads. This yields a mapping T such that forgiven
load 1, the sensor signals equal 7/. The mechanical model allows in a second step to deduce loads from
sensor signals s by solving the equation T/=s for the load /.

Our goal is to demonstrate that the latter task can be tackled by an embedded sensor network relying
on inverse methods based on models from linear elasticity.

Obviously, numerical simulations always involve several errors, most obviously the discretization
error and the modelling error due to the choice of the model, but also errors due to imprecise knowledge
of the plate's geometry or the sensor positions. Finally, any experimentally measured sensor signal is
affected by measurement errors, too, due to limited digital precision leading to round-off errors or
incorrect data transmission. Numerical precision limited to few digits is a crucial restriction of accuracy
in particular for embedded and autonomous sensor networks.

6.1. Computational Setting and Pre-computations

We consider load monitoring assuming a sensor network that is embedded in a thin plate of size 0.5m
x 0.5m x 0.02m consisting of construction steel. This plate is fixed at one of its four vertical sides. We
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limit ourselves to the case of loads that are so small that the equations of linear elasticity provide an
accurate physical model, i.e., stresses caused by such loads are below the yield strength.

We moreover assume in our numerical experiments that the loaded structure is isotropic and homoge-
neous, such that the material behaviour can be described by its elastic modulus £ and its Poisson ration
v. Moreover, any (spartially variable) load on the structure is assumed act constantly in time during a
certain time interval, such that the deformation field u = (1, u5, u3)T is static during this time interval
and can be described by the equations of static linear elasticity,

(A+p)Vdivu+pn Au=0 inQ, (6)

where A and p are Lame parameters defined by A= v E/[(1+V)(1-2v)] and u= E /(2+2v). The deforma-
tion field vanishes at the boundary where the plate is fixed and satisfies traction and free boundary
conditions on the top and remaining sides, respectively. The (linearized) strain tensor then equals &(u) =
1/2 (Vu + (Vu)T), which allows to compute surface strains once the deformation field has been approx-
imated numerically.

The structure's response to a load hence is elastic deformation. Note that loads are always placed on
the upper horizontal surface of the plate, such that the associated forces act in normal direction to the
surface.

We assume that the sensors embedded in the material measure surface strain on the lower horizontal
surface of the plate at M = M M, sensor positions in a grid of sensors of size M, x M,. More precisely,
these sensors measure surface strain on the lower surface of the plate at the sensor position, both in the
x- and in the y-direction.

Using a finite element discretization we simulate a finite number of loads caused by cylindrical
weights with (cross-section) radius of 0.0125m placed at N = N, N, equidistant grid points

(0.25m+ (i —1)0.5m) / N,
w,; =| (0.25m+(j-1)0.5m)/ N, |, i1=1...,N,j=1...,N,, (7
0.02m
that form a grid of N, x N, points on the upper side of the plate. Simulating the deformation field caused
by these weights allows to compute the resulting surface strain at sensor points on the lower side of the

plate.
The corresponding equidistant sensor positions are

(0.25m+ (i —1)0.5m) / M
m ;= (O.25m+(j—1)0.5m)/My , i:L...,MX,j:l...,My. (8)
0.00m
This way of simulating the reaction of the plate under loading is motivated by the experimental set up
presented in [1].
We emphasize that our finite element discretization does neither model the embedded sensors nor

any communication infrastructures in between these sensors. Thus, the resulting simulated sensor value
are merely accurate for sensors of small size that do not interact strongly with the plate; arguably, this
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inaccuracy is negligible to test the ability of a sensor network in connection with a mobile agent plat-
form to monitor loads.

Note that the grid of weight points w; ; and of sensor points m, ; yield a natural surface quadrangula-
tion of the upper and lower surface of the plate, respectively, that we will use later on to image applied
and reconstructed loads.

Due to the chosen model of linear elasticity, the relation between applied load and simulated strain is
linear and hence gives rise to a linear function mapping loads to surface strain. Moreover, due to discre-
tization, this mapping is finite dimensional and can hence be represented by a real-valued matrix 7 with
2M rows and N columns. (Since we assume that sensors measure surface strain in x- and y-direction, the
dimension of the image space equals 2M, i.e., twice the number of sensors.)

This so-called load-strain matrix 7 maps vectors modelling discretized loads to surface strains at the
sensor positions. Since we will later on monitor loads by stably inverting this matrix, this procedure of
assembling the load-strain matrix obviously introduces a further discretization error for any load that
cannot be represented as a linear combination of the above-mentioned cylindrical weights.

If 1eRY is a vector modeling loads applied to the upper surface, the resulting strain se R*M hence
equals the matrix-vector product

s=TI. ©

Thus, in contrast to the preceding sections where loads or stains were considered as matrices / or s, ,,
we start from now on to consider them as vectors to be able to use the latter matrix operation in between
them. Both points of view are of course equivalent if we agree on the following one-to-one correspond-
ence: The entry /(i,/) of a load matrix / corresponding to the weight point w; ; is the (N,-1)i+j th entry of
the vector /. Further, the entry 5,(i,/) of a strain matrix s, is the (M,-1)i47 th entry of the vector s and the
entry §,(i,/) of s, is the M+(M,-1)i4j th entry of the vector s.

To compute the load-strain matrix 7" we used the C++-based and open-source finite-element soft-
ware FreeFem++ [23]. In detail, we set up a uniform and regular tetrahedral volume mesh of the plate
with a mesh width of 0.11 mm and used globally continuous and piece wise quadratic basis functions
(P2 elements) for each of the three components of the deformation field. The dimension of the resulting
linear system for each of the M loads is about 11.5 million. Note that the system matrix needs to be set
up merely once for all forward computations as the columns of 7 correspond to different loadings due
to the N weights at the points w; ; from Eq. (7), i.e., to different right-hand sides of the finite-element
system. Using a parallel solver on a workstation with eight cores and 32 GB RAM it took about two
days to do all simulations.

