
1

Smart Energy Management and Low-Power Design of Sensor and Actua-
tor Nodes on Algorithmic Level for Self-Powered Sensorial Materials and
Robotics

Stefan Bosse(1,3), Thomas Behrmann(2,3)

University of Bremen, Department Computer Science, Workgroup Robotics, Germa-
ny(1), BIMAQ Bremen Institute for Metrology, Automation and Quality Science(2),
University of Bremen, ISIS Sensorial Materials Scientific Centre, Germany(3)

Abstract
We propose and demonstrate a design methodology for embedded systems satis-
fying low power requirements suitable for self-powered sensor and actuator nodes.
This design methodology focuses on 1. smart energy management at runtime and
2. application-specific System-On-Chip (SoC) design at design time, contributing to
low-power systems on both algorithmic and technology level.
Smart energy management is performed spatially at runtime by a behaviour-based
or state-action-driven selection from a set of different (implemented) algorithms clas-
sified by their demand of computation power, and temporally by varying data pro-
cessing rates. It can be shown that power/energy consumption of an application-
specific SoC design depends strongly on computation complexity.
Signal and control processing is modelled on abstract level using signal flow dia-
grams. These signal flow graphs are mapped to Petri Nets to enable direct high-level
synthesis of digital SoC circuits using a multi-process architecture with the Commu-
nicating-Sequential-Process model on execution level. Power analysis using simu-
lation techniques on gate-level provides input for the algorithmic selection during
runtime of the system, leading to a closed-loop design flow. Additionally, the signal-
flow approach enables power management by varying the signal flow and data pro-
cessing rates depending on actual energy consumption, estimated energy deposit,
and required Quality-of-Service.

1. Introduction and Overview

Today there is an increasing demand for miniaturized smart sensors embedded in
sensorial materials and smart actuators. Each sensor and actuator node provides
some kind of sensor, electronics, data processing, and communication. With in-
creasing miniaturization and sensor-actuator density, decentralized network and
data processing architectures are preferred, but energy supply is still centralized.
Using local energy-harvesting technologies, a decentralized energy supply can be
provided, too. Energy harvesting, for example using solar cells, photo diodes

DOI:10.1117/12.888124 Proc. of the SPIE MT 2011
sourced by optical fibers, or thermo-electrical sources actually delivers only low
electrical power (due to technology or size constraints).
We propose and demonstrate a design methodology for embedded systems satis-

Stefan Bosse et al. - 1 - 2011

2

fying low-power requirements suitable for self-powered sensor and actuator nodes.
This design methodology focuses on

1. smart energy management at runtime using advanced computer science algo-
rithms (artifical intelligence) and

2. application-specific System-On-Chip (SoC) design using high-level synthesis at
design time. Low-power systems are designed on algorithmic rather than on
technological level.

In contrast to various other approaches targeting algorithms and architectures with
high computational effort, for example [5], the proposed smart energy manage-
ment is performed spatially at runtime by a selection from a set of different (imple-
mented) algorithms classified by their demand of computation power, and
temporally by varying data processing rates. It can be shown that power/energy
consumption of an application-specific SoC design strongly depends on computa-
tion complexity.
For example, a classical Proportional-Integral-Differential (PID) controller used for
feedback position control of an actuator requires basically only the P-part; the I- and
D-parts only increase position accuracy and response dynamics which are select-
able. Depending on the actual state of the system and the actual and estimated fu-
ture energy deposit, suitable algorithms can be selected and executed optimizing
the Quality-of-Service (QoS) and the trade-off between accuracy and economy.
Signal and control processing is modelled on abstract algorithmic level using signal
flow diagrams. These signal flow graphs are mapped to Petri Nets to enable direct
high-level synthesis of digital SoC circuits using a multi-process architecture with the
Communicating-Sequential-Process model on execution level and the high-level
synthesis framework ConPro [1].
Power analysis using simulation techniques on gate-level provides input for the al-
gorithmic selection during runtime of the system leading to a closed-loop design
flow. Additionally, the signal-flow approach enables power management by varying
the signal flow rate which will be discussed later.

2. Design Flow

The design flow for low-power embedded data processing and control systems
should be demonstrated using a concrete example. The system is modelled on an
abstract level using signal flow diagrams [3].

