
S
a
H g

DOI:10.1117/12.888122 Proceedings of the SPIE MT 2011

Stefan
1

ynthesis
 Behavioural Programming and Multi-Process Model with High-Level
ardware-Software-Co-Design of Parallel and Distributed Systems Usin

Stefan Bosse(1,2)

University of Bremen, Department Computer Science, Workgroup Robotics, Germa-
ny(1), ISIS Sensorial Materials Scientific Centre, Germany(2)

Abstract
A new design methodology for parallel and distributed embedded systems is pre-
sented using the behavioural hardware compiler ConPro providing an imperative
programming model based on concurrently communicating sequential processes
(CSP) with an extensive set of interprocess-communication primitives and guarded
atomic actions. The programming language and the compiler-based synthesis pro-
cess enables the design of constrained power- and resource-aware embedded sys-
tems with pure Register-Transfer-Logic (RTL) efficiently mapped to FPGA and ASIC
technologies. Concurrency is modelled explicitly on control- and datapath level. Ad-
ditionally, concurrency on data-path level can be automatically explored and opti-
mized by different schedulers.
The CSP programming model can be synthesized to hardware (SoC) and software
(C,ML) models and targets. A common source for both hardware and software im-
plementation with identical functional behaviour is used.
Processes and objects of the entire design can be distributed on different hardware
and software platforms, for example, several FPGA components and software exe-
cuted on several microprocessors, providing a parallel and distributed system. Inter-
system-, interprocess-, and object communication is automatically implemented
with serial links, not visible on programming level.
The presented design methodology has the benefit of high modularity, freedom of
choice of target technologies, and system architecture. Algorithms can be well
matched to and distributed on different suitable execution platforms and implemen-
tation technologies, using a unique programming model, providing a balance of con-
currency and resource complexity.
An extended case study of a communication protocol used in high-density sensor-
actuator networks should demonstrate and compare the design of a hardware and
software target. The communication protocol is suited for high-density intra- and in-
terchip networks.

Keywords
Cyber Physical Systems, System-on-Chip design, Synthesis, Digital Logic, High-
Level Synthesis, ASIC and FPGA technology, Communication, Network Protocols,
 Bosse - 1 - 2011

2

DOI:10.1117/12.888122 Proceedings of the SPIE MT 2011

Stefan
Parallel systems, Parallel computing, Distributed Systems

1. Introduction and Overview

Embedded systems used for control, for example in Cyber-Physical-Systems (CPS),
perform the monitoring and control of complex physical processes using applica-
tions running on dedicated execution platforms in a resource-constrained manner.
System-On-Chip designs are preferred for high miniaturization and low-power appli-
cations. Traditionally, program-controlled multi-processor architectures are used to
provide the execution platform, but application-specific digital logic gains more im-
portance.
There are two different ways to model and implement System-on-Chip-Designs
(SoC) used in those embedded systems: using 1. a structural and/or 2. a behav-
ioural level. The structural level decomposes a SoC into independent submodules -
processor cores (or data processing units in general), memories, and peripherials -
interacting with each other using centralized or distributed networks and communi-
cation protocols. The behavioural level usually describes the behaviour of the full de-
sign interacting with the environment without detailed assumptions about system
architecture, generally a more sophisticated modelling level. In the context of CPS,
these are mainly reactive systems with dominant and complex control paths. The
major contribution to concurrency appears on control path level which can be explic-
itly modelled on algorithmic level.
A new SoC-design methodology is presented using the behavioural hardware com-
piler ConPro providing an imperative programming model based on concurrently
communicating sequential processes (CSP) [7] and guarded atomic actions [4] with
an extensive set of interprocess-communication primitives. The programming lan-
guage and the compiler-based synthesis flow enables the design of application-spe-
cific constrained power- and resource-aware embedded systems on Register-
Transfer-Level efficiently mapped to FPGA and ASIC technologies. Concurrency is
modelled explicitly on control- and data-path level. Additionally, concurrency on da-
ta- path level can be automatically explored and optimized by different schedulers.
Hardware blocks (including IPC and externally modelled) can be accessed transpar-
ently from programming level with a generic object-orientated approach.
The CSP programming model can be synthesized to different other levels, not only
used for hardware circuit synthesis: software models (C, ML), intermediate μCode,
RT state level, and finally to hardware behaviour level, e.g., VHDL. A common
source for both hardware and software implementation with identical functional be-
haviour matches different embedded architecture levels and enables code reuse.
The metalanguage ML (OCaML) is well suited for simulation and test-pattern based
functional model checking.
Why a new language? Traditional programming languages like C are designed for
sequential programming only, and concurrency is present to some extent through
the use of libraries [1]. Concurrency should be controlled by first-class language
constructs [3] to enable optimized design of massive parallel systems and hardware
synthesis. There are several examples of new designed languages for concurrent