Note that the standard theory of finite element methods implies that the approximate solutions con-
verge to the exact in the energy norm as the mesh width tends to zero. When the approximation error is
measured in the quadratic mean (i.e., in the L?-norm), then a convergence rate in between one and two
is achieved, and if the exact solution is sufficiently smooth (which is not always the case in our exam-
ples), then the convergence rate of the deformation field is higher than quadratic.

However, we are ultimately interested in the surface strains, that is, in derivatives of the deformation
field, which converge in the quadratic mean with a rate that is one order smaller than the one of the
deformation field itself.
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As the solution of the N linear systems to compute the load-strain matrix 7 is part of the pre-compu-
tations and does influences the inversion technique merely by the accuracy of the simulated strains, we
did not opt to speed up this process by, e.g., resorting to simpler two-dimensional models for the defor-
mation field or the strain tensor (as, e.g., Kirchhoff-Love plate theory) but simply tackled the full three-
dimensional problem directly and ensured that the results are sufficiently accurate by taking a small
mesh width. (The pre-computations took about two days on a modern workstation, using parallel com-
putations.) Note further that we compared the computed surface strains against corresponding results
for smaller mesh widths and obtained in all experiments presented below a relative error in the strain
data of less than one percent.

The plot of the entries of such a load-strain-matrix on the right of Fig.11 for N=400 weights and
M=64 sensors shows in each column the (absolute values of 128 surface strains computed from one
finite-element computation; strains in x and y-direction are contained in the upper and lower half of the
plotted matrix, respectively. As the plate is fixed at one side parallel to the x-axis, strain in x-directions
is generally smaller (due to darker colours in the plot) than strain in y-direction. The singular values of
that load-strain matrix are plotted on the left of Fig. 11 and indicate a relative noise level of about 0.002.

After computing the load-strain matrix 7 the inversion task required for load monitoring is to stably
compute load vectors / that satisfy the equation 7/=s,, for given inaccurate strain measurements s,,,. This
task is intrinsically difficult since the matrix T is ill-conditioned:

As Fig. 11 shows, the singular values of T for M,=M,=8 and N,=N,=20 decrease rapidly, which
implies that small errors in the data make an accurate load reconstruction impossible. Already a relative
error in the data of 1% implies that in general merely less than twenty singular values will remain accu-
rate; for relative noise levels of more than 10%, less than five singular values remain accurate.

|R2M xN for

Figure 11. On the left: 128 non-zero singular values of load-strain matrix Te
M=64 simulated sensors M,=M,=8 and N=400 simulated weights (N,=N,=20). On the right:
Absolute values of the entries of the load-strain matrix 7. Since the steel plate is fixed at one
vertical side parallel to the x-axis, strain in x-direction is generally smaller than strain in y-
direction.

Since the number of columns of T equals the number of weight positions N that is in general different
from the number of strain measurements, the load-strain matrix 7 is in general not square and cannot be
inverted -- even if the matrix was square, one should refrain from inverting it due to ill-conditioning.

A possible remedy is to consider the following least-squares problem for IeRY,

TTI=T's,, (10)

Stefan Bosse et al. -21- 2015



DOI: 10.1016/j.mechatr onics.2015.08.005 Mechatronics Elsevier S|

that is derived from the linear system 7/ =s,,. (As above, T* is the transpose matrix of 7)

One can indeed show that a vector / solving Eq. (10) minimizes the functional / — || 71 - s,, || 5, where
we recall that ||+||, denotes the 2-norm (or the Euclidean norm), see Eq. (2). The linear system in Eq.
(10) features a quadratic matrix that is however even more ill-conditioned than before and, for this rea-
son, should not be be inverted directly, i.e., the system is under determined. Instead, we advertise to
stabilize the computation of an approximate load vector / using so-called inverse (aka. regularization or
inversion) methods. We refer to [9] and [19] for an introduction to such methods.

6.2. Inverse Methods

In this section, we will introduce two inversion methods that we afterwards compare in view of their
applicability in the framework of load monitoring using multi-agent systems in an embedded sensor
network as introduced in Sec. 4.. As discussed in the first part of this paper, propagating sensor meas-
urements by a Self-organizing Multi-Agent system to the four computation nodes (see Fig. 4)
introduces significant errors in the measured data arriving at the computation node due to different
arrival times or broken network connections.

Thus, the strain vector s, available for computations is in general incomplete and contains a very
high level of noise. This fact causes severe difficulties to any inverse method; nevertheless, even for
such a difficult setting with incomplete data and a drastically under-determined inversion problem, we
will see later on that such methods are still able to provide some meaningful information.

Note that the proceedings paper [18] contains several numerical example of loads reconstructed from
sensor network data where the computation node is aware of all strain measurements without data cor-
ruption due to data propagation. In such an idealized setting, on can study the dependence of the
reconstruction quality on the number of sensors and the noise level in the data after adding artificial
noise to the simulated load-strain matrix 7 and the simulated strain vectors s,,. We refer to [18] for
results in this direction.

As a first technique, we consider the classical Tikhonov regularization, where one stabilizes the
inversion by requiring that / does not minimize the 2-norm of the residual 77 - s,, as in Eq. (10) but the
stabilized functional

ol TH=s, 2+ |12, (an

where

5 denotes the 2-norm (or Euclidean norm) of a vector. The positive and small parameter o
should to be chosen in dependence of the (expected) noise level in the measured data and the modelling
and computation error in the load-strain matrix 7, see, e.g., [9][19].

