

Combining Simulation and Machine-Learning for Real-Time Load Identification in Sensorial Materials

Florian Pantke¹, Stefan Bosse¹, Dirk Lehmhus¹, Michael Lawo¹, Matthias Busse^{1,2}

- ¹ ISIS Sensorial Materials Scientific Centre, Univ. of Bremen
- ² Fraunhofer IFAM, Bremen

-

Introduction

ISIS Sensorial Materials Scientific Centre

- ISIS: Integrated Solutions in Sensorial Structure Engineering
- Scientific centre at the University of Bremen, Germany
- Founded in Nov. 2008
- Approx. 60 members from
 - · Production engineering,
 - · Physics/electrical engineering,
 - · Computer science, robotics, and
 - Biological/chemical engineering

Materials

Manufacturing
Technology

Information Sciences, Energy Supply and Management

Technology Synthesis,

Florian Pantke et al. -1 - 2011

Outline

In this presentation:

- Motivation: Sensorial Materials
- Vision: Monitoring Complex Structures with Intelligent Agents
- Our Machine-Learning Approach to Real-Time Load Identification
- Evaluation Scenario: A Simple Rubber Plate
- Conclusion and Outlook

Motivation

Structural Analysis vs. System Identification

- In classical structural analysis we calculate the system answer based on a predefined model e.g. for the material and the boundary conditions of the system.
 - → system answer, e.g. displacements/strain
- In classical material science we apply sensors to verify our models (e.g. measuring displacements or strains).
 - → material laws
- In classical system identification we perform a series of measures of system answers to derive the system properties (model).
 - → system characteristics, e.g. stiffness

Motivation

Structural Analysis vs. System Identification

Basic approaches – different perspectives

System identification

Structural analysis

Motivation

Sensorial Material

- "Sensorisation" means to equip technical structures with an analogue of a nervous system by providing a network of sensors, communication facilities linking these and specific hardware as well as computational methods to derive meaning from their combined signals.
- Sensors detect if "overloading" occurs:
 - Strain is beyond the yield limit
 - A predefined number of load cycles was reached

— . . .

Instead of designing once and testing event-based or in predefined intervals, the material is continuously monitoring itself by means of sensors.

Motivation

Increase Sensor Density of Sensorial Structures

© Fraunhofer IFAM

Structure Monitoring With Intelligent Agents

Our Approach Towards Sensorial Structures

Evaluation Setup

Simple Nitrile Rubber Plate Scenario

- Application of different load cases
 - In our evaluation:
 - 150 different load positions
 - Three different masses (103 g, 207 g, 306 g)
- Can we infer properties of an unknown load case from only a few observed deformation effects?

In our evaluation:

 Can we infer load position, load mass, and displacement vectors especially in-between sensor positions?

Sensor Input

Optical Surface Metrology Techniques

- Shearograhy / Fringe Projection to be used as reference to measure the *real* deformations that occurred
- Naturally, the data obtained by these methods will not be free of noise either...

Load Inference Prototype

Simple Nitrile Rubber Plate Scenario

ISIS Functional Mockup:

- NBR-60 rubber plate 360 x 260 x 3 mm
- Fixed at all four edges
- Weights placed on top face
- Strain measurements on bottom face
- Camera records position and mass of loads

Load Inference Prototype

Simple Nitrile Rubber Plate Scenario

ISIS Functional Mockup:

- NBR-60 rubber plate 360 x 260 x 3 mm
- Fixed at all four edges
- Weights placed on top face
- Strain measurements on bottom face
- Camera records position and mass of loads

Load Inference Prototype

Realisation of a Robust Sensor Network

(Digital circuits currently miniaturisable to approx. 6 mm² per node / 1-2 cm² with analogue circuits)

Evaluation Setup

Machine Learning Methods

k-Nearest-Neighbour C4.5 Decision Trees

306 g

103 g

103 g

 $v_{1} < 1$ $v_{2} < 0.8$ $v_{2} < 0.8$ $v_{3} < 0.8$ $v_{4} < 0.3$ $v_{4} \ge 0.3$ $v_{5} < 0.8$ $v_{6} < 0.8$ $v_{7} < 0.8$ $v_{8} < 0.8$ $v_{8} < 0.8$ $v_{8} < 0.8$

Neural Networks

Numerical Regression of Load Position, Mass, and Displacement Vectors

Mass Classification

Numerical Regression of Load Position and Mass

Experimental Results

k-NN Location Error

Vector Difference Between Predicted and Actual Load Position for 103 g:

Experimental Results

k-NN Location Error

Vector Difference Between Predicted and Actual Load Position for 306 g:

Experimental Results

k-NN Location Error

Vector Difference Between Predicted and Actual Load Position for 306 g:

Experimental Results k-NN Displacement Error

Median Relative Difference Between Predicted and Actual Displacement:

Experimental Results

k-NN Location Error

Difference Between Predicted and Actual Load Position (Length in mm):

Experimental Results

k-NN Location Error

Difference Between Predicted and Actual Load Position (Length in mm):

Experimental Results Perceptron Location Error

Difference Between Predicted and Actual Load Position (Length in mm):

Experimental Results

k-NN Mass Error

Absolute Weight Difference Between Predicted and Actual Load (in g):

Experimental Results C4.5 Classification Error

Our Approach Towards Sensorial Structures

Florian Pantke et al. - 13 - 2011

Structure Monitoring With Intelligent Agents

Conclusion and Outlook

Achieved so far

- Implementation of a robust sensor network and conceptualization of a functional mockup system
- Shown: Simple machine learning methods already yield acceptable results on noisy sensor data.
- The machine learning algorithms and learned models are simple and small enough to be integrated into a System-on-a-Chip

Next steps

- Further improvement of electric signal measurement components (e.g., reduction of noise).
- Utilization/development of more elaborate machine learning approaches with better noise tolerance.
- Examination of distributed Multi-Agent monitoring approaches (e.g., organisation, communication).