Figure 1 shows a composition of a complete feedback-controlled system consisting
of sensor signal acquisition (ADC), filtering, an error controller with a proportional,
integral, and differential sub-controller [4], and finally a signal generator (DAC) driv-

DOI:10.1117/12.888124 Proc. of the SPIE MT 2011
ing an actuator. The controller is used to control the position of an actuator. The con-
trol error is defined by the difference of the acquired position signal X(S) and the
setable position parameter S’.
This initial specification is used to derive 1. a multi-process programming model,
and 2. a hardware model for a SoC design on Register-Transfer level. Furthermore,

Stefan Bosse et al. - 2 - 2011

3
the signal flow diagram provides input for energy optimization at synthesis and run-
time.

 Figure 1. Composition and modelling of a digital control system with signal flow diagrams

The signal flow diagram is first transformed into a S/T Petri Net representation which
is shown in figure 2. Functional blocks are mapped to transitions, and states repre-
sent data which is exchanged between those functional blocks. The partitioning of
functional blocks to transitions of the net can be performed at different composition
and complexity levels. The signal flow diagram from figure 1 was partitioned using
complex blocks (merging low-level blocks like multipliers and adders) to reduce
communication complexity (and data processing latency).
Sensor data (X) is acquired periodically and passed to the data processing system.
A token of the net is equal to a data set of one computation processed by the func-
tional blocks. The functional blocks P,I, and D are placed in concurrent paths of the
net.
The Petri Net is then used 1. to derive the communication architecture, and 2. to de-
termine an initial configuration for the communication network. Functional blocks
with a feedback path require the injection of initial tokens in the appropiate states
(not required in the example).
States of the net are mapped to buffered communication channels and transitions
are mapped to concurrently executing processes - each with sequential instruction

ADC DACPID

K

KI Z-1

Z-11 -

Z-1(1-)KD

S

S'

U

-1

K

Z-1

Z-1

Z-1

KI

KD

KD
X

A1

Z-1 S

A2

E

U

F

UD

UI

UK

E

E

USX

DOI:10.1117/12.888124 Proc. of the SPIE MT 2011
processing - using the ConPro programming language [1], shown in figure 2, too.
Forked states indicate concurrency in the Petri Net flow. Exploring concurrency in
signal flow diagrams using Petri Nets reduces latency for the computation of one
data set. Also pipelining can decrease latency of a data set stream significantly, de-

Stefan Bosse et al. - 3 - 2011

4

rived again from the Petri Net representation.

 Figure 2. Mapping of the signal flow diagram to a Petri Net and mapping of Petri Net to com-
munication channels and sequential processes using the ConPro programming language.

 Figure 3. Overall design flow for low power embedded systems using the SiCA and ConPro
Synthesis and Analysis framework (Dotted boxes are actually under development). The
SiCA design flow uses a graph-based virtual database for advanced data management.

F

X

E

P I D

channel c_x:int[12] with model=buffered;
channel c_s:int[12] with model=buffered;
channel c_e1,c_e2,c_e3:int[12] ...
channel c_u1,c_u2,c_u3:int[12] ...

process p_i:
begin
 reg t1,t2,z1,z2: int[DATAWIDTH4];
 always do
 begin
 t1 <- c_e2;
 t1 <- z1, z1 <- t1;
 t1 <- t1 * KI;
 t1 <- t1 asr 4;
 t2 <- t1 + z2,
 z2 <- t2;
 c_u2 <- t2;
 end;
end;

U

Signal Flow

ConPro
Programming Model

Petri Net

SiCA
Signal Flow

Compiler

ConPro
Compiler

Multi-Process
Programming Model

RTL/VHDL

SiCA
Petri Net
Compiler

FPGA
Synthesis

Standard Cell
Library ASIC

Synthesis

SiCA
Postsynthesis

Compiler

Hardware Behaviour
Model

SiCA
Library

Compiler

Standard Cell
Library

Specification

Signal Flow
Specification

DOI:10.1117/12.888124 Proc. of the SPIE MT 2011
Gatel Level
SoC Hardware

SiCA -Asimut
Gatelevel
Simulator

SiCA
Power

Analyzer

Stefan Bosse et al. - 4 - 2011

5
The complete design flow is shown in figure 3. It is a closed-loop design flow with
feedback from power analysis. Results from power analysis are used to make mod-
ifications and optimizations on algorithmic level (signal flow and programming model
level). The SiCA design flow consists of several analyzer and compiler modules, and
uses a graph-based virtual database for advanced data management and inter-
module data exchange.

