
DOI: 10.1109/FAS-W.2016.38 Proc. of the 1th FAS*W
Distributed Machine Learning with Self-organizing
Mobile Agents for Earthquake Monitoring

Stefan Bosse
University of Bremen, Department of Mathematics & Computer Science, Germany

Abstract - Ubiquitous computing and The Internet-of-
Things (IoT) raises rapidly in today’s life and is becoming part
of self-organizing systems (SoS). A unified and scalable informa-
tion processing and communication methodology using mobile
agents is presented to merge the IoT with Mobile and Cloud en-
vironments seamless. A portable and scalable Agent Processing
Platform (APP) is an enabling technology that is central for the
deployment of Multi-agent Systems (MAS) in strong heteroge-
neous networks including the Internet. A large-scale distributed
heterogeneous seismic sensor and geodetic network used for
earthquake analysis is one example, which can be extended by
ubiquitous sensing devices like smart phones. To simplify the de-
velopment and deployment of MAS in the Internet domain
agents are directly implemented in JavaScript (JS). The pro-
posed JS Agent Machine (JAM) is an enabling technology. It is
capable to execute AgentJS agents in a sandbox environment
with full run-time protection, low-resource requirements, and
Machine Learning as a service. A simulation of a seismic net-
work and real earthquake data demonstrates the deployment of
the JAM platform. Different (mobile) agents perform sensor
sensing, aggregation, local learning and prediction, global vot-
ing, and the application.

Keywords - Agent Platforms, Self-organizing Systems, Distributed
Learning, Earthquake Monitoring

I. INTRODUCTION AND OVERVIEW

The IoT and mobile networks get real in today’s life and is
becoming part of pervasive and ubiquitous computing net-
works with distributed and transparent services. Robustness
and scalability can be achieved by self-organizing and self-
adaptive systems. Agents are already deployed successfully
in sensing, production, and manufacturing processes [1], and
newer trends poses the suitability of distributed agent-based
systems for the control of manufacturing processes [2], fac-
ing manufacturing, maintenance, evolvable assembly
systems, quality control, and energy management aspects,
finally introducing the paradigm of industrial agents meeting
the requirements of modern industrial applications by inte-
grating sensor networks. Mobile Multi-agent systems can
fulfill the self-organizing and adaptive (self-*) paradigm [3].
Distributed data mining and Map-Reduce algorithms are well
suited for self-organizing MAS. Cloud-based computing with
MAS means the virtualization of resources, i.e., storage, pro-
cessing platforms, sensing data or generic information [4].
Mobile Agents reflect a mobile service architecture. Com-
monly, distributed perceptive systems are composed of
sensing, aggregation, and application layers, shown in Fig. 1,
merging mobile and embedded devices with the Cloud para-
digm [5]. But generic Internet, IoT, and Cloud environments
differ significantly in terms of resources: The IoT consists of
a large number of low-resource or mobile devices interacting
with the real world having strictly limited storage capacities
and computing power, and the Cloud consists of large-scale

computers with arbitrary and extensible computing power
and storage capacities in a basically virtual world. A unified
and common data processing and communication methodol-
ogy is required to merge the IoT with Cloud environments
seamless, which can be fulfilled by the mobile agent-based
computing paradigm, discussed in this work.

The scalability of complex ubiquitous applications using
such large-scale cloud-based and wide area distributed net-
works deals with systems deploying thousands up to million
agents. But the majority of current laboratory prototypes of
MAS deal with less than 1000 agents [2]. Currently, many
traditional processing platforms cannot yet handle a big num-
ber of agents with the robustness and efficiency required by
the industry [2], sensing, and Cloud applications. In the past
decade the capabilities and the scalability of agent-based sys-
tems have increased substantially, especially addressing
efficient processing of mobile agents. The integration of per-
ceptive and mobile devices in the Internet raises
communication and operational barriers, which must be over-
come by a unified agent processing architecture and
framework, discussed in this work. A sensor network as part
of the IoT is composed of low.-resource nodes [5]. Smart sys-
tems are composed of more complex networks (and networks
of networks) differing significantly in computational power
and available resources, raising inter-communication barri-
ers. These smart systems unite sensing, aggregation, and
application layers [5], shown in Fig. 1, requiring a unified
design and architecture approach. Smart systems glue soft-
ware and hardware components to an extended operational
unit, the basic cell of the IoT.