It is not difficult to compute that the minimizer of this quadratic minimization problem solves the lin-
ear equation

TT+a)l =T's,. (12)

An issue of this inverse method that might sometimes be critical for its application in a sensor net-
work is the inversion of a dense linear system. However, in our context the matrix 7 must anyway be
pre-computed before the monitoring device is launched, and hence one can directly pre-compute a sin-
gular value decomposition of 7, boiling down the solution of the linear system to matrix
multiplications:
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Assume that (U, D, V) is a singular value decomposition of the matrix 7, such that the three matrices
U, D, and V allow to decompose T as

T=UDV". (13)

Moreover, D is a diagonal matrix of size M x N, U and V are orthogonal matrices of size M x M and
N x N, respectively (i.e., U*U = I, and V*V = Iy where I, is the unit matrix of size N x N). We denote
the diagonal elements of the matrix D by d;, i = 1,..,min(NV,M), and can hence write D=diag(d;). The d;
are the so-called singular values of T. Together with the orthogonality of the matrices U and V, they
allow to write to the Tikhonov regularization Z, solution to Eq. (12) as

| =Vdiag(d, / (d? +a))U"s, . (14)

This inversion method hence multiplies the 4-th strain value (i.e., the k-th entry of s,,) with the &-th
column of the matrix K = V' diag(di/(di2+a))U * and sums up all resulting column vectors to obtain /.
Note that the matrix-vector multiplication in Eq. (14) is the only higher-order operation that has to be
executed by the computation node to compute /. Since the matrix K is of size N x M, this requires M
scalar products of the rows of K with s,, and hence MN scalar multiplications and (N-1)M additions of
binary numbers with a fixed number of digits.

A disadvantage of Tikhonov regularization is the smoothing property of the scheme. For accurate
data, i.e., at noise levels below 1%, loads with small spatial support or discontinuous loads typically
will not be reconstructed with high accuracy but result in smoothed and smeared-out computational
results (see [18]). This makes a precise location of the support of a load difficult, in particular when sev-
eral loads act simultaneously on the structure. However, the advantage of the Tikhonov regularization
scheme described in Eq. (14) is the stability of the technique for high noise level and even incomplete
data.

The second technique we consider for load monitoring is the conjugate gradient (cg) iteration applied
to the normal equation T*7TI = T*s, an iterative technique where the k-th iterate /, minimizes the dis-
crepancy || 71 - s||, in the so-called Krylov subspace spanned by the vectors

T's,(TT)T's,(TT)’T’s,....(T'T)“'T's. (15)

Alg. 1. The cg-algorithm applied to the linear system 7T/ =s with starting vector /, (pseudo-notation)

Input: Matrix T, right-hand side s, starting vector 1,
expected relative noise level 6>0

re := s - T e 1y, // residuals
dg := T* e ry;
py i= T* e rg;
joi= 1
while dj_1 # @ A |[ry_4ll; > 8lls]l; do
gy = T e py;
aj := |ldj-1ll2 7 llaslla?s
lj = lj_l + o ®py;
Py i= rj.1 - o *qj;
d] = T* or‘j;
Bi = Nld;ll2% / lldj-all2%s
pj :=dy + B e pj;
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j =3+ 1;

Due to the ill-conditioning of the load-strain matrix 7, the cg-iteration applied to noisy data s,, with
relative noise level 8 = ||5,,-Soracil|2 / ||Sexacel| has to be stopped whenever the discrepancy of the actual
iterate reaches the noise level 0 of the sensor signals. Of course, for measured data, this noise level can
only be guessed, since it is composed of measurement errors, modelling errors, discretization errors and
data propagation errors. A standard way how to proceed with measured data is to test the cg-iteration
for several measurements and several guesses of € when the true load is known and to choose a guess
for € in dependence of the quality of the results. For small noise level, i.e., for accurate data, the experi-
ments in [18] show that the conjugate gradient iteration usually outperforms Tikhonov regularization
when reconstruction loads with small support. The advantage of this method is its speed as it is for
instance known to compute iterates reaching a given discrepancy earliest among all Krylov subspace
methods. We will however note in the experiments presented in the next section that a disadvantage of
the cg-iteration is its sensitivity to lacking strain data. Further, the method shows less stability than
Tikhonov regularization at high noise levels in the particular context of our setting.

Estimating the required work load for the cg-iteration is more difficult than the Tikhonov regulariza-
tion, since the number of times the while-loop in Alg. 1 is repeated is variable. Generally, more accurate
data implies a higher number of repetitions. In numerical experiments with 20% relative synthetic white
noise added to the data, the loop was repeated up to nine times and about 7.5 times in average. In each
loop, two matrix-vector multiplications must be computed, once with 7 and once with T%; these require
NM scalar multiplications each, plus (N-1)M and (M-1)N additions for T and T%*, respectively. This
shows a disadvantage of the cg-method for load monitoring in a sensor network: The resulting vector /
cannot be expressed via one matrix-vector product and pre-computation strategies for this method are
not obvious.

6.3. Numerical examples

The simulated experiments we present in the rest of this section follow the setting we already out-
lined in Sec. 6.1.: To pre-compute the load-strain matrix 7, we use a conforming finite element method
with P2 elements and simulate static loading of a 0.02m thick quadratic building steel plate Q with side
lengths of 0.5m that is fixed at one of its four vertical sides. As material parameters of the homogeneous
and isotropic plate we fix the elastic modulus E of 210 kN/mm? and the Poisson's ration v of 0.3. Fur-
ther, we use the equations of static linear elasticity as a model for the deformation field u = (ul,uz,u3)T
(see Eq. (6)). As mentioned above, the deformation field # is governed by Eq. (6) and the strain meas-
urements are simulated as point values of the derivatives of u; and u, at the sensor nodes.