3. Energy Analysis

The derived multi-process programming model was synthesized to a digital logic
SoC using high-level synthesis. For simulation, gate-level synthesis was performed
with a standard logic cell technology library. The resulting net-list was analyzed with
an event-driven simulator, calculating the overall cell activity for each time unit, de-
fined by terms of cell output changes. Synthesis and analysis were performed using
the Concurrent Programming (ConPro) compiler [1] and the Silicium-Compiler-and-
Analyzer framework (SiCA).
The SoC circuit activity correlates strongly with a computation of a new data set (with
sensor data input sampled periodically) and the computation complexity, shown in
figure 4.
The logic cell activity of the circuit has strong peaks around the computation of a new
output value U. About every 140 clock cycles a new input value X is generated, trig-
gering the calculation of a new output value U.
The first five data sets are computated with an enabled P-part of the controller only.
After the fifth computation, the I and D parts were enabled, too. This results in an
increase of circuit activity of about 50%.
But power dissipation cannot be estimated directly from this cell activity. Logic cells
consist of a network of (paired) transistors. Power dissipation of a CMOS circuit de-
pends proportionally from the transistor switching activity. Simulation results for the
controller are shown in figure 5 (using SiCA, too). There is only weak correlation be-
tween data processing activity (and computation complexity) and power dissipation
due to clocking activity of registers.
Power dissipation can only be estimated from the above circuit cell activity if clock-
gated registers are assumed [2]. The principle-architecture of gated registers is
shown in figure 6. The clock gating prevents switching activity of the register cell if
there is no change of input data. Fine-grained inherent clock gating is a requirement
for the proposed low-power design method and enables a strong correlation be-
tween computation activity (and hence algorithmic complexity) with the power dissi-
pation of the data processing system.
Results of such a modified control system with clock-gated registers are shown in
figure 7. There is again a significant increase of transistor switching activity of about

DOI:10.1117/12.888124 Proc. of the SPIE MT 2011
Stefan Bosse et al. - 5 - 2011

6
30% if the two different computation levels (P, PID) are compared.

 Figure 4. Averaged SoC cell activity correlates strongly with computation and signal/data
flow. After obtaining the fifth result value U, the I and D computational blocks are switched
on.

 Figure 5. Averaged SoC transistor switching activity of the circuit retrieved from simulation.
Power dissipation is proportional to transistor activity.

0 200 400 600 800 1000
Clock Cycles0

20

40

60

80

100

120

140

Cell Activity

Clock Cycle

Digcon1

Processing of
a data set with
simplified algorithm

Processing of
a data set with
different algorithm
+50% activity

0 200 400 600 800 1000
Clock Cycles0

200

400

600

800

1000

1200

1400

Transistor Activity

Clock Cycle

Digcon1

DOI:10.1117/12.888124 Proc. of the SPIE MT 2011
Stefan Bosse et al. - 6 - 2011

7
 Figure 6. Principle architecture for clock gating of registers required for the implementation

of low power embedded systems. The clock gate prevents exaustive transistor switching
activity (and hence power dissipation) inside the register cell in the case of no data change
(D=Q).

 Figure 7. Averaged SoC transistor switching activity of the circuit retrieved from simulation.
Using clock-gated registers results again in strong correlation between data processing
activity (and computation complexity) and power dissipation.

The power dissipation of the controller can be changed during runtime 1. by
selecting different computation levels, and 2. by varying the data processing
rate.

