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Abstract
A new design methodology for parallel and distributed embedded systems is pre-
sented using the behavioural hardware compiler ConPro providing an imperative 
programming model based on concurrently communicating sequential processes 
(CSP) with an extensive set of interprocess-communication primitives and guarded 
atomic actions. The programming language and the compiler-based synthesis pro-
cess enables the design of constrained power- and resource-aware embedded sys-
tems with pure Register-Transfer-Logic (RTL) efficiently mapped to FPGA and ASIC 
technologies. Concurrency is modelled explicitly on control- and datapath level. Ad-
ditionally, concurrency on data-path level can be automatically explored and opti-
mized  by different schedulers.
The CSP programming model can be synthesized to hardware (SoC) and software 
(C,ML) models and targets.   A common source for both hardware and software im-
plementation with identical functional behaviour is used.
Processes and objects of the entire design can be distributed on different hardware 
and software platforms, for example, several FPGA components and software exe-
cuted on several microprocessors, providing a parallel and distributed system. Inter-
system-, interprocess-, and object communication is automatically implemented 
with serial links, not visible on programming level.
The presented design methodology has the benefit of high modularity, freedom of 
choice of target technologies, and system architecture. Algorithms can be well 
matched to and distributed on different suitable execution platforms and implemen-
tation technologies, using a unique programming model, providing a balance of con-
currency and resource complexity.
An extended case study of a communication protocol used in high-density sensor-
actuator networks should demonstrate and compare the design of a hardware and 
software target. The communication protocol is suited for high-density intra- and in-
terchip networks. 
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1. Introduction and Overview

Embedded systems used for control, for example in Cyber-Physical-Systems (CPS), 
perform the monitoring and control of complex physical processes using applica-
tions running on dedicated execution platforms in a resource-constrained manner. 
System-On-Chip designs are preferred for high miniaturization and low-power appli-
cations. Traditionally, program-controlled multi-processor architectures are used to 
provide the execution platform, but application-specific digital logic gains more im-
portance. 
There are two different ways to model and  implement System-on-Chip-Designs 
(SoC) used in those embedded systems: using  1. a  structural and/or 2. a  behav-
ioural level. The structural level decomposes a SoC into independent submodules -
processor cores (or data processing units in general), memories, and peripherials -
interacting with each other using centralized or distributed networks and communi-
cation protocols. The behavioural level usually describes the behaviour of the full de-
sign interacting with the environment without detailed assumptions about system 
architecture, generally a more sophisticated modelling level. In the context of CPS, 
these are mainly reactive systems with dominant and complex control paths. The 
major contribution to concurrency appears on control path level which can be explic-
itly modelled on algorithmic  level. 
A new  SoC-design methodology is presented using the behavioural hardware com-
piler ConPro providing an imperative programming model based on concurrently 
communicating sequential processes (CSP) [7] and guarded atomic actions [4] with 
an extensive set of interprocess-communication primitives. The programming lan-
guage and the compiler-based synthesis flow enables the design of application-spe-
cific constrained power- and resource-aware embedded systems on Register-
Transfer-Level efficiently mapped to FPGA and ASIC technologies. Concurrency is 
modelled explicitly on control- and data-path level. Additionally, concurrency on da-
ta- path level can be automatically explored and optimized by different schedulers. 
Hardware blocks (including IPC and externally modelled) can be accessed transpar-
ently from programming level with a generic object-orientated approach.
The CSP programming model can be synthesized to different other levels, not only 
used for hardware circuit synthesis: software models (C, ML),  intermediate μCode, 
RT state level, and finally to hardware behaviour level, e.g., VHDL.  A common 
source for both hardware and software implementation with identical functional be-
haviour matches different embedded architecture levels and enables code reuse. 
The metalanguage ML (OCaML) is well suited for simulation and test-pattern based 
functional model checking.
Why a new language? Traditional programming languages like C are designed for 
sequential programming only, and concurrency is present to some extent through 
the use of libraries [1]. Concurrency should be controlled by first-class language 
constructs [3] to enable optimized design of massive parallel systems and hardware 
synthesis. There are several examples of new designed languages for concurrent 