programming, like SystemJ [1] or X10 [3]. C-like languages used for hardware-syn-

 Bosse - 2 - 2011

3DOI:10.1117/12.888122 Proceedings of the SPIE MT 2011

Stefan
thesis are wide spread, but are not fully suitable for RTL synthesis due to strong de-
pendency on memory model (pointers) and the missing concurrency model.
What is novel compared with other high-level-synthesis approaches? One language
targets both concurrent software and hardware programming, the hardware synthe-
sis process can be fine grained controlled on programming level using parameter-
ized blocks. A traditional compiler approach with μCode intermediate representation
(without loss of concurrency) enables fast and optimized synthesis. Object-orientat-
ed access of hardware blocks using the External Module Interface (EMI) - part of the
programming model - provides a modern and transparent interface for both software
and hardware designers, closing the gap between software and hardware models.
The extended set of IPC primitives enables concurrent programming of complex
control and data processing systems.
Processes and objects of the entire design can be distributed on different hardware
and software platforms, for example, several FPGA components and software exe-
cuted on several microprocessors, providing a parallel and distributed system. Inter-
system-, interprocess-, and object communication is automatically implemented
with serial links, not visible on programming level.

2. Design of Parallel Systems Using a Behavioural Model Approach and High-
Level Synthesis

Concurrency has great impact on system and data processing behaviour concerning
latency, data throughput, and power consumption. Streaming and functional data
processing requires fine-grained concurrency (on data path level), however, reactive
control systems (for example communication) require coarse-grained concurrency
(on control path level).
The structural level decomposes a SoC into independent submodules interacting
with each other using centralized or distributed networks and communication proto-
cols, mainly program-controlled multi-processor architectures.
The behavioural level usually describes the functional behaviour of the full design
interacting with the environment. Most applications and data processing are mod-
elled on algorithmic behavioural level using some kind of imperative programming
language.
The ConPro high-level synthesis of SoC designs uses a behavioural imperative pro-
gramming language with a compiler-based synthesis approach from algorithmic pro-
gramming level to register-transfer level mappable directly to digital logic [2].
Concurrency is modelled explicitly on control path level with processes executing a
set of instructions sequentially, initially independent of any other process. Interpro-
cess-communication (IPC) provides synchronization with different objects (mutex,
semaphore, event, timer) and data exchange between processes using queues or
channels, based on the Communicating Sequential Processes (CSP, Hoare
1985) model.
There are local and global resources (storage, IPC) , accessed by one process and
several processes, respectively. Concurrent access of global resources is automat-
ically guarded by a mutex scheduler, serializing access, and providing atomic ac-
 Bosse - 3 - 2011

4

DOI:10.1117/12.888122 Proceedings of the SPIE MT 2011

Stefan
cess without conflicts.
There are process and top-level instructions. Top-level instructions are evaluated
during synthesis (configuration). Process instructions are transformed and mapped
to states of a clock-synchronous finite-state-machine (FSM) controlling the process
RTL data path temporally and spatially, shown in figure 1.
More fine-grained concurrency is provided on data path level using bounded blocks
executing several instructions (only data path, e.g., data assignments) in one time
unit. Block level parallelism can be enabled explicitly or implicitly explored by a ba-
sicblock scheduler [2].
The complete synthesis process can be fine-grained parameterized on program-
ming block level, for example selection of different expression models (allocation) or
activation of specific schedulers and optimizers.

