
Universität Bremen

Last mod. April 14, 2011 11:34 am / spie2011_emt102_pres.fm / 13 pages

Hardware-Software-Co-Design of Parallel and Distri-
buted Systems Using a unique Behavioural Program-
ming and Multi-Process Model with High-Level
Synthesis

Stefan Bosse
University of Bremen, Department of Computer Science, Workgroup Robotics, Ger-
many, ISIS Sensorial Materials Scientific Centre, Germany(2)

19.4.2011

SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 1 of 14

1
 Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems

Overview
Goals and Requirements in Embedded System Design

1. Design of parallel and distributed embedded systems from algorithmic level
2. Behaviourial modelling on programming level using a multi-process model with in-

terprocess-communication and atomic guarded actions
3. ConPro: Concurrent programming and design of parallel hardware and software

systems
4. Abstraction of operational hardware blocks and access from programming level
5. Transition from parallel to distributed systems: Required communication architec-

ture for distributed systems
6. Design example: SLIP - a robust and efficient communication protocol stack for

multidimensional network topologies (HW/SW implementation)

3
6

m
m

42mm

Sensors

Actuator

Control

Commu-
nication

Conversion
Filtering

Conversion
Filtering

=0

Message
Passing

Data
Processing

Data
Processing

Data
Processing

Data
Processing

array link_tx_proc: process[NUM_LINKS] of
begin
 reg d: logic[8];
 try begin
 always do begin
 ind <- pkt_send_queue.[#];
 d[0 to 1] <- pkt_pool_hdt.[ind].hdt_adc;
 d[2 to 3] <- pkt_pool_hdt.[ind].hdt_dsc;
 d[4 to 5] <- pkt_pool_hdt.[ind].hdt_asc;
 d[6 to 7] <- pkt_pool_hdt.[ind].hdt_type;
 off <- ind*PACKET_SIZE;
 for i = 0 to to_int(len)-1 do
 begin
 d <- pkt_pool_data.[off];
 err <- link_write(#,d);
 if err = true then raise Tx_error;
 off <- off + 1;
 end;
 pkt_discard(ind); end;
 with begin
 when Tx_error: pkt_discard(ind); end;
 end; Hardware SoC LevelConcurrent Tasks & Algorithmic Level Programming Level

??? ??? ???

SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 2 of 14

2
 Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems

Concurrent Programming with a Multi-Process Model
n Execution Environment: processes

executing instructions in sequential
(imperative) order à Finite State Ma-
chine

n Interaction between processes: al-
ways using global shared objects à

Interprocess-Communication (IPC)
n Interprocess-Communication = Syn-

chronization: Mutex, Semaphore, ...
n Access of shared resources is serial-

ized: guarded atomic actions
n Access of shared resources is man-

aged by a scheduler: processes
blocked untill resource is available.

n Hardware Implementation: Mapping of
processes to concurrently executing
state machines and RTL

n Software Implementation: Mapping of
processes to threads (simulated multi-
processing)

 Figure 1. Multi-Process Model [mod. CSP/Hoare]

P P P

O O

P P P

Multi-Process Model

P: Sequential Process

O: Shared Object

-: Atomic Guarded
 Action
 (Communication)

F

RTL

F

1

2

FSM

queue q: int;
process a:
begin
 reg x: int;
 x <- 0;
 for i = 1 to 10
 do
 x <- x + q;
 done;
end;

F

RTL

F

1

2

FSM

process b:
begin
 reg y: int;
 y <- 0;
 for i = 1 to 10
 do
 q <- y+i;
 y <- y*2;
 done;
end;

 PROCESS

 PROCESS

SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 3 of 14

3
 Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems

ConPro: Language & Highlevel-Synthesis
Synthesis of massive parallel application specific SoC designs AND parallel soft-
ware from algorithmic & behavioural programming level