The central approach in this work focuses on mobile
agents and the ability to support mobile reconfigurable code
embedding the agent behaviour, the agent data, the agent
configuration, and the current agent control state, finally
encapsulated in portable JavaScript code, superior compared
with common Java frameworks, e.g. Jason [6][7] or the
JADE platform [14], and object-orientated systems like
SWARM [15], not supporting mobile agents. In this work the
reactive behaviour of mobile agents are modeled with
dynamic Activity-Transition Graphs (ATG). The agent
behaviour is implemented entirely in JavaScript with a
restricted and encapsulated access to the platform API. This
agent-specific mobile program code AgentJS can be executed
on a variety of different host platforms using JAM and a
generic JS VM, closing the gap between the IoT and Cloud
infrastructures. The JS Agent Machine (JAM) is an enabling
technology that is capable to execute thousands of AgentJS
agents in a sandbox environment with full run-time
protection.
Stefan Bosse - 1 - 2016

DOI: 10.1109/FAS-W.2016.38 Proc. of the 1th FAS*W

Fig. 1. (Left) Unified IoT - Cloud Distributed Perception and Information Processing with mobile agents (Middle) Portable JavaScript (JS) Agent Machine
Platform (JAM) and an optional Distributed Organization System (DOS) layer [8] adds connectivity and security to JAM in the Internet domain. (Right) Use-
case example: Deployment in a seismic network extended with smart phones, building networks, and mobile devices for distributed earthquake analysis.

Agents can migrate between different JAM nodes seam-
less preserving their data and control state by using on-the-fly
code-to-text transformation. Agent privilege levels based on
capability rights and operational restrictions ensure agent
authorization and platform security. Agent self-re-configura-
tion of the ATG at run-time enabling self-adaptive and
feedback learning agents. A Distributed Organization System
(DOS) layer provides JAM node connectivity and security in
the Internet. This approach requires only a minimal Agent
Processing Platform Service (APPS), extended with an
object-orientated RPC communication, implemented in JS,
too.

Current Just-in-Time (JIT) compiling VMs pose reason-
able performance comparable to native code. The minimal
APPS provides tuple-based agent interaction services (see
[7]) among agent execution, mobility, and Machine Learning
services accessed through the platform API. This approach
provides a high degree of computational independency from
the underlying platform and other agents, and enhanced
robustness of the entire heterogeneous environment in the
presence of node, sensor, link, data processing, and commu-
nication failures.

This work introduces some novelties compared to other
centralized data processing and agent platform approaches:
• Seamless integration of different host platforms (server,

desktop computer, mobile devices, smart phones, embed-
ded devices, material-integrated sensing systems) with one
unified agent model and the deployment of the portable
JAM platform architecture.

• Scalable and event-based sensor data processing
• Machine Learning as a platform service: Agents can carry

learned models (mobile learner) without carrying the

learner code. Incremental learning avoids an accumulated
database.

• Distributed on-line learning and classification with regional
data combined with distributed global voting of regionally
classified prediction situations with majority election.
The next sections introduce the activity-based agent pro-

cessing model, available mobility and interaction, and the
proposed JavaScript agent platform architecture related to
the programming model. Finally, the deployment of the agent
platform is demonstrated and evaluated by a simulation using
a JAM network representing the north american seismic net-
work (CI), and earthquake learning based on reduced seismic
data and MAS self-organization.

II. AGENJS: THE JS AGENT BEHAVIOUR MODEL

In this work, a novel agent process platform JAM is used
that provides Machine Learning (ML) as a service. JAM is
implemented entirely in JavaScript (JS) including the ML
service. JAM is capable of executing agents programmed in
JS, called AgentJS, in a protected sandbox environment.