When pre-computing the load-strain matrix the simulated loads are cylindrical weights placed at
N=400 weight positions from an equidistant rectangular grid (the grid points are defined in Eq. (7) for
N, =N,=20. The force on the upper surface of the upper horizontal plate due to the loading hence van-
ishes outside the circle covered by the weight; inside this circle the force points in direction -z and
equals 1 N/em?. As discussed in Sec. 6.1., after computing the deformation field, we compute the sur-
face strain in x and y direction at the sensor points given in Eq. (8) where M=64 (since M,=M,=8). By
computing the deformation field and the extracted surface strain for a sequence of refined meshes, we
checked that the relative error of the strain data used in the examples below is below one percent.
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Apart from the cylindrical loads to compute the load-strain matrix 7 we also simulated five pairwise
different loads IV, .. | 1) with different characteristics and acting on different parts of the steel plate,
see Fig. 12.

The simulated strain values are then converted into integer values in between 1 and 1024, a zero sig-
nal corresponding to the value 512; if g; denotes a simulated strain value, this conversion is done using
the formula s; = | 512 + 10000*¢; |, 1 < i <2M. (| a | denotes the largest integer smaller than or equal
to a € R.) Thus, five strain measurement vectors s M .., s are computed. We use these five data sets
and feed them consecutively as sensor values into the simulation framework for the sensor network
shown in Fig. 4: Choosing a fixed intermediate time interval of 500 simulation steps, we start by stimu-
lating the sensor network using the sensor data s¢; during the next 500 simulation steps, the network
identifies the load and propagates the sensor data to the computational nodes. After 500 time steps we
stimulate the network by inserting the sensor data s,, and wait again 500 time steps until we stimulate
again relying on s3, and so on. In an intact network, the multi-agent system requires about 100 time
steps to identify an activated region and to send out event agents to the computational nodes. In a defec-
tive network where some connections between sensor nodes are broken, this procedure takes more time;
the more connections are defect, the more time is required to propagate information through the
network.

The identification of a loading event and the distribution of sensor data works as explained in Sec. 4.:
If a sensor node notes a significant change of one of its sensor values (i.e., strain in x- or y-direction), he
sends out explorer agents.
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Figure 12. From (a) to (e): The five loads AN A0 (f) The positions of the 400 weight
points w{i,j} are indicated using blue dots; red crosses indicate the positions of the 64
Sensors.
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In case that the agent system detects an activated region (see Sec. 4.2.), each sensor node in the
boundary of this region sends out four event agents in the four directions of the network. Each event
agent tries to propagate the sensor values of its creating node and of all nodes passed on its way through
the network to one of the four computation nodes in the four corners of the network. For simplicity, we
name these four computation nodes according to their position in the network (see Fig. 4): The compu-
tation node in the upper left and right corner is called NW (north west) and NE (north east),
respectively, and the one in the lower left corner and lower right corner is called SW (south west) and
SE (south east), respectively. Note that event agents coming from different nodes will arrive at different
times at the computational nodes, in particular, if some of the network connections are broken. The
computation nodes collect the incoming sensor values and back-transform them into floating point
number via s, ; = (s; - 512)/10000. If no event agents arrive at a computation node, the node computes a
reconstruction of the load causing the event agents using either Tikhonov regularization (see Eq. (14))
or the cg-method (see Alg. 1). This implies that possibly not all sensor values from the individual sen-
sors are propagated, that not all sensor nodes know all values from the complete strain data vector s,
that several values might arrive too late at a computation node and either erroneously cause a further
load computation or perturb the computation of the next load.

Whenever a computation node starts a computation with incomplete sensor data (which is rather
common than an exception in our experimental setting), then the missing values in s,, are set to 0. It is at
this point obvious that the noise level in s,, is usually enormous, typically way beyond 15%. Due to pos-
sibly late arrival of sensor data, the noise level of the data moreover becomes time-dependent and the
entire monitoring process also becomes a time-dependent inversion problem.
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Figure 13. Loads inverted by the NE computation node of the self-organizing sensor net-
work based on mobile agents. All connections in the network are intact. (a)-(d): Loads 1M

., 1 @, Tikhonov regularization Eq. (14), o = 6-107. (e)-(h): Loads [/ O 1@, cg
method (Alg. 1), 6 =0.2.

Fig. 13 shows the successively monitored loads of the computation node NE during the simulation
time of an intact sensor network as sketched in Fig. 4, i.e., all connections in the network are faultless.
Both methods generally detect the correct position of a load, however, a precise shape detection is
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impossible given the quality of the data. The third loading / (3) poses problems to both algorithms; the
Tikhonov regularization detects a load on the lower left side of the plate while the cg-method over-esti-
mates the magnitude of the load. (The latter behaviour is a typical feature of this method in our setting.)

The fifth load ) consists of three point-like loadings with relatively high magnitude (see Fig. 12
(e)). Both inverse methods have significant difficulties to cope with this situation: Fig. 14 shows recon-
structions using both methods by two different computation nodes (NE, SW). While NE is via
Tikhonov regularization able to detect the three loads, the cg-method merely indicates the presence of
the highest load at the left side of plate (both estimated magnitude are wrong). The data arriving at SW
is not sufficient to reasonably determine any feature of the load. However, Fig. 14 shows another typi-
cal feature of the cg-method: If there is not enough sensor data available to reasonably reconstruct at
least parts of the load, then the method produces highly oscillating results with very high amplitudes
that are obviously wrong. We will see later that such output of the method can reliably be filtered by
rejecting monitored loads with high amplitudes.