programming, like SystemJ [1] or X10 [3]. C-like languages used for hardware-syn-
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thesis are wide spread, but are not fully suitable for RTL synthesis due to strong de-
pendency on memory model (pointers) and the missing concurrency model.
What is novel compared with other high-level-synthesis approaches? One language 
targets both concurrent software and hardware programming, the hardware synthe-
sis process can be fine grained controlled on programming  level using parameter-
ized blocks. A traditional compiler approach with μCode intermediate representation 
(without loss of concurrency) enables fast and optimized synthesis. Object-orientat-
ed access of hardware blocks using the External Module Interface (EMI) - part of the 
programming model - provides a modern and transparent interface for both software 
and hardware designers, closing the gap between software and hardware models. 
The extended set of IPC primitives enables concurrent programming of complex 
control and data processing systems.
Processes and objects of the entire design can be distributed on different hardware 
and software platforms, for example, several FPGA components and software exe-
cuted on several microprocessors, providing a parallel and distributed system. Inter-
system-, interprocess-, and object communication is automatically implemented 
with serial links, not visible on programming level.

2. Design of Parallel Systems Using a Behavioural Model Approach and High-
Level Synthesis

Concurrency has great impact on system and data processing behaviour concerning 
latency, data throughput, and power consumption. Streaming and functional data 
processing requires fine-grained concurrency (on data path level), however, reactive 
control systems (for example communication) require coarse-grained concurrency 
(on control path level).
The structural level decomposes a SoC into independent submodules interacting 
with each other using centralized or distributed networks and communication proto-
cols, mainly program-controlled multi-processor architectures.
The behavioural level usually describes the functional behaviour of the full design 
interacting with the environment. Most applications and data processing are mod-
elled on algorithmic behavioural level using some kind of imperative programming 
language.
The ConPro high-level synthesis of SoC designs uses a behavioural imperative pro-
gramming language with a compiler-based synthesis approach from algorithmic pro-
gramming level to register-transfer level mappable directly to digital logic [2]. 
Concurrency is modelled explicitly on control path level with processes executing a 
set of instructions sequentially, initially independent of any other process. Interpro-
cess-communication (IPC) provides synchronization with different objects (mutex, 
semaphore, event, timer) and data exchange between processes using queues or 
channels, based on the Communicating Sequential Processes (CSP, Hoare 
1985) model. 
There are local and global resources (storage, IPC) , accessed by one process and 
several processes, respectively. Concurrent access of global resources is automat-
ically guarded by a mutex scheduler, serializing access, and providing atomic ac-
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cess without conflicts.
There are process and top-level instructions. Top-level instructions are evaluated 
during synthesis (configuration). Process instructions are transformed and mapped 
to states of a clock-synchronous finite-state-machine (FSM) controlling the process 
RTL data path temporally and spatially, shown in figure 1. 
More fine-grained concurrency is provided on data path level using bounded blocks 
executing several instructions (only data path, e.g., data assignments) in one time 
unit. Block level parallelism can be enabled explicitly or implicitly explored by a ba-
sicblock scheduler  [2].
The complete synthesis process can be fine-grained parameterized on program-
ming block level, for example selection of different expression models (allocation) or 
activation of specific schedulers and optimizers.

 Figure 1. Mapping of the proposed multi-process model to the multi-FSM RTL architecture 
using high-level synthesis.

Hardware blocks, modelled on hardware level (VHDL), can be accessed from the 
programming level using an object-orientated programming approach with methods. 
All hardware blocks, including IPC, are treated like abstract data type objects (AD-
TO) with a defined set of methods accessible on process level and top level (only 
applicable with configuration methods, for example setting the time interval of a tim-
er). The bridge between the hardware and software model is provided by the Exter-
nal Module Interface (EMI).
The relationship of the proposed programming and execution model and the re-
quired building blocks of Conpro (programming language and synthesis) are illus-
trated in figure 2. 
The programming language supports different types of storage objects (single reg-
isters and variables in shared RAM blocks, true bit-scaled), different aggregation 
types (array, structure), and abstract objects. Programming statements can modify 
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queue q: int; 
process a: 
begin
  reg x: int;
  x <- 0;
  for i = 1 to 10
  do
    x <- x + q;
  done; 
end;

F

RTL
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1

2

FSM

process b: 
begin
  reg y: int;
  y <- 0;
  for i = 1 to 10
  do
    q <- y+i;
    y <- y*2;
  done; 
end;

     PROCESS

     PROCESS
data (expressions, assignments) or have impact on the control flow (conditional and 
counting loops, conditional branches, concurrent multi-value selection).
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 Figure 2. Building blocks: from the programming model to hardware using high-level synthe-
sis.