The behaviour of a reactive activity-based agent is charac-
terized by an agent state, which is changed by activities.
Activities perform perception, plan actions, and execute
actions modifying the control and data state of the agent.
Activities and transitions between activities are represented
by an activity-transition graph (ATG). The agent behaviour
and the action on the environment is encapsulated in agent
classes, with activities representing the control state of the
agent reasoning engine, and conditional transitions connect-
ing and enabling activities. Activities provide a procedural
agent processing by a sequential execution of imperative data
processing and control statements. Agents can be instantiated
from a specific class at run-time. A multi-agent system com-
posed of different agent classes enables the factorization of

���

�

� �����

��	�

�
 ���

������������������

�����������

���

������

��	��� ������

��������

��
�

�

�

��

��

��

�� ��

�����������

����

�

�

�

�

��

������ ��!��"

����
 ��������� #
�������

�

��

�������������������������
�

� ������

����	

�������

���

���
���	����

�� �� � �������

 !�

����	��

Smart Phone
Stefan Bosse - 2 - 2016

DOI: 10.1109/FAS-W.2016.38 Proc. of the 1th FAS*W
an overall global task in sub-tasks, with the objective of
decomposing the resolution of a large problem into agents in
which they communicate and cooperate with one other.

Agent interaction is required in MAS, providing synchro-
nization and data exchange. The tuple-space communication
paradigm with a set of simple but synchronizing access oper-
ations (input, output, read, remove) is well accepted and an
understood approach. Signals can be used instead for simple
distributed one-way notifications carrying simple data.

The activity-graph based agent model is attractive for
fine-grained agent scheduling. An activity is always executed
atomically, but after an activity terminates, it is a well
defined break point for agent process scheduling.

An activity is activated by a transition depending on the
evaluation of (private) agent data (conditional transition)
related to a part of the agents belief in terms of the Belief-
Desire-Intention (BDI) architecture, or using unconditional
transitions (providing sequential composition). Each agent
belongs to a specific parameterizable agent class AC, specify-
ing local agent data (only visible for the agent itself), types,
signals, activities, signal handlers, and transitions. The prin-
ciple AgentJS structure of an agent class is shown in Def. 1.
In contrast to common JS objects, an AgentJS class definition
may not use any references to free variables or functions. The
this variable references always the agent object, and can be
used, e.g., in transition functions, handlers, activities, and
first order functions directly.

Def. 1. Principle structure of an AgentJS Class Definition with a set of
activities {a1,a2,..} encapsulated in an activity section, followed by the tran-
sition section implementing the agent ATG.
1 var ac = function(p1,p2,..) {
2 this.p1=p1; .. Parameter
3 this.v1=0; .. Varaiables
4 Activities
5 this.act = {
6 init: function () {..},
7 a1: function () {..},
8 a2: function () {..},
9 ..
10 end: function () {..}
11 };
12 Error and Signal Handler
13 this.on = {
14 error: function (e) {..},
15 exit: function (e) {..},
16 SIG1: function (v) {..},
17 ..
18 };
19 Transitions
20 this.trans = {
21 init: function () {return a1},
22 a1: function () {..},
23 a2: function () {..},
24 ..
25 };
26 this.next=init;
27 }

III. JAM: THE JAVASCRIPT AGENT MACHINE PLATFORM

JAM consists of different modules entirely implemented
in JS that can be executed by any standalone JS VM or within
WEB browsers. The deployment in Internet and client-side

applications like browsers and the Internet require a Distrib-
uted Co-ordination and Operation System layer (DOS) with a
broker service (details can be found in [8]).
A. Agent Execution Environment

The AIOS is the main execution layer of JAM. It consists
of the sandbox execution environment encapsulating an agent
process, with different privileged API sub-sets depending on
current agent role. Furthermore, the AIOS module imple-
ments the agent process scheduler and IO. The sandbox
environment provides restricted access to a code dictionary
based on the privilege level, enabling code exchange between
agents. Level 0 agents are not privileged to replicate, create,
or kill other agents and to modify their code.
B. Agent Creation and the Sandbox Environment

Agents are either instantiated from an agent class template
or forked from already existing agents. The template is genu-
ine JS with some behavioural modifications, that can be
transformed in the textual JSON+ representation, derived
from the JS Object Notification format (JSON), using a mod-
ified parser and text converter. JSON+ includes additional
function code. Agents are executed always in a sandbox envi-
ronment, which requires always a code-text-code
transformation that is performed on agent creation or migra-
tion, discussed below.
C. Agent Roles