Since the sensor network is self-organizing via the multi-agent system, the strain data are not arriving
at the same time at the computation nodes. As discussed above, it might hence happen that a computa-
tion node reconstructs a load before all relevant strain data has arrived. Independently of the chosen
inverse method, an updated computation is in this case often significantly better than the result gained
from incomplete data, as Fig. 15 indicates.
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Figure 14. Load / ©) inverted by the NE and SW computation nodes of the self-organizing
sensor network based on mobile agents. All connections in the network are intact. (a) NE
node, Tikhonov regularization Eq. (14), o = 6 -107. (b) NE node, cg method (Alg. 1), § =
0.2. (¢) SW node, Tikhonov regularization Eq. (14), a = 6-107. (d) SW node, cg-method
(Alg. 1),6=0.2.

A typical phenomenon of the sensing system appears in Fig. 15 (e) and (g): The reconstruction of /
) in Fig. 15 (e) by the north-western computation node NW using Tikhonov regularization is perturbed
by data stemming from the strain data s, corresponding to I™®. The analogous observation holds for the
cg-method applied to the same data sets (see Fig. 15 (e)-(h)).
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Figure 15. When sensor data arrives at a computation node after a load has already moni-
tored, the node re-computes the load. All indicated pairs of plots show two consecutive
reconstructions of a load due to late sensor data arrival; the network is intact. (a)-(b) Two
reconstructions of / ) by SE node; Tikhonov regularization Eq. (14), o = 6-107. (c)-(d)
Two reconstructions of / @) by SE node; cg method (Alg. 1), 8 = 0.2. (e)-(f) Two recon-
structions of / ©) by NW node; Tikhonov regularization Eq. (14), a = 6-107. (g)-(h) Two
reconstructions of ) by NW node; cg-method (Alg. 1), 5 =0.2.

We already noted above that the magnitudes of the reconstructed loads are in some cases roughly
speaking more sensitive than the overall position of the loads. To this end, we plot in Fig. 16 (a) the
maximal force of a reconstructed load for 52 computations (26 Tikhonov and 26 cg reconstructions) by
the four computation nodes during the above-described test of the sensing system. In 10 cases, the max-
imal loading of a cg reconstruction is significantly larger than the corresponding result of the Tikhonov
regularization; in all these cases, the corresponding monitored load is unusable and should be rejected.
We emphasize that this is a good feature of the method since it allows to easily identify incorrectly
reconstructed loads. Note that Fig. 16 (a) further indicates that the magnitudes of the loads computed by
the Tikhonov regularization are rather good compared to the exact magnitude (given the accuracy of the
data) and, except for the point-like load / (), rather robust against noise. This is obviously different for
the cg method that does not show the same stability in this setting. Fig. 16 (b) moreover indicates that
checking the normalized cross-correlation between the two reconstructions given by the two inverse
methods can be used as an indicator for their reconstruction quality: If cross correlation factor above
0.8 is in all examples a good indicator for a reasonable reconstruction quality.
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Figure 16. (a) Maximum of the loads by an intact sensor network for 54 reconstructions
computed by the four computation nodes NE, NW, SE, SW during the evolution of the sim-
ulated system. If the maximum of a monitored load is larger than 5 N/em? we plot the value
5. (Red triangles: Tikhonov regularization; blue dots: cg-method; black stars: maximum of
the exact load.) (b) Normalized cross correlation between the loads reconstructed by
Tikhonov regularization and the cg-method for each of the 26 reconstruction events.

In the last part of this section we consider the same test simulation for the sensor network as above,
but perturb 30% of all network connections. The agents of the multi-agent system can hence no longer
propagate between all neighbouring nodes (and they no a-priori knowledge which connections are
defect). Apart from this change of the network topology, the setting of the simulation is precisely the
same as above. Thus, compared to the experiments discussed above, sensor data is in this new setting
likely to arrive later at computation nodes than before and might, in some cases, not arrive at all. The
data quality hence is worse than before. Nevertheless, the monitored loads shown in Fig. 17 are (in the
visual norm) of a similar same quality as the corresponding ones from Fig. 13. At several of the plots,
the incorrectly appearing yellow regions are somewhat extended.
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Figure 17. Loads inverted in a defective network by the NE computation node. 30% of all
network connections are defective. Parameters for the reconstruction algorithms are the
same as for the intact network. (a)-(d): Loads 1D 1™, Tikhonov regularization Eq.

(14), 0. = 6:107. (e)-(h): Loads I (1, ... , I, cg-method (Alg. 1), § = 0.2.

Fig. 18 indicates that the phenomenon of sensor data arriving at a computation node after the node
already computed a first reconstruction becomes stronger:

In Fig. 18 (a)-(d) one notes data from the the surface strain s; corresponding to / (M appears in the
reconstruction of 7 ?); thus, data from s; and s, is arriving at about the same type and both loads show
up in the same reconstruction.
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Figure 18. Changing reconstructions of loads in a defective sensor network due to late
arrival of data.30% of all network connections are defective. The plots (a)-(b) and (b)-(c)
show two consecutive reconstructions of / by SE node, the update is due to additionally
arriving sensor data. (a)-(b) Tikhonov regularization Eq. (14), o = 6- 107, (¢)-(d) cg method
(Alg. 1),6=0.2.

Finally checking for the magnitudes of the reconstructed loads and the cross-correlation between the
results of the two different inverse methods shown in Fig. 19 allows to draw similar conclusions as
above: The perturbed network reduces the data quality and the cg-method accordingly yields results
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with too high amplitude more frequently (13 out of 28 cases). However, the results gained by Tikhonov

regularization remain more stable, which indicates another time the potential of this technique (and its

refinements) for load monitoring in a substantially involved setting.
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Figure 19. Left: Maximum of the loads monitored by a defective sensor network; 30% of
all network connections are defective. The 28 reconstructions are computed by the four
computation nodes NE, NW, SE, SW during the evolution of the sensing system. If the
maximum of a monitored load is larger than 5 N/em? we plot the value 5. (Red triangles:
Tikhonov regularization; blue dots: cg-method; black stars: maximum of the exact load.)
Right: Normalized cross correlation between the loads reconstructed by Tikhonov regulari-
zation and the cg-method for each of the 28 reconstructions.