 Figure 1. Mapping of the proposed multi-process model to the multi-FSM RTL architecture
using high-level synthesis.

Hardware blocks, modelled on hardware level (VHDL), can be accessed from the
programming level using an object-orientated programming approach with methods.
All hardware blocks, including IPC, are treated like abstract data type objects (AD-
TO) with a defined set of methods accessible on process level and top level (only
applicable with configuration methods, for example setting the time interval of a tim-
er). The bridge between the hardware and software model is provided by the Exter-
nal Module Interface (EMI).
The relationship of the proposed programming and execution model and the re-
quired building blocks of Conpro (programming language and synthesis) are illus-
trated in figure 2.
The programming language supports different types of storage objects (single reg-
isters and variables in shared RAM blocks, true bit-scaled), different aggregation
types (array, structure), and abstract objects. Programming statements can modify

F

RTL

F

1

2

FSM

queue q: int;
process a:
begin
 reg x: int;
 x <- 0;
 for i = 1 to 10
 do
 x <- x + q;
 done;
end;

F

RTL

F

1

2

FSM

process b:
begin
 reg y: int;
 y <- 0;
 for i = 1 to 10
 do
 q <- y+i;
 y <- y*2;
 done;
end;

 PROCESS

 PROCESS
data (expressions, assignments) or have impact on the control flow (conditional and
counting loops, conditional branches, concurrent multi-value selection).

 Bosse - 4 - 2011

5DOI:10.1117/12.888122 Proceedings of the SPIE MT 2011

Stefan
 Figure 2. Building blocks: from the programming model to hardware using high-level synthe-
sis.

Figure 3 gives an overview of the design flow guiding through different levels provid-
ed by the ConPro framework. After the source code is parsed and transformed into
an abstract syntax tree (AST), there are different allocation, scheduling, and optimi-
zation stages. The reference stack scheduler performs symbolic analysis on AST
level and resolves constant and storage propagation, conditional assignments and
multiple assignments. This ALAP scheduler has impact on scheduling and allocation
done by optimization. The intermediate μCode representation was choosen for sim-
plified RTL synthesis and optimization (synthesis pass I).
The basicblock scheduler partitions the program code into blocks without control
side entries containing only data assignments (basicblocks). For each basicblock, a
data-dependency analysis is performed. Independent data assignments can be
bound to the same time unit. These optimizing schedulers can be activated or deac-
tivated on block level. Finally, in synthesis pass III the RTL is synthesized and
mapped to VHDL. Alternatively, after pass I (AST) or II (μCode), software output with

Communicating
Sequential
Processes

Instruction
Processing

Concurrency
Parallelism

Imperative &
Sequential

Multi-
Processing

Interprocess-
Communication

Behavioural Model

ConPro

Implementation &
Designflow

Imperative Constrained
Parallel Programming Language

Hardware
Compiler

Software
Compiler

Analysis
Optimization

Hardware
Model

Software
Model

Synthesis

Control Path
Data&

RTL VHDL μCode C ML

SoC
Hardware

Processor
Software

Algorithm Algorithmic Level
Programming Language

External Module
Interface

EMI

Intermediate
Representation

Process Types ObjectsStatement

Data Control Abstract

Guarded
Atomic
Actions

Computation &
Execution Model

Building
Blocks
 Bosse - 5 - 2011

6

DOI:10.1117/12.888122 Proceedings of the SPIE MT 2011

Stefan
same functional and simulated/scheduled concurrency behaviour can be compiled.

 Figure 3. Design flow using the high-level synthesis framework ConPro provides mapping of
a parallel programming model to SoC-RTL hardware and software targets.