To distinguish at least trusting and untrusting agents, dif-
ferent agent privilege levels were introduces, providing
different AIOS API sets, with level 0 as the lowest level that
grants agents only computational and tuple-space IO state-
ments. Level 1 agents can access the common AIOS API
operations, including agent replication, creation, killing,
sending of signals, and code morphing. Level 2 agents are
capable to negotiate their desired resources on the current
platform, i.e., CPU time and memory limits. An agent of
level n may only create agents up to level n. Level-2 agents
can initially only be created inside the JAM. After a migra-
tion the destination node decides about the privilege level and
can lower it, e.g., considering the agent source being not
trustful. A migrated agent can get a higher privilege level by
negotiation, requiring a valid platform capability with the
appropriate rights.
D. Agent Mobility

Agent mobility, provided by the AIOS moveto(to) state-
ment, requires a process snapshot and the transfer of the data
and control state of the agent process. The control state of an
agent is stored in a reserved agent body variable next, point-
ing to the next activity to be executed. The data state of an
AgentJS agent consists only of the body variables. Thus, the
migration starts with a code-to-text transformation to the
extended JSON+ representation of the agent object, transpor-
tation of the text code to another logical or physical node, and
a back text-to-code conversion with a new sandbox environ-
ment. The agent object is finally passed to the new node
scheduler and can continue execution.
Stefan Bosse - 3 - 2016

DOI: 10.1109/FAS-W.2016.38 Proc. of the 1th FAS*W
E. Agent Interaction
Agents can interact with each other by using a tuple-space

database part of JAM. AIOS provides the common tuple-
space access operations (e.g., out(tup), storing a tuple tup,
inp(pat,function(tup){..}), matching, returning,
and removing a tuple based on pattern pat,). Tuple space
communication is generative, i.e., a tuple can survive the pro-
ducer process/agent. The mark(tmo,tup) operation can be
used to store tuples with a limited lifetime tmo, which are
destroyed by the TS manager automatically. These marking
are extensively used in divide-and.-conquer systems. A sig-
nal SIG can be sent to an agent ID using the
send(ID,SIG,arg) statement, or sent to a group of agents of
a specified agent class AC and within a given local range Δ by
using the broadcast(AC,Δ,SIG,arg) statement.
F. Machine Learning as a Service

Learning agents can access basic machine learning opera-
tions provided as a platform service, offered by model=
learn(datasets, classes, features, alg?) and
feature=classify(model, dataset) primitives. The
agent stores only the learned model, and do not carry any
learning algorithms, leading to a separation of the learning
algorithm (platform) from the data (agent).
G. Security and the Distributed Organization System Layer

In the simplest case JAM nodes are connected by peer-to-
peer links. But large-scale network environments like the
Internet are organized in hierarchical graph-like structures
with changing and basically non-visible interconnections. To
organize JAM nodes in such large-scale and heterogeneous
networks, an additional Distributed Organization System
(DOS) layer was added. Furthermore, privacy, security, and
trust are addressed by the DOS. The fundamental communi-
cation concept of the DOS - that is entirely implemented in JS
(see [8] for details) - are client-server Object-orientated
Remote Procedure Calls (ORPC) [9].

IV. EVENT-BASED AND SELF-* DISTRIBUTED LEARNING

Many sensing applications operating stream-based col-
lecting sensor data centralized and periodically, resulting in
high communication and processing costs. Frequently, most
of the sensor data do not contribute to new information about
the sensing system. Only a few sensors will change their data
beyond a noise margin. In previous work [3] it was shown
that different data processing and distribution behaviours can
be used and implemented with agents, leading to a significant
decrease in network communication activity and a significant
increase of the reliability and Quality-of-Service. Global self-
organization based on a local event-based sensor processing
and global distribution behaviour; Extended with an adaptive
path finding (self-routing) supporting agent migration in
unreliable networks with partially missing connectivity or
nodes by using a hybrid approach of random and attractive
walk behaviour; And local self-organizing agent systems
with divide-and-conquer exploration, distribution, replica-
tion, and interval voting behaviours based on feature marking
(details in [3]).