7. Conclusions and Outlook

A novel sensor processing approach using mobile agents for reliable distributed and parallel data
processing in large scale networks of low-resource nodes was introduced and investigated, leading to a
sensor signal pre-processing at run-time inside the sensor network by using a hybrid multi-agent sys-
tem. Agent mobility crossing different execution platforms in mesh-like networks and agent interaction
by using tuple-space databases and global signal propagation aid solving data distribution and synchro-
nization issues in the design of distributed sensor networks. Event-based sensor data distribution and
pre-computation with agents reduces communication and overall network activity resulting in reduced
energy consumption.

Off-line inverse numerical computation of pre-processed sensor data allows the calculation of the
unknown system response (i.e., the load) based on data from prior FEM simulations of the technical
structure.

Throughout this work, a multi-domain simulation was used capable to simulate multi-agents systems
deployed in large-scale networks and numerical computation with a unified database centric simulation
environment.

A case study demonstrated the suitability of the proposed smart sensor processing approach, using
event-based sensor data propagation, adaptive path finding, and feature extraction with self-organizing
exploration. The presented examples for load monitoring show that both the classical Tikhonov regular-
ization method and the cg-method are suitable inverse algorithms for structural load monitoring.

-31-

2015



DOI: 10.1016/j.mechatr onics.2015.08.005 Mechatronics Elsevier S|

The self-organizing load monitoring system presented in this paper shows a partly surprising robust-
ness against missing or incorrect data present at the computation nodes resulting, mainly a result of 1.
missing or defective communication links prohibiting sensor data distribution and delivery to the com-
putational nodes and 2. the event-based partial delivery of sensor data. The incomplete sensor data sets
resulting from the event-based data distribution and the SOMAS feature detection bases on two effects:
1. not fully covering the stimulated region and 2. recognizing the wrong region, especially in the case of
a spatially smooth sensor stimuli distribution. The mismatch of sensor distribution can be partially cov-
ered by the four redundant but spatially distributed edge computational nodes at the outside of the
network, which performs the final load computations.

As an outlook into future work, we mention two points: It becomes apparent in the second part of the
numerical experiments that time-stamping sensor data would make the entire load monitoring system
more stable and accurate. This direction of research will be investigated in future projects. Further, the
detection of point-like loading (as 16 )) is currently insufficient. We will further investigate the possibil-
ity to improve the detection of point-like loads and the correct estimation of their correct magnitudes,
which is clearly a weak point of the monitoring system presented in this paper. The second work con-
cerns the classification of the four mostly different load computations of the edge computers using
machine learning or fusion concepts to filter out the load computation with the highest trust.

The multi-agent behaviour is composed of different agent classes and specified using the agent-ori-
entated programming language AAPL based on the Dynamic ATG model, which provides
computational statements and statements for agent creation, inheritance, mobility, interaction, reconfig-
uration, and information exchange, based on agent behaviour partitioning in an activity graph. There are
programmable and application-specific agent processing platforms suitable for embedded sensor net-
works, and the programmable platform can be deployed in the Internet domain, too. In case of the
programmable platform, the agent behaviour is compiled to program code which is executed on a
stack-based virtual machine, which can be directly synthesized to the microchip level by using a high-
level synthesis approach. Furthermore, the high-level synthesis tool enables the synthesis of different
processing platforms implementations from a common specification (programmable platform) or the
AAPL sources (application-specific platform), including standalone hardware and software platforms,
as well as simulation models offering functional and behavioural testing. All platform implementations
are compatible on operational and communication level. The migration of an agent to a neighbour node
takes place by migrating the data and control state encapsulated in the program code of an agent using
message transfers (programmable platform). Two different agent interaction primitives are available:
signals carrying data and tuple-space database access with pattern templates. Configuration and (re-)
composition of the activity graph offers agent behaviour adaptation (which can be inherited by child
agents) at run-time and relax communication and storage requirements. Additionally, (re-) composition
allows the derivation of agent sub-classes from a super class, matching the requirements in SOMAS.

Stefan Bosse et al. -32- 2015



DOI: 10.1016/j.mechatr onics.2015.08.005 Mechatronics Elsevier S|

Appendix A. Algorithms

Alg. 2. Agent behaviour of the Event agent class offering a robust event-based and path tracking sen-
sor data distribution

k: { SENSORVALUE,DISTRIBUTER } set of key symbols
6: { NORTH,SOUTH, WEST, EAST, ORIGIN } set of directions
MAXFAILED = 4 some constant parameters

type Route = (dir = §, lastdir = 3, delta = A, gamma = A, routed = boolean);

¥ Event: (dir) — {

Body Variables

¥: { route, arrived, failed, die, SX=[@..DIMX-1], SY=[@..DIMY-1] } global persistent variables
10 o: { vx, vy, index, found, row, col, rown, coln } Llocal temporary variables

OWoONOOUVhAWNER

12 Activities
13 o init: {

14 arrived <« false;

15 V{i] @ .. DIMX-1 } do SX[i] « -1;

16 V{i| @ .. DIMY-1 } do SY[i] « -1;

17 route <« Route(dir,ORIGIN, (0,0),(0,0),false);

18 found « V?%(e,SENSORVALUE,vx?,vy?);

19 if found then SX[@] « vx; SY[O] « vy;

20}

21 o move: {

22 route.dir « dir; Try different routing strategies to reach the destination
23 route <« route_relax(route);

24 if not route.routed then route <« route_normal(route);

25 if not route.routed then route <« route_opposite(route);

26 if route.routed then < (route.dir) else failed++;

27}

28 o check: {

29 found <« ?V(DISTRIBUTER);