Figure 3 gives an overview of the design flow guiding through different levels provid-
ed by the ConPro framework. After the source code is parsed and transformed into 
an abstract syntax tree (AST), there are different allocation, scheduling, and optimi-
zation stages. The reference stack scheduler performs symbolic analysis on AST 
level and resolves constant and storage propagation, conditional assignments and 
multiple assignments. This ALAP scheduler has impact on scheduling and allocation 
done by optimization. The intermediate μCode representation was choosen for sim-
plified RTL synthesis and optimization (synthesis pass I). 
The basicblock scheduler partitions the program code into blocks without control 
side entries containing only data assignments (basicblocks). For each basicblock, a 
data-dependency analysis is performed. Independent data assignments can be 
bound to the same time unit. These optimizing schedulers can be activated or deac-
tivated on block level. Finally, in synthesis pass III the RTL is synthesized and 
mapped to VHDL. Alternatively, after pass I (AST) or II (μCode), software output with
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same functional and simulated/scheduled concurrency behaviour can be compiled.

 Figure 3. Design flow using the high-level synthesis framework ConPro provides mapping of 
a parallel programming model  to SoC-RTL  hardware and software targets.

The synthesis flow

 (1)

is defined by a set of rules χ. Each set consists of subsets which can be selected by 
parameter settings (for example scheduling like loop unrolling, or different allocation 
rules) on block level.
Example 1 shows a part of the program code for the implementation of the dining 
philosopher problem. This system consists of five processes concurrently executing 
and implementing the action of the philosophers. They are defined using an array 
construct (line 13). The instructions of each process are processed sequentially, in-
dicated by a semicolon after each instruction statement. The resource management 
of the forks is done with semaphores (abstract object type). Each philosopher 
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process tries to allocate two forks, the left- and right-hand side forks, by calling the 
down method for each semaphore. If a philosopher process succeeds, it calls the
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(inlined) function eat, and sets global registers (eating, thinking) simultaneous-
ly, indicated in the program code by using a colon instead of a semicolon (bounded 
instruction block). An event object ev is used to synchronize the startup of the group. 
The philosopher proceesses waiting for the event by calling the await method (line
15). The event is woken up by the main process calling the wakeup method (line
41). All processes are started from the main process (line 40). Processes are treat-
ed as abstract objects, too, providing a set of methods controlling the process state.

 Example 1. Parts of a ConPro source code example: the dining philosopher problem imple-
mentation mapped to processes using semaphores for resource management.

1 open Core; open Process; open Semaphore; open System; open Event;
2 object ev: event;
3 array eating,thinking: reg[5] of logic;
4 export eating,thinking;
5 array fork: object semaphore[5] with 
6       Semaphore.depth=8 and Semaphore.scheduler="fifo";
7 function eat(n):
8 begin
9   eating.[n] <- 1,thinking.[n] <- 0;  
10   wait for 5;
11   eating.[n] <- 0,thinking.[n] <- 1;
12 end with inline;
13 array philosopher: process[5] of
14 begin
15   ev.await ();
16   if # < 4 then  -- all processes with array index lower 4
17   begin
18    always do
19    begin
20      -- get left fork then right
21      fork.[#].down (); fork.[#+1].down ();
22      eat (#);
23      fork.[#].up (); fork.[#+1].up ();
24    end;
25   end
26   else
27   begin
28    always do
29    begin
30      -- get right fork then left
31      fork.[4].down (); fork.[0].down ();
32      eat (#);
33      fork.[4].up (); fork.[0].up ();
34    end;
35   end;
36 end;
37 process main:

38 begin
39   for i = 0 to 4 do
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40     philosopher.[i].start ();
41   ev.wakeup ();
42 end with schedule="basicblock";

Objects (like IPC) belong to a module, which have to be opened first (line 1). Each 
module is defined by a set of EMI implementation files providing all necessary infor-
mations about objects of this module (like method declarations, object access, and 
implementation on hardware and software level).

 Figure 4. Process and interprocess-communication architecture of dining philosopher prob-
lem implementation from example source code 1.