In this work, decentralized and self-organizing learning
performed by mobile agents is added. Distributed learning

divides a spatial distributed (sensor) data set in local regions
and applies learning to limited local regions, based on a
divide and conquer approach. Decision trees are simple and
compact models derived from learning with training data,
and well suited for agent-based learning. For the sake of sim-
plicity, generic graph-based networks of nodes, e.g. nodes
connected in the Internet, are mapped on a two-dimensional
mesh-grid with a spatial neighbourhood placing, providing
virtual paths for mobile agents based on physical location,
shown in Fig. 2. Each sensor or computational node repre-
sents an agent processing entity, which can be populated with
mobile and immobile agents.

It is possible to perform incremental learning at run-time
using trees [10], very attractive for agent and SoS
approaches. A learned model (carried by the learner agent) is
used to map data set vectors on class values. The tree consists
of nodes testing a specific attribute variable, i.e., a particular
sensor value, creating a path to the leaves of the tree contain-
ing the classification result, e.g., the load situation class.
Among the distribution of the entire learning problem, event-
based activation of learning entities can improve the system
efficiency significantly. Commonly the locally sampled sen-
sor values are used for an event prediction, waking up the
learner agent, which collect neighbourhood data by using a
divide-and-conquer system with explorer child agents. Tradi-
tional Decision Tree Learner (DTL) (e.g., using the ID3 and
C4.5 algorithms) select data set attributes (feature variables)
for decision making only based on information-theoretic
entropy calculation to determine the impurity of training set
columns (i.e., the gain). This is well suited for non-metric
symbolic attribute values, like color names, shapes, and so
on. The distinction probability of two different symbols is
usually 1. Numerical sensor data is noisy and underlies vari-
ations due to the measuring process and the physical world.
Two numeric (sensor) values a and b have only a high dis-
tinction (separation) probability if the uncertainty intervals
[a-σ,a+σ] and [b-σ,b+σ] do not overlap. Among the entropy
of a data set column, the standard deviation σ giving the
value spreading of a specific column must be considered, too.
To improve attribute selection for optimized data set split-
ting, a column ε-interval entropy computation was applied,
that extends each value of a column vector with an uncer-
tainty interval [vi-ε,vi+ε]. Values with overlapping intervals
are considered to be non distinguishable, lowering the
entropy entropy(col,ε) considering the lower/upper bounds of
variable values/intervals. The modified learning algorithm
tries best variable separation and partition based first on the
entropy of a column of the training data sets, and if this is not
possible it performs separation based on the best column
value deviation to find a good feature variable separation.
The prediction (analysis and classification) algorithm is a
hybrid approach consisting of the tree iteration, but uses a
simple nearest-neighbourhood estimation for selecting the
best matching feature values (or intervals) (details in [13]).

The event-based regional learning leads to a set of local
classification results from different learners, which can differ
significantly, i.e., the classification set can contain wrong
predictions.
Stefan Bosse - 4 - 2016

DOI: 10.1109/FAS-W.2016.38 Proc. of the 1th FAS*W
Fig. 2. (Left): The South California Seismic Sensor Network CI [Google Maps], explained in Sec. ; (Right) The logical view of the Sensor Network mapped
on a logical two-dimensional mesh-grid topology with spatial neighbourhood placing, and examples of the population with different mobile and immobile
agents: Node, learner, explorer, voting, and election agents. Non-mobile node agents are present on each node. Sensor nodes create learner agents performing
regional learning and classification. Each sensor node has a set of sensors attached to the node, e.g., vibration/acceleration sensors.

 To suppress wrong local predictions, a global vote elec-
tion with majority decision is applied. All learner agents send
their results to election nodes using voter agents. This elec-
tion result is finally used for the system prediction. The
variance of different votes can be an indicator for the trust of
the election giving the right prediction. Learner agents can
migrate carrying an already learned local model.