30 if found A route.gamma=(0,0) then arrived <« true

31 else if route.gamma=(0,0) then

32 found <« V?%(G,SENSORVALUE,vx?,vy?); Collect all sensor values along delivery path
33 if found then

34 case dir of

35 | NORTH = index <« -route.delta.Y

36 | SOUTH = index « route.delta.Y

37 | WEST = index <« -route.delta.X

38 | SOUTH = index « route.delta.X

39 SX[index] <« vx; SY[index] <« vy;

40 if failed > MAXFAILED then die <« true;

41}

42 o deliver: {

43 V%(MATRIXDIM,row?,col?,rown?,coln?);

44 index « 0;

45 case dir of Deliver all sensor values collected along delivery path
46 | NORTH =

47 ¥V row € { -route.delta.Y-1 .. @ } do

48 V*(SENSORVALUE, row, col,SX. [index],SY.[index]); index++;
49 | SOUTH =

50 vV row € { rown-route.delta.Y .. rown-1 } do

51 V*(SENSORVALUE, row, col,SX.[index],SY.[index]); index++;
52 | WEST =

53 V col € { -route.delta.X-1 .. @ } do

54 V*(SENSORVALUE, row, col,SX. [index],SY.[index]); index++;
55 | EAST =

56 V col € { coln-route.delta.X .. coln-1 } do

57 V*(SENSORVALUE, row, col,SX.[index],SY.[index]); index++;
58 }

59 o exit: { ®($self) }
60 Main Transitions

61 II: {
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62 entry — init

63 init — move

64 move — check

65 check — deliver | arrived = true

66 check — move | arrived = false A die = false
67 check — exit | die = true

68 deliver — exit

69 }

70 }

Alg. 3. Routing functions

1 o: { NORTH,SOUTH, WEST, EAST, ORIGIN } set of directions

2 type Route = (dir = §, lastdir = 5, delta = A, gamma = A, routed = boolean);
3

4 route_normal: (route) — {

5 if ?A(dir) A route.last_dir # w(dir) then

6 route.routed <« true; route.lastdir <« dir;

7 route.delta « route.delta+d(route.dir);

8 case route.dir of

9 | NORTH =

10 if route.gamma.Y # @ then route.gamma <« route.gamma+d(dir);
11 | SOUTH =

12 route.routed <« true; route.lastdir <« NORTH;

13 if route.gamma.Y # @ then route.gamma <« route.gamma+o(dir);
14 | WEST =

15 if route.gamma.X = @ then route.gamma <« route.gamma+d(dir);
16 | EAST =

17 if route.gamma.X # © then route.gamma <« route.gamma+o(dir);
18 Troute

19 }

20

21 route_opposite: (route) — {
22  routes < {d € § | ?A(d) A route.lastdir # w(d) };
23 if routes # O then

24 route.routed <« true;

25 route.dir <« R(routes);

26 route.lastdir < route.dir;

27 route.delta <« route.delta+d(route.dir);
28 route.gamma <« route.gamma+d(dir);

29  Troute

30 }

31

32 route_relax: (route) — {
33 nextdir <« ORIGIN;
34 if route.gamma = (0,0) then

35 if route.gamma.X < © A PA(EAST) A route.lastdir # @w(EAST) then nextdir <« EAST;

36 if route.gamma.X > © A PA(WEST) A route.lastdir # @w(WEST) then nextdir <« WEST;

37 if route.gamma.Y < @ A ?PA(SOUTH) A route.lastdir # w(SOUTH) then nextdir <« SOUTH;
38 if route.gamma.Y > @ A ?PA(NORTH) A route.lastdir # w(NORTH) then nextdir <« NORTH;
39 if nextdir # ORIGIN then

40 route.dir <« nextdir;

41 route.routed « true; route.lastdir <« dir;

42 route.delta « route.delta+d(route.dir);

43 Troute

44 }

45

46 0: (dir) — {
47 case dir of

48 | NORTH = (@,-1)
49 | SOUTH = (0,+1)
50 | WEST = (-1,0)
51 | EAST = (+1,0)
52 }

53
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Alg. 4. Agent behaviour of the Explorer agent class using a SoS based feature recognition detecting
the boundary of a spatially correlated sensor stimuli region.

OWCoONOUVTDAWNLER

OOV UVTUUUVUVTUVUUDMDDAEDDNDDDDDWWWWWWWWWWRNNRNNNNNNNNRRRRRRRRBRR
P OVOUNOUDNRWNRPROOLOIMNNAONUVTDNWNROOVUONNAUVTDRNRWNROOVONOADUTDNWNRPRPOOLONOOTUDNWNERO®

62
63

«: { SENSORVALUE,FEATURE, H, MARK }

£: { TIMEOUT, WAKEUP }

§: { NORTH,SOUTH, WEST, EAST, ORIGIN }
€l =3; €2 = 6; MAXLIVE = 1; DELTA = 50;

Y Explorer: (dir,radius) — {

set of key symbols

set of signals

set of directions

some constant parameters

Body Variables

¥: { dx, dy, live, h, sxo, sy@, backdir, group } global persistent variables

o: { enoughinput, again, die, back, sx, sy, v } Llocal temporary

Activities
o init: {

dx < 0; dy « 0; h « 0; die « false; group « 9%{0..10000};

if dir # ORIGIN then
&dir; backdir <« w(dir)
else
live < MAXLIVE; backdir <« ORIGIN
V*(H,$self,0);
found « V?%(@,SENSORVALUE, sx@?,sy@?)