The synthesis flow

 (1)

is defined by a set of rules χ. Each set consists of subsets which can be selected by
parameter settings (for example scheduling like loop unrolling, or different allocation
rules) on block level.
Example 1 shows a part of the program code for the implementation of the dining
philosopher problem. This system consists of five processes concurrently executing
and implementing the action of the philosophers. They are defined using an array
construct (line 13). The instructions of each process are processed sequentially, in-
dicated by a semicolon after each instruction statement. The resource management
of the forks is done with semaphores (abstract object type). Each philosopher

Parser

SoC
Hardware

Program
Software

Intermediate
Representation

Analysis
ConPro
Source Analysis

AST

Transformation
Optimization

Abstract Syntax Tree AST

AST Synthesis Pass 1
μCode SynthesisTransformation

Optimization

Referenzstack
Scheduler

Basicblock
Scheduler Synthesis Pass 2Expression

Scheduler

μCode

EMI
Source

Parser Analysis
μCode
Source

FSM&Datapath
Synthesis

Rules

VHDL
Synthesis

Toolchain
Script Generator Synthesis Pass 3

Rules Code
Templates

μCode
Source

C/ML
Synthesis

Rules

Rules

Rules

Constraints

μCode

AST

μCode

χ CP : AST μCODE RTL VHDL→
C/ML⎩

⎨
⎧

→

C/ML⎩
⎪
⎪
⎨
⎪
⎪
⎧

→ →
process tries to allocate two forks, the left- and right-hand side forks, by calling the
down method for each semaphore. If a philosopher process succeeds, it calls the

 Bosse - 6 - 2011

DOI:10.1117/12.888122 Proceedings of the SPIE MT 2011

Stefan
7
(inlined) function eat, and sets global registers (eating, thinking) simultaneous-
ly, indicated in the program code by using a colon instead of a semicolon (bounded
instruction block). An event object ev is used to synchronize the startup of the group.
The philosopher proceesses waiting for the event by calling the await method (line
15). The event is woken up by the main process calling the wakeup method (line
41). All processes are started from the main process (line 40). Processes are treat-
ed as abstract objects, too, providing a set of methods controlling the process state.

 Example 1. Parts of a ConPro source code example: the dining philosopher problem imple-
mentation mapped to processes using semaphores for resource management.

1 open Core; open Process; open Semaphore; open System; open Event;
2 object ev: event;
3 array eating,thinking: reg[5] of logic;
4 export eating,thinking;
5 array fork: object semaphore[5] with
6 Semaphore.depth=8 and Semaphore.scheduler="fifo";
7 function eat(n):
8 begin
9 eating.[n] <- 1,thinking.[n] <- 0;
10 wait for 5;
11 eating.[n] <- 0,thinking.[n] <- 1;
12 end with inline;
13 array philosopher: process[5] of
14 begin
15 ev.await ();
16 if # < 4 then -- all processes with array index lower 4
17 begin
18 always do
19 begin
20 -- get left fork then right
21 fork.[#].down (); fork.[#+1].down ();
22 eat (#);
23 fork.[#].up (); fork.[#+1].up ();
24 end;
25 end
26 else
27 begin
28 always do
29 begin
30 -- get right fork then left
31 fork.[4].down (); fork.[0].down ();
32 eat (#);
33 fork.[4].up (); fork.[0].up ();
34 end;
35 end;
36 end;
37 process main:

38 begin
39 for i = 0 to 4 do

 Bosse - 7 - 2011

8

DOI:10.1117/12.888122 Proceedings of the SPIE MT 2011

Stefan
40 philosopher.[i].start ();
41 ev.wakeup ();
42 end with schedule="basicblock";

Objects (like IPC) belong to a module, which have to be opened first (line 1). Each
module is defined by a set of EMI implementation files providing all necessary infor-
mations about objects of this module (like method declarations, object access, and
implementation on hardware and software level).

 Figure 4. Process and interprocess-communication architecture of dining philosopher prob-
lem implementation from example source code 1.

3. Transition from Parallel to Distributed System Design

Initially, there was the demand and the requierement to synthesize complex hard-
ware designs from algorithmic level using high-level synthesis. This was supported
by the Conpro1 compiler. To reuse the same programming source for hardware-op-
timized and software designs, the high-level synthesis approach was extended to
hardware-software synthesis in the ConPro2 compiler using the External Module In-
terface hiding hardware dependencies and additonal software generators. Finally
there is a demand for the design of distributed systems to enable the implementation
of very complex systems.
In the proposed architecture and synthesis framework, objects and processes can
be assigned to domains. Each domain is independently synthesized by the ConPro
compiler either producing a hardware or software implementation. Domain manage-
ment is performed separately by a partitioner module part of the Silicium-Compiler-
and-Analyzer (SiCA) framework, shown in figure 5 (under development). There is
only one programming source containing all objects and processes distributed over
domains. The partitioner is responsible to create an appropiate communication ar-
chitecture around the design, explained in the next section. The partitioner creates