Programming Model
n Communicating Sequential Proc-

esses
n Guarded shared objects

Concurrency Model
n Control path: concurrently execut-

ed processes
n Data path: bounded instruction

blocks
Synchronization

n Interprocess-Communication à di-
rectly implementable in hardware:
Mutex, Semaphore, Event, Timer,
Queue, ...

n Shared objects guarded by mutex
scheduler (atomic guarded ac-
cess)

Execution Model
n Process: strict sequential
n HW: Finite-State-Machine & RTL
n SW: light weighted process/thread

Objects
n Data storage: registers (CREW),

variables (RAM,EREW), ...
n Object orientated programming:

abstract objects accessed with
methods (hardware blocks)

Programming Language
n Imperative with data and control

statements
n Explicitly modelled parallelism
n Parameterization on block level:

synthesis, scheduling, allocation,
object parameters, ...

SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 4 of 14

4
 Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems

ConPro Synthesis
n One synthesis compiler is used for

hardware- and software targets.

n Hardware Implementation: Mapping of
processes to concurrently executing
state machines and RTL

n Software Implementation: Mapping of
processes to threads with different ab-
straction levels (high,mid,low)

n Central part for HW/SW co-design: Ex-
ternal Module Interface

n Operational blocks like Interprocess-
Communication are modelled with uni-
fied abstract objects

n Objects can be implemented directly in
hardware or software

 Figure 2. ConPro Synthesis with HW/SW targets

P

ConPro

P P P

O O

P P P

Multi-Process Model

P: Sequential Process

O: Shared Object

-: Atomic Guarded
 Action (Communication)

HW SW

Synthesis

HW: Hardware

SW: Software

EMI: External Module
 Interface

RTL: Register-Transfer
 Logic

FSM: Finit-State Machine
P O

O

P O

EMI

RTLRTL

RTLRTL

SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 5 of 14

5
 Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems

ConPro Synthesis

n Multi-stage synthesis flow (HW/SW):

I. Parser, Lexer, Analysis

II. First Intermediate Representation
(IR): Abstract Syntax Tree (pi →
ASTi ∀ p∈P)

III. Second IR: Compiling of AST to
linear list of μCode using parame-
terizable rule sets

IV. Third IR: Mapping of μCode to
state transition-graphs (STG) and
data path: Register-Transfer Level
Architecture

V. HW: Compiling of state transition-
graphs to hardware model VHDL

VI. SW: Compiling of AST or μCode to
software model C (imperative) or
ML (functional)

 Figure 3. ConPro Design Flow

SoC
Hardware

Program
Software

Programming Level

Multi-Process Model

Atomic Guarded
Actions

Parser & Lexer
Analysis

Abstract Syntax Graph

Synthesis I

μCode
Intermediate Repr.

Synthesis II

State Graph &
Data Path // RTL

Synthesis III

Hardware Model
VHDL

Software Model
C, ML

Synthesis II

SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 6 of 14

6
 Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems

ConPro: Abstract Objects and External Module Interface
Abstract Objects

n Abstraction & Interconnect of
hardware blocks to programming
level

n A set of methods is used to access
objects (read,write,control).

n Unified access interface (HW/SW)
n HW: method access is mapped to

handshaked hardware signals
n SW: method access is mapped to

function calls
External Module Interface EMI

n HW: Objects are modelled on hard-
ware behaviour level (VHDL) and
meta language statements (inter-
preted during synthesis)

n SW: For each object there is a soft-
ware model, too.