V. USE-CASE: DISTRIBUTED EARTHQUAKE ANALYSIS

To demonstrate the capability of the JAM APPS and the
AgentJS programming model, a complex use case was
selected: On-line Distributed Seismic data evaluation by a
hierarchical and self-organizing MAS. It is assumed the seis-
mic stations are connected to the Internet, or any other
communication link suitable for agent migration, and that
they are equipped with the JAM APPS. In this use-case, the
north american network CI (Southern California area) was
chosen with about 180 stations. Different earthquake events
and big test data sets taken from the South California Earth-
quake data center [11] were used and processed by the
learning MAS.

One major challenge is data reduction. The original test
data contains temporal resolved seismic data of at least three
sensors (horizontal East, horizontal North, and vertical accel-
eration sensors) with a time resolution about 10ms, resulting
in a very high-dimensional data vector.

Usually a seismic sensor samples only noise below a
threshold level, mainly resulting from urban vibrations and
sensor noise itself. For machine learning, only specific vibra-
tion activity inside a temporal Region of Interest (ROI) is
relevant. To reduce the high-dimensional seismic data, (I)
The data is down sampled using absolute peak value detec-
tion, (II) searching for a potential temporal ROI, and (III)
down sample the ROI data again with a final magnitude nor-
malization and a 55-value string coding. The process is
shown in Fig. 3. The compacted 55-string coding assign nor-

malized magnitude values to the character range 0, a‐z, and
A‐Z (!), with 0 indicating silence, and ! overflow. If there
were multiple relevant nearby vibration events separated by
"silence", a * character separator is inserted in the string pat-
tern to indicate the temporal space between single patterns.

The vibration (acceleration) is measured in two perpendic-
ular horizontal and one vertical directions.

This gives a significant information for an earthquake rec-
ognition and localization. The data reduction is performed
by a node agent present on each seismic measuring station
platform. Only the compact string patterns are used as an
input for the distributed learning approach. Based on this
data, the learning system should give a prediction of an earth-
quake event and a correlation with past events. To deploy
regional learning for a spatial ROI, seismic stations should be
arranged in a virtual network topology with connectivity
reflecting spatial neighbourhood, e.g., by arranging all station
nodes in a two-dimensional network. The virtual links
between nodes are used by mobile agents for exploration and
distribution paths. They do not necessarily reflect the physi-
cal connectivity of station nodes.

To perform and evaluate the event-based and distributed
learning approach introduced in the previous section, the
SEJAM simulator is used (implemented on the top of JAM). It
consists of multiple full operational virtual JAM nodes con-
nected by virtual links enhanced with a GUI [13]. The

dimensional grid with spatial proximity. Each (virtual) node
in the network starts a resident node agent responsible for
data sampling, reduction, and for the creation and notification
of a learner agent. If the node agents detect vibration activity
beyond a threshold, they will notify the learner agents via
tuple-space interaction. The learner will sent out exploration
agents that collect neighbourhood data, finally back delivered
to the learner agent.

seismic stations of the CI network are mapped on a two-
Stefan Bosse - 5 - 2016

DOI: 10.1109/FAS-W.2016.38 Proc. of the 1th FAS*W
Fig. 3. Seismic data reduction: (I) Downsampling (1:16) with absolute
peak value detection, (II) ROI analysis and ROI clipping, (III) Downsam-
pling (1:64) and scaling/normalization with 55/57-string coding (0,a-z,A-
Z,!,*)

This agent either learns a classification model based on
the new data and an externally injected and available earth-
quake event marking, or applies the collected data to predict
an already learned event. If an event was predicted, voter
agents are sent out to notify election nodes, making the
global decision about an earthquake event. The event-stimu-
lated temporal agent population for the learning and
prediction phases is shown in Fig. 4.

The experimental setup uses Monte-Carlo simulation
methods to add noise and uncertainty to the seismic input
data (10%).

Classification probabilities (mean values from multiple
classification runs, table) and some selected run-time exam-
ples of classifications are shown in Fig. 5, all based on global
majority election. Multiple learning runs were performed to
train the network using a random sequence of different earth-
quake events with noisy data.. During the classification
phase, a random sequence was used, too.