3. Transition from Parallel to Distributed System Design

Initially, there was the demand and the requierement to synthesize complex hard-
ware designs from algorithmic level using high-level synthesis. This was supported 
by the Conpro1 compiler. To reuse the same programming source for hardware-op-
timized and software designs, the high-level synthesis approach was extended to 
hardware-software synthesis in the ConPro2 compiler using the External Module In-
terface hiding hardware dependencies and additonal software generators. Finally 
there is a demand for the design of distributed systems to enable the implementation 
of very complex systems.
In the proposed architecture and synthesis framework, objects and processes can 
be assigned to domains. Each domain is independently synthesized by the ConPro 
compiler either producing a hardware or software implementation. Domain manage-
ment is performed separately by a partitioner module part of the Silicium-Compiler-
and-Analyzer (SiCA) framework, shown in figure 5 (under development). There is 
only one programming source containing all objects and processes distributed over 
domains. The partitioner  is responsible to create an appropiate communication ar-
chitecture around the design, explained in the next section. The partitioner creates 

OBJECT SEMA 
fork [0]

              
                 PROCESS
        philosopher [0]

OBJECT EVENT 
ev

              
              PROCESS
       philosopher [1]

              
                 PROCESS
        philosopher [2]

              
                PROCESS
        philosopher [3]

              
                PROCESS
        philosopher [4]

OBJECT SEMA 
fork [1]

OBJECT SEMA 
fork [2]

OBJECT SEMA 
fork [3]

OBJECT SEMA 
fork [4]

              
            PROCESS
               main

OBJECT PRO 
philosopher [0]

OBJECT PRO 
philosopher [4]∗∗∗∗∗ ∗∗∗∗∗
for each domain a separate design passed to the ConPro compiler, which synthe-
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sizes either a hardware or software system target.
Figure 6 shows a possible  partitioning of the dining philospher problem. Each do-
main contains one process and one semaphore object. The domain nodes are ar-
ranged in a two-dimensional mesh-network.

 Figure 5. Design of parallel and distributed systems using the ConPro and the partitioner 
from the SiCA framework (under development). Domains are managed by the partitioner.

 Figure 6. Domain partitioning of the dining philosopher problem implementation from exam-
ple source code 1. Each domain is an independent system with additional communication 
blocks (COM).

CONPRO

Concurrency Complexity

P PP

object o: O in domain A;
process p in domain B:
  for i = 1 to 2 do
    x <- x + 1 

Programming Model

Objects & Processes
O

O

O

O

Synthesis

HW/SW System

Domain A

Domains

Partitioner

Domain B

OBJECT SEMA 
fork [0]

              
                 PROCESS
        philosopher [0]

OBJECT EVENT 
ev

              
              PROCESS
       philosopher [1]

              
                 PROCESS
        philosopher [2]

              
                PROCESS
        philosopher [3]

              
                PROCESS
        philosopher [4]

OBJECT SEMA 
fork [1]

OBJECT SEMA 
fork [2]

OBJECT SEMA 
fork [3]

OBJECT SEMA 
fork [4]

              
            PROCESS
               main

COMCOM

COM COM COM

object fork_0: sempahore in domain 0; 
object fork_1: sempahore in domain 1; 
object fork_2: sempahore in domain 2; 
object fork_3: sempahore in domain 3; 
object fork_4: sempahore in domain 4;

process philosopher_0 in domain 0: 
process philosopher_1 in domain 1: 
process philosopher_2 in domain 2: 
process philosopher_3 in domain 3: 
process philosopher_4 in domain 4:

object ev: event in domain 0;
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4. Communication Architecture and Links

Intra-chip/design communication is implemented using unidirectional signals for the 
hardware design target, and with functions and variables for the software target. 
Inter-chip/design communication is implemented with bidirectional asynchronous 
links using two-rail encoded serial data and a four-phase protocol for the hardware 
target. Message-based communication is used to access remote objects in different 
domains. A design domain is a network node, too. Network nodes are arranged in a 
two-dimensional mesh-grid. Each node has four different links: {North, South, 
East, West}. 
Static routing based on process and object message identifiers is used to transmit a 
request or reply message from a source to a destination domain.
A method-based access of a process P in domain X of an object O implemented in 
domain Y is transformed into a method access of a local wrapper object OW. This 
wrapper object (which can be accessed by several processes in the local domain) 
transforms the object access to a message request, read and processed by a local 
router (router_out), shown in figure 7. 
This router process selects an appropiate route to the destination domain Y, and 
sends the message to a serial  asynchronous link connected to the next node in the 
network. If this node is the destination domain where the object O is implemented, 
the local router input processer (process router_in) passes the request message 
to a shadow process P_shadow performing the real method-based object access. 
After the method operations has finished, this shadow process creates a reply mes-
sage passed to the router_out process, and is sent back from domain Y to X, fi-
nally received by the object wrapper.