4. Smart Energy Management at Runtime

Self-powered systems must deal with a limited amount of energy during runtime.
The energy charge in future is uncertain. Smart energy management should handle

Conventional
Register

D

Q

CLK

Clock-Gated
Register

D

CLK

Q

≠

0 200 400 600 800 1000
Clock Cycles0

100

200

300

400

500

Transistor Activity

Clock Cycle

Digcon1

DOI:10.1117/12.888124 Proc. of the SPIE MT 2011
the conjunction of energy demand and energy conversation.
Methods from artificial intelligence (AI) can be used to manage energy at runtime
with dynamic parameter adaption and algorithmic selection. AI methods differ in
complexity, thus only few are suitable to be embedded in microchips. Suitable meth-
ods are for example constraints nets and decision trees in conjunction with machine

Stefan Bosse et al. - 7 - 2011

8
learning approaches.
A simulation of a complex sensor-actuator system implementing the PID controller
from figure 1 should demonstrate the benefits of using a decision tree method for
dynamic parameter adaption which can be retrieved from machine learning. Param-
eters to be controlled are data processing rate R and the algorithmic level L (1: only
P, 2: P+I+D controller). The controller performs minimization of the position error of
the actuator, that means the difference between a desired and a measured (angular)
position.
The system is charged with a stochastic energy source and discharged by compu-
tation and actuator activity. The power and energy required for computation can be
calculated from the results of the power analysis, the power and energy required for
actuator activity can be calculated by simplified physical simulation.
The decision tree used in the simulated system is shown in figure 8. A decision tree
is system and environment specific and must be derived for each different system.
Parameters are modelled with a discrete set of values related with a discrete set of
cost values, shown in definition 1.The cost values are used to calculate the overall
runtime costs of the system. The goal is to minimize the overal costs and to maxi-
mize the energy conversation, but still serving the quality of the service to be provid-
ed (in this case the acurate position control of the actuator).
The smart energy algorithms used for the system simulation are shown in algorithm
1. The estimate procedure calculates actual computation and quality-of-service-
costs for the system, and the choose procedure calculates optimized values for the
data processing rate and algorithmic level based on actual system state. The costs
are derived from the previous power analysis results. The costs function returns a
linear interpolated cost value of the particular parameter.
The basic concepts of the simulation are shown in algorithm 2. The charge proce-
dure stores energy in the system from a random source. The controller proce-
dure implements the selectable P/PI(D) controller, and finally the stimuli
procedure simulates the simplified mechanical actor behaviour due to a drive signal
calculated by the controller.

 Definition 1. System parameter value sets and related cost values.

Data processing rate R={1,5,10,50,100} [milli seconds]
 R_C={100,50,10,5,1}
Algorithmic level L={1,2}
 L_C={100,150} derived from power analysis
Actuator position error E={0,5,10,100} [arb. units]
 E_C={0,250,500,5000}

 Algorithm 1. Smart energy management algorithms

DOI:10.1117/12.888124 Proc. of the SPIE MT 2011
1 VAR
2 level,rate: actual algorithmic level and data processing rate
3 error: actual position control error
4 runtime: passed runtime in time units

Stefan Bosse et al. - 8 - 2011

9
5 energy: energy storage in arb. units
6 cost: quality of service costs
7 PROCEDURE Estimate:
8 for each time unit do
9 delta := Costs(level)*Costs(rate)+Costs(error);
10 energy := energy - delta;
11 quality := Average(runtime)/Average(cost);
12 runtime := runtime + 1;
13 cost := cost + Costs(error);
14 Choose(level,rate);
15 PROCEDURE Choose:
16 Use decision tree to choose optimal {level,rate} values based on
17 averaged quality and actual error

 Algorithm 2. System simulation algorithms

1 VAR
2 pos_act,pos_set: actual and desired actuator position
3 PROCEDURE Stimuli:
4 each 500th time unit do: pos_set := -pos_set;
5 pos_act := pos_act + drive/4;
6 delta := pos_act - pos_set;
7 error := min 100 (abs delta);
8 PROCEDURE Charge:
9 energy := energy + Random(CHARGE_MAX)
10 PROCEDURE Controller:
11 case l is
12 when 1: (* P-controller *)
13 for each rate time unit do:
14 delta := pos_act-pos_set;
15 S := delta*KD/100;
16 drive := S;
17 when 2: (* PI controller *)
18 for each rate time unit do:
19 delta := pos_act-pos_set;
20 S := delta*KD/100;
21 Z1’ := Z1, Z2’ := Z2, Z1 := delta;
22 T := (Z1’*KI)/100+Z2’;
23 Z2 := T;
24 drive := S+T;