 Figure 4. Abstract Objects modelled with the Ex-
ternal Module Interface

IO IO IO

Signal Interface

P

O O O

P P

External
Module
Interface

EMI

EMI

HW Level

SW Level

Programming
Level

OBJECT O

 PROC P

REQ

 PROC P PROC P

GUARD

HARDWARE ACCESS : SIGNALS

SOFTWARE ACCESS : FUNCTION CALL

LWP PLWP PLWP P

OBJECT O

SCHEDULER

SCHEDULER

METH(O,args)
METH(O,args)

METH(O)

O.METH(args)
O.METH()O.METH()

SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 7 of 14

7
 Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems

Distributed Architecture and Communication
Distributed Architecture

n Processes and objects can be dis-
tributed in domains on algorithmic
programming level

Communication Architecture
n Object access is mapped to mes-

sage based communication and do-
main routing using serial links

 Figure 5. Left: local access, Right: global access of objects using message based communication

Domain 1

OBJECT O
WRAPPER

 PROC P ROUTER_OUT

OBJECT
LINK NORTH

OBJECT
LINK SOUTH

 ROUTER_IN

∗∗∗∗∗

REP

Domain 2

OBJECT O

 P_SHADOW

 ROUTER_OUT

OBJECT
LINK NORTH

OBJECT
LINK SOUTH

 ROUTER_IN

∗∗∗∗∗

P_SHADOW_REQ
MSG
REQ
REP

ROUTE_OUT

O.MSG_WRITE(MSG’)

L.READ(MSG’)
L.WRITE(MSG’)

MSG’/REP

MSG/REQ

MSG

L.READ(MSG)

O.METH()

L.WRITE(MSG)

O.MSG_READ(MSG)

O.METH()

OBJECT O

 PROC P

REQ

 PROC P PROC P

GUARD

HARDWARE ACCESS : SIGNALS

SOFTWARE ACCESS : FUNCTION CALL

LWP PLWP PLWP P

OBJECT O

SCHEDULER

SCHEDULER

METH(O,args)
METH(O,args)

METH(O)

O.METH(args)
O.METH()O.METH()

SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 8 of 14

8
 Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems

Communication
Network Topology

n Each node is connected in a two-di-
mensional mesh-grid with their direct
neighbours

n Each node is a service end-point and
a message router, too.

Delay Insensitive Link
n Problem: local: synchronous sys-

tem, global: asynchronous system
n Solution: asynchronous serial links

between nodes (GALS wrapper)
n But asynchronous links requires

asynchronous logic or
n Asynchronous link is implemented

with synchronous finite state-ma-
chine and input signal oversampling

n Dual-rail encoding and four-phase
handshaked protocol is used

 Figure 6. Asynchronous Link Architecture

Sender

Serializer

Receiver

Deserializer

EMPTY

SET

ACK

 XOR

EMPTY

SET

ACK

EMPTY VALID EMPTY

0
0

01
10

0
0

D
¬ D

0 E 1

ACK

 ACK

 ¬D

 D

SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 9 of 14

9
 Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems

Synthesis of Distributed Systems
Programming Model

n Concurrently executing communi-
cating processes

n Processes and objects are assigned
to domains on programming level

n Communication: always using ab-
stract object access (IPC...)

n Local object access: communication
still with handshaked hardware sig-
nals (HW) or function calls (SW)

n Remote object access: hidden mes-
sage based communication

Partitioner
n A common programming source is

partitioned into independent domain
sources and compiled independently
by ConPro to HW/SW targets

n Add communication architecture

 Figure 7. Extended Design flow using a partitioner

CONPRO

Concurrency Complexity

P PP

object o: O in domain A;
process p in domain B:
 for i = 1 to 2 do
 x <- x + 1

Programming Model

Objects & Processes
O

O

O

O

Synthesis

HW/SW System

Domain A

Domains

Partitioner

Domain B

SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 10 of 14

10
 Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems

Design Example: SLIP
n Smart and robust communication with

Simple Local Intranet Protocol SLIP
based on smart delta-routing

n Remote procedure call interface
(RPC, application layer)

 Figure 8. SLIP network topology (2-dim.) and massive parallel implementation of protocol stack

 PROCESS
 pkt_process

QUEUE
rx_queue[0]