 Figure 7. Distributed system architecture: Method access of objects in foreign domains are 
translated into message-based communication with static routing.
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An important part of the communication architecture proposed for distributed sys-
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tems is the link used to connect different domains. Each domain has a local clock 
(assuming a locally synchronous system). The complete system consists therefore 
of different clock domains, too. 
A Globally Asynchronous Locally Synchronous (GALS) system interconnect link ar-
chitecture is required [5].  A serial asynchronous link is used for the proposed com-
munication architecture, providing serialization and deserialization of data 
messages of arbitrary data size (bits). This link uses dual-rail encoding and a four-
phase acknowledged protocol, based on the proposed architecture in [6], shown in 
figure 8.  The advantage of dual-rail encoding is an asynchronous  delay-insensitve 
interconnect. 
The transceiver and sender were initially implemented with asynchonous logic using 
Muller-C gates. Those circuits can be well mapped to ASICs, but difficult to FPGA 
architectures (due to their synchronous system architecture). Instead the asynchro-
nous circuit from [6] was reimplemented with synchronous logic using state ma-
chines and input signal oversampling methods, shown in figure 8. The data stream 
contains empty and data packets. The empty packet is required for the last phase of 
the data transfer (return to zero completion).

 Figure 8. Serial asynchronous communication link.

The message format used by the communication framework is shown in table 1. 
Each message starts with a field indicating a request or reply type, followed by call-
ing process, accessed object, and applied method identifiers. The data field is only 
required for methods transferring data (read or write operations). The set of domain-
shared objects and processes accessing these objects is known by each node and
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required for routing and delivering of messages.
 Table 1. Communication protocol message format: upper rows: description, lower row: bit 

length. 

The bit lengths of each field depends on the system partitionining and the number 
of objects accessed across domain boundaries ON, the number of accessing pro-
cesses PN, and the number of methods used MN.
There is a significant difference in object access latency time for the cases of local 
and remote access. Local object access requires (at least) two time units (clock cy-
cles) if the resource is available and if the access can be immediately served. Re-
mote access requires the passing of two messages (request and reply). Actually, the 
link module is implemented with a synchronous state machine and input signal over-
sampling. Assuming a  transmission of one bit requires about ten time units (achiev-
ing 1 MBit/s with 10 MHz system clock), and a distributed system with 8 processes, 
16 objects, 8 different methods, and a data size of 12 bits, then the overall message 
length is 23 bits, requiring 230 time units for each message transmission, with about 
30 time units for message processing, in total 260 time units. Routing actually is per-
formed with store-and-foreward buffering. Each routing attempt requires thus about 
300 time units. Inter-domain communication is very expensive, and this is the reason 
why the domain partitioning is made by the programmer/designer.

5. An Extended Example: Implementation of a Protocol Stack for Robust Com-
munication in Sensor Networks

The Simple Local Intranet Protocol (SLIP) [8] is used for communication in wired 
high-density sensor- and actuator networks. It implements smart routing of messag-
es with Δ-addressing of nodes arranged in a n-dimensional network space (line, 
mesh, cube). The network can be heterogeneous regarding node size, computation 
power, and memory. The communication protocol is scalable regarding network to-
pology and size. 
A node is a network service endpoint and a router, too. The routing information is 
always kept in the packet, consisting of: 1.) a header descriptor (HDT) specifying the 
address size class ASC, the address dimension class ADC (for example 2 is a two-
dimensional mesh-grid), 2.) a packet descriptor (PDT) with routing and path informa-
tion, and finally the data part. SLIP was designed for low-resource System-On-Chip 
implementations  using ASIC/FPGA target technologies, but a software version was 
required, too. 
A node should handle several serial link connections and incoming packets concur-
rently, thus the protocol stack is  a massiv parallel system, and was implemented