Most earthquake events can be recognized with a high
prediction accuracy. The mean prediction probability for the
correct classification was computed from the vote distribu-
tion of multiple experiments using Monte-Carlo simulation
techniques (creating noisy sensor data).

The transition from learning to prediction is seamless and
bases on the node/learner experience (learned events).

Fig. 4. Temporal agent population with 180 seismic nodes during learn-
ing (training, top) and classification (prediction and voting, bottom) phases.

Fig. 5. (Top) Overall classification probability to hit the right event
(Bottom) Selected classification distributions

M
ag

ni
tu

de
 [a

rb
. u

ni
ts

]
M

ag
ni

tu
de

 [a
rb

. u
ni

ts
]

C
od

e
[s

ca
. u

ni
ts

]

(I)

(II)

(III)

Time [s]

Time [s]

Time [seg. units]

Event Case Mean Prediction Prob. [%]
CI.SILENCE 80.0
CI.2004.045 74.0
CI.2004.167 97.0
CI.2005.006 94.0
CI.2005.106 91.0
CI.2005.163 97.8
Stefan Bosse - 6 - 2016

DOI: 10.1109/FAS-W.2016.38 Proc. of the 1th FAS*W
 Furthermore, after an event is elected by majority, this
result can be back propagated to the learner adding the new
data set as a new training set and performing incremental
learning to improve further prediction accuracy. A typical
learning and ROI exploration run in the entire network
requires about 3-5MB total communication cost if code com-
pression is enabled, which is a reasonable low overhead (with
a peak value about 500-1000 mobile explorer agents operat-
ing in the network). Vote distribution produces only a low
additional communication overhead (less than 1MB in the
entire network).

VI. OUTLOOK: UBIQUITOUS DEVICES AS AN EXTENSION

In [12], smart phones were successfully used to enhance
the earthquake prediction by extending the seismic database
with sensor data from mobile devices. In [16], an open partic-
ipatory platform for privacy-preserving social mining
(Planetary Nervous System) was introduced, i.e., basically a
virtualization of sensors that can profit from the proposed
agent framework. The previously introduced learning system
deployed in the seismic station network using the local sta-
tion data can be extended by devices from such ubiquitous
networks, which can execute the learner agents collecting
sensor data (vibration, air pressure, temperature) from such
devices. In contrast to seismic stations located at fixed and
well known positions, mobile devices change their position
dynamically. The mobile learner carrying an already learned
spatially local model in a specific region, can migrate to
mobile devices in this region and performs further learning or
prediction. The extension of earthquake analysis with a large
number of ubiquitous mobile devices can aid to improve
disaster management significantly by providing spatially fine
resolved sensor and event data covered by a high node den-
sity. Furthermore, building sensor networks can be included
providing additional information about the buildings (health)
state (illustrated in Fig. 1, right side).

VII. CONCLUSIONS

Distributed learning with agents basing on local region
perception and global voting was successfully deployed for
seismic data analysis and earthquake recognition with a good
prediction accuracy. It offers a self-organizing and robust
learning approach. To suppress wrong local predictions, a
global majority vote election is applied.

Agents are implemented with mobile JavaScript code
(AgentJS) that can be modified at run-time by agents, proc-
essed by a modular and portable agent platform JAM. ML is
provided as a service, splitting algorithms (platform) from
model data (agent). JAM is implemented entirely in JS satis-
fying low-resource requirements. The presented approach
enables the development of perceptive clouds and self-organ-
izing smart systems of the future integrated in daily use
computing environments and the Internet. Agents can
migrate between different host platforms including WEB
browsers by migrating the program code of the agent, embed-
ding the state and the data of an agent. The entire JAM and
DOS application requires about 600kB of compacted text
code. Due to the autonomy and loosely coupling of AgentJS
agents, a high degree of adaptivity and robustness is supplied,

servicing as a pre-requisite for self-organizing systems in
strong heterogeneous environments.
REFERENCES

[1] M. Caridi and A. Sianesi, Multi-agent systems in production
planning and control: An application to the scheduling of
mixed-model assembly lines, Int. J. Production Economics, vol.
68, pp. 29–42, 2000.