DOI:10.1117/12.888124 Proc. of the SPIE MT 2011
Stefan Bosse et al. - 9 - 2011

0
1
 Figure 8. Decision tree used for energy optimization at runtime based on parameters. Input

parameters: Error, Quality=Runtime/Error. Output parameters: Data processing rate
R={1,5,10,20,100}, Algorithmic level L={P:1,PID:2}

Figure 9 shows simulation results of the complex sensor-actuator system imple-
menting the PID controller. The system runs always out of energy if fixed parameter
settings {Rate,Level} are used, regardless of the parameter values. But if dynamic
parameter adaption based on the decision tree method and system feedback is
used, the system can reach a stable state balancing energy charging and discharg-
ing.

 Figure 9. System simulation with different runtime behaviours using a decision tree which
can be retrieved by machine learning methods. Parameters: Data processing
rate={1,5,10,20,100}, Algorithmic level={P:1,PID:2}

5. Summary and Outlook

QualityQuality

L=2
R=5

Error

L=2
R=10

L=2
R=10

L=2
R=20

L=1
R=100

<=5

>=0.0003<0.0003>= 0.0003<0.0003

>5>30

500 1000 1500 2000

200000

400000

600000

800000

1.x 106

Energy [Arb. Units]

Time [Arb. Units]

Dynamic Run Using
Decision Tree Parameter
Optimization

Static Parameter Run
Rate=20, Level=1
Rate=10, Level=1
Rate=20, Level=2
Rate=100, Level=1

DOI:10.1117/12.888124 Proc. of the SPIE MT 2011
A new design methodology and architecture was presented for the design of low
power embedded systemes preferred for self-powering with energy harvesting tech-
nologies. Energy aware design is mainly done on algorithmic level. The data pro-
cessing of the embedded system is modelled on a high abstract level using signal

Stefan Bosse et al. - 10 - 2011

1
1
flow diagrams. The signal flow diagram is partitioned and mapped to a Petri Net to
explore concurrency and to derive a suitable communication architecture. This com-
munication architecture is used in conjunction with a derived concurrent multi-pro-
cess model, finally mapped to a application specific System-On-Chip design using
high-level synthesis, which can be implemented in ASIC and FPGA technologies.
Additionally a smart energy method was demonstrated using decision tree and ma-
chine learning methods to improve the runtime behaviour of the implemented sys-
tem under various conditions. Smart energy management relies on the results of
power analysis and optimizes data processing rates and the selection of different al-
gorithms with different complexity, overall optimizing the quality-of-service of the
system.
Future work must investigate suitable machine learning methodologies to derive the
decision trees.

6. Bibliography

[1] S. Bosse, Hardware Synthesis of Complex System-on-Chip-Designs for Em-
bedded Systems Using a Behavioural Programming and Multi-Process Mod-
el, Proceedings of the 55th IWK - Internationales Wissenschaftliches
Kolloquium, Session C4, Ilmenau, 13 - 17 Sept. 2010

[2] Y. Xia and A.E.A. Almaini., Differential CMOS edge-triggered flip-flop with
clock-gating, ELECTRONICS LETTERS, Vol. 3rd January2002 Vol. 38 No. IJ

[3] T. Behrmann, C. Zschippig, M. Lemmel, S. Bosse, Toolbox for Energy Anal-
ysis and Simulation of self-powered Sensor Nodes, Proceedings of the 55th
IWK - Internationales Wissenschaftliches Kolloquium, Session A3, Ilmenau,
13 - 17 Sept. 2010

[4] R. Isermann, Digital Control Systems, Springer, 1989
[5] D.Y.R. Nagesh, J.V.V Krishna,. S.S Tulasiram, A real-time architecture for

smart energy management, IEEE Innovative Smart Grid Technologies (IS-
GT), 2010 Conference

DOI:10.1117/12.888124 Proc. of the SPIE MT 2011
Stefan Bosse et al. - 11 - 2011

	1. Introduction and Overview
	2. Design Flow
	3. Energy Analysis
	4. Smart Energy Management at Runtime
	5. Summary and Outlook
	6. Bibliography