OBJECT SEMA
fork [0]

 PROCESS
 philosopher [0]

OBJECT EVENT
ev

 PROCESS
 philosopher [1]

 PROCESS
 philosopher [2]

 PROCESS
 philosopher [3]

 PROCESS
 philosopher [4]

OBJECT SEMA
fork [1]

OBJECT SEMA
fork [2]

OBJECT SEMA
fork [3]

OBJECT SEMA
fork [4]

 PROCESS
 main

OBJECT PRO
philosopher [0]

OBJECT PRO
philosopher [4]∗∗∗∗∗ ∗∗∗∗∗
for each domain a separate design passed to the ConPro compiler, which synthe-

 Bosse - 8 - 2011

DOI:10.1117/12.888122 Proceedings of the SPIE MT 2011

Stefan
9
sizes either a hardware or software system target.
Figure 6 shows a possible partitioning of the dining philospher problem. Each do-
main contains one process and one semaphore object. The domain nodes are ar-
ranged in a two-dimensional mesh-network.

 Figure 5. Design of parallel and distributed systems using the ConPro and the partitioner
from the SiCA framework (under development). Domains are managed by the partitioner.

 Figure 6. Domain partitioning of the dining philosopher problem implementation from exam-
ple source code 1. Each domain is an independent system with additional communication
blocks (COM).

CONPRO

Concurrency Complexity

P PP

object o: O in domain A;
process p in domain B:
 for i = 1 to 2 do
 x <- x + 1

Programming Model

Objects & Processes
O

O

O

O

Synthesis

HW/SW System

Domain A

Domains

Partitioner

Domain B

OBJECT SEMA
fork [0]

 PROCESS
 philosopher [0]

OBJECT EVENT
ev

 PROCESS
 philosopher [1]

 PROCESS
 philosopher [2]

 PROCESS
 philosopher [3]

 PROCESS
 philosopher [4]

OBJECT SEMA
fork [1]

OBJECT SEMA
fork [2]

OBJECT SEMA
fork [3]

OBJECT SEMA
fork [4]

 PROCESS
 main

COMCOM

COM COM COM

object fork_0: sempahore in domain 0;
object fork_1: sempahore in domain 1;
object fork_2: sempahore in domain 2;
object fork_3: sempahore in domain 3;
object fork_4: sempahore in domain 4;

process philosopher_0 in domain 0:
process philosopher_1 in domain 1:
process philosopher_2 in domain 2:
process philosopher_3 in domain 3:
process philosopher_4 in domain 4:

object ev: event in domain 0;
 Bosse - 9 - 2011

10

DOI:10.1117/12.888122 Proceedings of the SPIE MT 2011

Stefan
4. Communication Architecture and Links

Intra-chip/design communication is implemented using unidirectional signals for the
hardware design target, and with functions and variables for the software target.
Inter-chip/design communication is implemented with bidirectional asynchronous
links using two-rail encoded serial data and a four-phase protocol for the hardware
target. Message-based communication is used to access remote objects in different
domains. A design domain is a network node, too. Network nodes are arranged in a
two-dimensional mesh-grid. Each node has four different links: {North, South,
East, West}.
Static routing based on process and object message identifiers is used to transmit a
request or reply message from a source to a destination domain.
A method-based access of a process P in domain X of an object O implemented in
domain Y is transformed into a method access of a local wrapper object OW. This
wrapper object (which can be accessed by several processes in the local domain)
transforms the object access to a message request, read and processed by a local
router (router_out), shown in figure 7.
This router process selects an appropiate route to the destination domain Y, and
sends the message to a serial asynchronous link connected to the next node in the
network. If this node is the destination domain where the object O is implemented,
the local router input processer (process router_in) passes the request message
to a shadow process P_shadow performing the real method-based object access.
After the method operations has finished, this shadow process creates a reply mes-
sage passed to the router_out process, and is sent back from domain Y to X, fi-
nally received by the object wrapper.