OBJECT
LINK NORTH

OBJECT
LINK SOUTH

OBJECT
LINK WEST

OBJECT
LINK EAST

 FUNCTION
 route_normal

 PROCESS
 link_rx_proc

 PROCESS
 link_rx_proc

 PROCESS
 link_rx_proc

 PROCESS
 link_rx_proc

QUEUE
rx_queue[1]

QUEUE
rx_queue[3]

QUEUE
rx_queue[2]

QUEUE
tx_queue[0]

QUEUE
tx_queue[1]

QUEUE
tx_queue[3]

QUEUE
tx_queue[2]

 PROCESS
 link_tx_proc

 PROCESS
 link_tx_proc

 PROCESS
 link_tx_proc

 PROCESS
 link_tx_proc

QUEUE
pkt_process

QUEUE
pkt_send[0]

 FUNCTION
 route_opposite

 FUNCTION
 route_backward

QUEUE
pkt_send[1]

QUEUE
pkt_send[2]

QUEUE
pkt_send[3]

DELIVER MESSAGE
TO
APPLICATION
LAYER

36
m

m

42mm

SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 11 of 14

11
 Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems

Design Example: SLIP

ä Mapping of algorithms and massive
parallel data processing to SoC node
with high-level synthesis using Con-
Pro: à ¶ low power · minaturiza-
tion ¸ low latency3

ä Mapping of same sources to software
(C) using ConPro, too: à ¶ interfacing
computers · test/simulation3

 Table 1. Characteristics of SLIP implementation (HW: Hardware, SW: Software)

*R1: Sequential part of message routing in SLIP

Parameter Value
HLS source code, ConPro ∼ 4000 lines, 34 processes

30 shared objects (16 queues, 2 timers)
HW: synthesized VHDL sources ∼ 32000 lines
SW: synthesized C sources ∼ 5500 lines
HW: FPGA, Xilinx Spartan III - 1000k 11261/15360 LUT (73 %), 2925 FF
HW: ASIC, standard cell library LSI_10K ∼ 244k gates, 15k FF ≅ 2.5mm2 | 0.18μm
HW: power consumption (FPGA board) < 100mW (including analog electr.)
HW: performance benchmark R1* 82 clock cycles
SW: performance benchmark R1* 2305 unit machine instructions

SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 12 of 14

12
 Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems

Summary and Conclusions
Desgin of parallel hardware systems

n Complex SoC hardware devices with concurrency on control- and data path level can
be efficiently designed from programming level

n The concurrent multi-process model with interprocess-communication and guarded
atomic access of shared resources allows designing of complex parallel systems

n Hardware blocks are abstracted and accessed using a method based object-orien-
tated programming style

n Access of objects is fast and efficient (at least 2 clock cycles)
Design of parallel software systems

n Parallel software can be synthesized using the same synthesis frame work and pro-
gramming language

n Access of objects is fast and efficient (< 100 machine operations)
Design of distributed systems

n Distributed systems can be synthesized using the same synthesis frame work and
programming language with an additional partitioner and message based communi-
cation

n Prelimenary results: automated synthesis of distributed systems using a partitioner
results in significant increase of complexity, resources, and latency of remote object
access (> 100 clock cycles).

SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 13 of 14

Universität Bremen

Last mod. April 14, 2011 11:34 am / spie2011_emt102_pres.fm / 13 pages

Hardware-Software-Co-Design of Parallel and Distri-
buted Systems Using a unique Behavioural Program-
ming and Multi-Process Model with High-Level
Synthesis

Stefan Bosse
University of Bremen, Department of Computer Science, Workgroup Robotics, Ger-
many, ISIS Sensorial Materials Scientific Centre, Germany(2)

19.4.2011

SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 14 of 14

	Overview
	Concurrent Programming with a Multi-Process Model
	ConPro: Language & Highlevel-Synthesis
	ConPro Synthesis
	ConPro: Abstract Objects and External Module Interface
	Distributed Architecture and Communication
	Communication
	Synthesis of Distributed Systems
	Design Example: SLIP
	Summary and Conclusions