Message type Processes iden-
tifier

Object identifier Method identifi-
er

Optional method 
arguments

TYP PID OID MID DATA

1 log2(PN) log2(PO) log2(MN) MAX(argsizes)
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with the ConPro behavioural multi-process model. 
The programming model implementation with partitioning of the protocol stack in 
multiple processes exeecuting concurrently and communicating using queues is 
shown in figure 9. 
Each link is serviced by two processes: a message decoder for incoming and an en-
coder for outgoing messages. A packet processor pkt_process applies a set of 
smart routing computation functions (route_normal,  route_opposite, 
route_backward, applied in the given order until routing is possible), finding the 
best routing direction. Communication between processes is implemented with 
queues. There are three packet pools holding HDT, PDT and data parts of packets. 
They are implemented with arrays. The packet processor can be replicated to speed 
up processing of packets. 
A test setup consisting of the routing processor part of SLIP was implemented A. in 
hardware (RTL-SoC, gate-level synthesis  with mentor graphics leonardo spectrum 
and SXLIB standard cell library), and B. in software (SunOS, SunPro C compiler). A 
packet with ADC=2, Δ=(2,3) and a link setup of the node L=(-y,-x) is received on the 
second link (-x) [L01] and is processed first by the route_normal rule (would re-
quire connected +x /+y links) [L03], and finally by the route_opposite rule [L04] 
forwarding the modified packet to the link_0 process [LA0]. 

 Figure 9. Process and interprocess-communication architecture of the SLIP protocol stack.
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      pkt_process

QUEUE 
rx_queue[0]

OBJECT 
LINK NORTH

OBJECT 
LINK SOUTH
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LINK WEST

OBJECT 
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                  FUNCTION 
            route_normal
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        link_rx_proc

              
             PROCESS
        link_rx_proc
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             PROCESS
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             PROCESS
        link_tx_proc
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pkt_process
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pkt_send[0]

                  FUNCTION 
            route_opposite

                  FUNCTION 
            route_backward

QUEUE 
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pkt_send[2]

QUEUE 
pkt_send[3]

DELIVER MESSAGE 
TO 
APPLICATION 
LAYER
Tables 2 and 3 show synthesis and simulation results, of both hardware (HW) and 
software  (SW) implementation. They show low resource demands and latency. Dif-
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ferent checkpoints Lxx indicate the progress of packet processing. Figures in brack-
ets give the latency progress relative to the previous checkpoint. 

 Table 2. Comparison of resources required for the HW implementation of routing part of SLIP 
implemented with a packet pool: (1) variable array, (2) register array.  ASIC synthesis was 
performed with leonardo spectrum software and SXLIB standard cell library.

From gate-level simulation, required clock cycles are obtained, and from software 
simulation with a debugger, required machine operations are obtained. The two HW 
implementations differ in packet pool architecture: 1. variable array in RAM blocks 
with EREW-access, and 2. register array with CREW-access, resulting in lower la-
tency. The SW implementation contains built-in multi-processing, and requires up to 
30 times more operations (time units) than the HW implementation.

 Table 3. Simulation results of the HW and SW implementation of routing part of SLIP. HW: 
packet pool: (1) variable array, (2) register array, clock cycles. SW: SunPro CC, SunOS, 
USIII, CPU machine operations

6. Summary

The ConPro programming language uses a concurrent multi-process model with in-
terprocess-communication and guarded atomic actions, well suited to implement 
parallel control and data processing systems. Algorithms can be reused from tradi-
tional sequential programming. The ConPro synthesis tool is capable to implement 
complex algorithms, like communication protocols requiring concurrency on control 
path level, efficiently in hardware (below and beyond 1M gates), and software with 
same functional behaviour. Hardware blocks are accessed  using a method-based 

Ressource Variable1 Register2

Registers [FF] 767 587

Area [gates] 12475 10758

Path delay [ns] 18 16

Synthesized Source CP → VHDL 1109 → 9200 lines 1109 → 7900 lines

Checkpoint Clock 
Cycles1

Clock 
Cycles2

Machine Oper-
ations

L01 104 102 60000

L03 113 (δ=9) 107 (δ=5) 60019 (δ=19)

L04 187 (δ=74) 148 (δ=41) 60796 (δ=777)

LA0 235 (δ=48) 184 (δ=36) 62305 (δ=1509)
object-orientated programming model.
Processes and objects of the entire design can be distributed on different hardware
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and software platforms, for example, several FPGA components and software exe-
cuted on several microprocessors, providing a parallel and distributed system. Inter-
system-, interprocess-, and object communication is automatically implemented 
with serial links, not visible on programming level.
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