 Figure 7. Distributed system architecture: Method access of objects in foreign domains are
translated into message-based communication with static routing.

Domain 1

OBJECT O
WRAPPER

 PROC P ROUTER_OUT

OBJECT
LINK NORTH

OBJECT
LINK SOUTH

 ROUTER_IN

∗∗∗∗∗

REP

Domain 2

OBJECT O

 P_SHADOW

 ROUTER_OUT

OBJECT
LINK NORTH

OBJECT
LINK SOUTH

 ROUTER_IN

∗∗∗∗∗

P_SHADOW_REQ
MSG
REQ
REP

ROUTE_OUT

O.MSG_WRITE(MSG’)

L.READ(MSG’)
L.WRITE(MSG’)

MSG’/REP

MSG/REQ

MSG

L.READ(MSG)

O.METH()

L.WRITE(MSG)

O.MSG_READ(MSG)

O.METH()
An important part of the communication architecture proposed for distributed sys-

 Bosse - 10 - 2011

11DOI:10.1117/12.888122 Proceedings of the SPIE MT 2011

Stefan
tems is the link used to connect different domains. Each domain has a local clock
(assuming a locally synchronous system). The complete system consists therefore
of different clock domains, too.
A Globally Asynchronous Locally Synchronous (GALS) system interconnect link ar-
chitecture is required [5]. A serial asynchronous link is used for the proposed com-
munication architecture, providing serialization and deserialization of data
messages of arbitrary data size (bits). This link uses dual-rail encoding and a four-
phase acknowledged protocol, based on the proposed architecture in [6], shown in
figure 8. The advantage of dual-rail encoding is an asynchronous delay-insensitve
interconnect.
The transceiver and sender were initially implemented with asynchonous logic using
Muller-C gates. Those circuits can be well mapped to ASICs, but difficult to FPGA
architectures (due to their synchronous system architecture). Instead the asynchro-
nous circuit from [6] was reimplemented with synchronous logic using state ma-
chines and input signal oversampling methods, shown in figure 8. The data stream
contains empty and data packets. The empty packet is required for the last phase of
the data transfer (return to zero completion).

 Figure 8. Serial asynchronous communication link.

The message format used by the communication framework is shown in table 1.
Each message starts with a field indicating a request or reply type, followed by call-
ing process, accessed object, and applied method identifiers. The data field is only
required for methods transferring data (read or write operations). The set of domain-
shared objects and processes accessing these objects is known by each node and

Sender

Serializer

Receiver

Deserializer

EMPTY

SET

ACK

 XOR

EMPTY

SET

ACK

EMPTY VALID EMPTY

0
0

01
10

0
0

D
¬ D

0 E 1

ACK

 ACK

 ¬D

 D
 Bosse - 11 - 2011

12DOI:10.1117/12.888122 Proceedings of the SPIE MT 2011

Stefan
required for routing and delivering of messages.
 Table 1. Communication protocol message format: upper rows: description, lower row: bit

length.

The bit lengths of each field depends on the system partitionining and the number
of objects accessed across domain boundaries ON, the number of accessing pro-
cesses PN, and the number of methods used MN.
There is a significant difference in object access latency time for the cases of local
and remote access. Local object access requires (at least) two time units (clock cy-
cles) if the resource is available and if the access can be immediately served. Re-
mote access requires the passing of two messages (request and reply). Actually, the
link module is implemented with a synchronous state machine and input signal over-
sampling. Assuming a transmission of one bit requires about ten time units (achiev-
ing 1 MBit/s with 10 MHz system clock), and a distributed system with 8 processes,
16 objects, 8 different methods, and a data size of 12 bits, then the overall message
length is 23 bits, requiring 230 time units for each message transmission, with about
30 time units for message processing, in total 260 time units. Routing actually is per-
formed with store-and-foreward buffering. Each routing attempt requires thus about
300 time units. Inter-domain communication is very expensive, and this is the reason
why the domain partitioning is made by the programmer/designer.