[2] M. Pechoucek, V. Marík, 2008. Industrial deployment of multi-
agent technologies: review and selected case studies. Auton.
Agent. Multi-Agent Syst. 17 (3), 397–431

[3] S. Bosse, A. Lechleiter, A hybrid approach for Structural
Monitoring with self-organizing multi-agent systems and in-
verse numerical methods in material-embedded sensor net-
wo rks , M e c h a t r o n i c s , 20 1 5 , d o i : 1 0 . 1 0 16 /
j.mechatronics.2015.08.005

[4] D. Lehmhus, T. Wuest, S. Wellsandt, S. Bosse, T. Kaihara, K.-
D. Thoben, and M. Busse, Cloud-Based Automated Design
and Additive Manufacturing: A Usage Data-Enabled Para-
digm Shift, Sensors MDPI, vol. 15, no. 12, pp. 32079–32122,
2015, DOI 10.3390/s151229905.

[5] V. Di Lecce, M. Calabrese, and C. Martines, From Sensors to
Applications: A Proposal to Fill the Gap, Sensors & Trans-
ducers, vol. 18, no. Special Isse, pp. 5–13, 2013.

[6] R. H. Bordini and J. F. Hübner, BDI agent programming in
AgentSpeak using Jason, Computational Logic in Multi-Agent
Systems, Volume 3900 of the series Lecture Notes in Compu-
ter Science, Springer, 2006, pp. 143-164.

[7] L. Chunlina, L. Zhengdinga, L. Layuanb, and Z. Shuzhia, A
mobile agent platform based on tuple space coordination, Ad-
vances in Engineering Software, vol. 33, no. 4, pp. 215–225,
2002

[8] S. Bosse, Unified Distributed Computing and Co-ordination in
Pervasive/Ubiquitous Networks with Mobile Multi-Agent Sys-
tems using a Modular and Portable Agent Code Processing
Platform, in The Proc. of the 6th EUSPN 2015, Procedia Com-
puter Science.

[9] S. J. Mullender and G. van Rossum, Amoeba: A Distributed
Operating System for the 1990s, IEEE Computer, vol. 23, no.
5, pp. 44–53, 1990

[10] F. Jiang, Y. Sui, and C. Cao, An incremental decision tree al-
gorithm based on rough sets and its application in intrusion
detection, Artif Intell Rev, vol. 40, pp. 517–530, 2013.

[11] http://scedc.caltech.edu/research-tools/eewtesting.html
[12] Q. Kong, R. M. Allen, L. Schreier, and Y.-W. Kwon, My-

Shake: A smartphone seismic network for earthquake early
warning and beyond, Sci. Adv., vol. 2, 2016.

[13] S. Bosse, Structural Monitoring with Distributed-Regional
and Event-based NN-Decision Tree Learning using Mobile
Multi-Agent Systems and common JavaScript platforms, Pro-
cedia Technol., SysInt Conference 2016

[14] F. Bellifemine and G. Caire, Developing Multi-Agent Systems
with JADE. John Wiley & Sons, Ltd, 2007.

[15] N. Minar, R. Burkhart, C. Langton, and M. Askenazi, The
Swarm Simulation System : A Toolkit for Building Multi-agent
Simulations, Working Paper 96-06-042, Santa Fe Institute,
Santa Fe., 1996.

[16] E. Pournaras, I. Moise, D. Helbing, Privacy-preserving ubiq-
uitous social mining via modular and compositional virtual
sensors. In 2015 IEEE 29th International Conference on Ad-
vanced Information Networking and Applications (pp. 332-
338).
Stefan Bosse - 7 - 2016

	I. Introduction and Overview
	II. AgenJS: The JS Agent Behaviour Model
	III. JAM: The JavaScript Agent Machine Platform
	A. Agent Execution Environment
	B. Agent Creation and the Sandbox Environment
	C. Agent Roles
	D. Agent Mobility
	E. Agent Interaction
	F. Machine Learning as a Service
	G. Security and the Distributed Organization System Layer
	IV. Event-based and Self-* Distributed Learning
	V. Use-case: Distributed Earthquake Analysis
	VI. Outlook: Ubiquitous Devices as an Extension
	VII. Conclusions