—

a percept: {
enoughinput « 0;
V{nextdired | nextdir = backdir A ?A(nextdir)} do
enoughinput++;
®Explorer.child(nextdir,radius)
¥ (ATMO, TIMEOUT)

-

o reproduce: {

live--;

V*(H,$self,?);

if ?V(FEATURE,?) then V™ (FEATURE,n?) else n « ©;

V*(FEATURE, n+1);

if live > @ then

n*(reproduce — init)

V{nextdired | nextdir # backdir A ?A(nextdir)} do
O~ (nextdir,radius)

n*(reproduce — exit)

—

o diffuse: {
live--;
V*(H,$self,?);
if live > @ then
dir < R{nextdired | nextdir # backdir A ?A(nextdir)}
else
die « true

}
o exit: { ®($self) }

inbound: (nextdir) — {
case nextdir of

| NORTH —» dy > -radius
| SOUTH —» dy < radius
| WEST — dx > -radius
| EAST — dx < radius

}

Signal handler

& TIMEOUT: {
enoughinput « ©

}

& WAKEUP: {

enoughinput--;
if ?V(H,$self,?) then V™ (H,$self,h?);
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64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
9
91
92
93
94
95
9%
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117}

}

if enoughinput < 1 then t"(TIMEOUT);

Main Transitions

IT: {

entry — init
init — percept | found
init — exit | —found

percept — reproduce | (h > gl A h < g2) A (enoughinput < 1)
> €2) A (enoughinput < 1)

percept — diffuse | (h < €l v h
reproduce — exit
diffuse — init | die = false

diffuse — exit | die = true
}
Explorer child sub-class
¢ child: {
o exit imported from root class
& TIMEOUT
& WAKEUP

}

o percept_neighbour {
found <« V?%(@,SENSORVALUE, sx?,sy?);
if found A not ?V(MARK,group) then
back « false; enoughinput « 0;
V¥(MTMO, MARK, group) ;

h < (if |sx-sx@| > DELTA or |sy-sy@| > DELTA then @ else 1);

V*(H,$self,h);
n*(percept_neighbour — move)

M echatronics Elsevier S|

V{nextdired | nextdir # backdir A ?A(nextdir) A inbound(nextdir)} do

O~ (nextdir,radius)
n*(percept_neighbour — goback | enoughinput < 1)
¥ (ATMO, TIMEOUT)
else back <« true
}
o move: {
backdir < w(dir); (dx,dy) <« (dx,dy) + o(dir);
<dir;
}
o goback: {
if ?V(H,$self,?) then V™ (MARK,$self,h?) else h « 0;
obackdir;
}
o deliver: {
V™ (H,$parent,v?); V*(H,$parent,v+h);
EWAKEUP = $parent;
}
n: A{
entry — move
move — percept_neighbour
percept_neighbour — goback | (enoughinput < 1) v back
goback — deliver
deliver — exit

}
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Appendix B. Notation

Tuple Space Symbols

@Timer

5 Reconfiguration

V+(TP): Add tuple TP to database
VvV (TP) V?_(TMO,TP): Read and remove (or try) tuple TP from database
V%(TP) V?%(TP): Read tuple (or try) TP from database

1M Replication
VX(TP): Remove tuple TP from database = P

T 2= Move
V' (TMO, TP): Add marking tuple TP to database with lifetime TMO =
?V (TP): Test for existence of tuple TP €@ Tuple Database
x?: Formal Parameter
Mobility .
?A(A) ?A(8): Test for connection link in direction A # Signal
3 : Set of directions {NORTH,SOUTH,..} ® Kill

A : Relative position vector and hop vector relative to root node

0(d) : Direction position difference vector

w : Opposite direction

< (8) < (A): Migrate to direction d / A

Agents

Y AC: (x,y,..)~{..}: Define an agent class AC with parameters Xx,y,..

2*%Blocking Process

D—>D Static Transition
D——D Dynamic Transition

 BRR S

—

I

I

|

|

|

|

|

|

|

|

|

I

I

I

I

I

I

I

|

|

|

|

|

|

|

|

|

I

I

I

I

I

I

|

l !

I ¢ ac:{..}: Define a sub-class ac I |r __________________________ :

bz {..}: Define body variables, o:{. .} : none-persistent ! ! |

e A: {..}: Define activity A | | Set Iteration !

I F:(x,y,..)~{..}: Define a function F with parameters Xx,y,.. Lo |

I T S:(P)-{..}: Define signal handler S with parameter P b V{xeX | c(x) } do I :

| N:{..}: Define transitions, m: {..} : Define sub-class transitions o V{ x| c(x) } doI !

| - . . [ |

! G)X(vl,vz, ..): Fork agent with arguments | | Repeat the following !

I @7 (A) : Destroy agent A | | statement I(x) I

i 0*AC(v1,v2,..): Create new agent from agent class AC with arguments . (lfsmg >§) forf?ﬁch X i

I 1 element x of the se

i

: Timer i i for which the condition i

I 1%(TMO,S) : Add timer with timout TMO and signal S L c(x) is satisfied. !

| - ) . . [ |

I T (S) 3 Remqve timer for signal S ! ! Interval set Iteration I

i Reconfiguration 'l Vxef{a. bjdoI !

: 1T+(T1,T2,C) : Add transition T,~T, with condition C i i V{x| xe {a..bl}}doI i

| |

i ot (Tl,TZ,C) : Update transitions T,-T, with condition C i i Repeat the following !
- I I

i ™ (T{,T,) : Remove transitions T; - T, ! i (sljas‘?r?;niﬁ’(:lo(rxéach :

I I

I o"(A) : Add activity A i i element x of the interval set :

i o (A) : Remove activity A b {a.. b} i

|

| Signals ! i !

I T S(V) = A:Send a signal S with argument V to agent A . I

i Values I I i

: $V : Agent reference variable (V=self, parent,..) i i |

: R{SET} : Random element selection from a set or in the range {min .. max} | l I

| Xc€: Change value of variable x bl |

_________________________________________________________ J e )

Figure 20. Short notation of the A4PL agent behaviour programming language and some
symbols
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