5. An Extended Example: Implementation of a Protocol Stack for Robust Com-
munication in Sensor Networks

The Simple Local Intranet Protocol (SLIP) [8] is used for communication in wired
high-density sensor- and actuator networks. It implements smart routing of messag-
es with Δ-addressing of nodes arranged in a n-dimensional network space (line,
mesh, cube). The network can be heterogeneous regarding node size, computation
power, and memory. The communication protocol is scalable regarding network to-
pology and size.
A node is a network service endpoint and a router, too. The routing information is
always kept in the packet, consisting of: 1.) a header descriptor (HDT) specifying the
address size class ASC, the address dimension class ADC (for example 2 is a two-
dimensional mesh-grid), 2.) a packet descriptor (PDT) with routing and path informa-
tion, and finally the data part. SLIP was designed for low-resource System-On-Chip
implementations using ASIC/FPGA target technologies, but a software version was
required, too.
A node should handle several serial link connections and incoming packets concur-
rently, thus the protocol stack is a massiv parallel system, and was implemented

Message type Processes iden-
tifier

Object identifier Method identifi-
er

Optional method
arguments

TYP PID OID MID DATA

1 log2(PN) log2(PO) log2(MN) MAX(argsizes)
 Bosse - 12 - 2011

3

DOI:10.1117/12.888122 Proceedings of the SPIE MT 2011

Stefan
1
with the ConPro behavioural multi-process model.
The programming model implementation with partitioning of the protocol stack in
multiple processes exeecuting concurrently and communicating using queues is
shown in figure 9.
Each link is serviced by two processes: a message decoder for incoming and an en-
coder for outgoing messages. A packet processor pkt_process applies a set of
smart routing computation functions (route_normal, route_opposite,
route_backward, applied in the given order until routing is possible), finding the
best routing direction. Communication between processes is implemented with
queues. There are three packet pools holding HDT, PDT and data parts of packets.
They are implemented with arrays. The packet processor can be replicated to speed
up processing of packets.
A test setup consisting of the routing processor part of SLIP was implemented A. in
hardware (RTL-SoC, gate-level synthesis with mentor graphics leonardo spectrum
and SXLIB standard cell library), and B. in software (SunOS, SunPro C compiler). A
packet with ADC=2, Δ=(2,3) and a link setup of the node L=(-y,-x) is received on the
second link (-x) [L01] and is processed first by the route_normal rule (would re-
quire connected +x /+y links) [L03], and finally by the route_opposite rule [L04]
forwarding the modified packet to the link_0 process [LA0].

 Figure 9. Process and interprocess-communication architecture of the SLIP protocol stack.

 PROCESS
 pkt_process

QUEUE
rx_queue[0]

OBJECT
LINK NORTH

OBJECT
LINK SOUTH

OBJECT
LINK WEST

OBJECT
LINK EAST

 FUNCTION
 route_normal

 PROCESS
 link_rx_proc

 PROCESS
 link_rx_proc

 PROCESS
 link_rx_proc

 PROCESS
 link_rx_proc

QUEUE
rx_queue[1]

QUEUE
rx_queue[3]

QUEUE
rx_queue[2]

QUEUE
tx_queue[0]

QUEUE
tx_queue[1]

QUEUE
tx_queue[3]

QUEUE
tx_queue[2]

 PROCESS
 link_tx_proc

 PROCESS
 link_tx_proc

 PROCESS
 link_tx_proc

 PROCESS
 link_tx_proc

QUEUE
pkt_process

QUEUE
pkt_send[0]

 FUNCTION
 route_opposite

 FUNCTION
 route_backward

QUEUE
pkt_send[1]

QUEUE
pkt_send[2]

QUEUE
pkt_send[3]

DELIVER MESSAGE
TO
APPLICATION
LAYER
Tables 2 and 3 show synthesis and simulation results, of both hardware (HW) and
software (SW) implementation. They show low resource demands and latency. Dif-

 Bosse - 13 - 2011

14

DOI:10.1117/12.888122 Proceedings of the SPIE MT 2011

Stefan
ferent checkpoints Lxx indicate the progress of packet processing. Figures in brack-
ets give the latency progress relative to the previous checkpoint.

 Table 2. Comparison of resources required for the HW implementation of routing part of SLIP
implemented with a packet pool: (1) variable array, (2) register array. ASIC synthesis was
performed with leonardo spectrum software and SXLIB standard cell library.

From gate-level simulation, required clock cycles are obtained, and from software
simulation with a debugger, required machine operations are obtained. The two HW
implementations differ in packet pool architecture: 1. variable array in RAM blocks
with EREW-access, and 2. register array with CREW-access, resulting in lower la-
tency. The SW implementation contains built-in multi-processing, and requires up to
30 times more operations (time units) than the HW implementation.

 Table 3. Simulation results of the HW and SW implementation of routing part of SLIP. HW:
packet pool: (1) variable array, (2) register array, clock cycles. SW: SunPro CC, SunOS,
USIII, CPU machine operations

6. Summary

The ConPro programming language uses a concurrent multi-process model with in-
terprocess-communication and guarded atomic actions, well suited to implement
parallel control and data processing systems. Algorithms can be reused from tradi-
tional sequential programming. The ConPro synthesis tool is capable to implement
complex algorithms, like communication protocols requiring concurrency on control
path level, efficiently in hardware (below and beyond 1M gates), and software with
same functional behaviour. Hardware blocks are accessed using a method-based

Ressource Variable1 Register2

Registers [FF] 767 587

Area [gates] 12475 10758

Path delay [ns] 18 16

Synthesized Source CP → VHDL 1109 → 9200 lines 1109 → 7900 lines

Checkpoint Clock
Cycles1

Clock
Cycles2

Machine Oper-
ations

L01 104 102 60000

L03 113 (δ=9) 107 (δ=5) 60019 (δ=19)

L04 187 (δ=74) 148 (δ=41) 60796 (δ=777)

LA0 235 (δ=48) 184 (δ=36) 62305 (δ=1509)
object-orientated programming model.
Processes and objects of the entire design can be distributed on different hardware

 Bosse - 14 - 2011

5

DOI:10.1117/12.888122 Proceedings of the SPIE MT 2011

Stefan
1
and software platforms, for example, several FPGA components and software exe-
cuted on several microprocessors, providing a parallel and distributed system. Inter-
system-, interprocess-, and object communication is automatically implemented
with serial links, not visible on programming level.

7. Bibliography

[1] Malik, Avinash and Salcic, Zoran and Roop, Partha S., SystemJ compilation
using the tandem virtual machine approach, ACM Trans. Des. Autom. Elec-
tron. Syst., Vol 14, (2009)

[2] S. Bosse, ConPro: Rule-Based Mapping of an Imperative Programming Lan-
guage to RTL for Higher-Level-Synthesis Using Communicating Sequential
Processes, Technical Paper, BSSLAB, Bremen, 2009

[3] Charles, Philippe et al., X10: an object-oriented approach to non-uniform
cluster computing, OOPSLA ’05: Proceedings of the 20th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and
applications (2005)

[4] Daniel L. Rosenband and Arvind, Modular Scheduling of Guarded Atomic Ac-
tions, Proceedings of the 41st annual conference on Design automation
(2004)

[5] Paul Teehan, Mark Greenstreet, Guy Lemiex, A Survey and Taxonomy of
GALS Design Styles, IEEE Design & Test of Computers, 2007

[6] John Bainbridge, CHAIN: A Delay-Insensitive Chip Area Interconnect, IEEE
Micro, 2002

[7] C. Hoare, Communicating Sequential Processes, Prentice Hall, 1985
[8] S. Bosse, D. Lehmhus, Smart Communication in a Wired Sensor- and Actu-

ator-Network of a Modular Robot Actuator System Using a Hop-Protocol with
Δ-Routing, Smart Systems Integration, Como, Italy, 23-24.3.2010
 Bosse - 15 - 2011

	1. Introduction and Overview
	2. Design of Parallel Systems Using a Behavioural Model Approach and High- Level Synthesis
	3. Transition from Parallel to Distributed System Design
	4. Communication Architecture and Links
	5. An Extended Example: Implementation of a Protocol Stack for Robust Communication in Sensor Networks
	6. Summary
	7. Bibliography

