£ [))
ISIs w Universitat Bremen

SENSORIAL MATERIALS

Hardware-Software-Co-Design of Parallel and Distri-
buted Systems Using a unique Behavioural Program-
ming and Multi-Process Model with High-Level
Synthesis

Stefan Bosse
University of Bremen, Department of Computer Science, Workgroup Robotics, Ger-
many, ISIS Sensorial Materials Scientific Centre, Germany(2)

19.4.2011

SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 80%5&9\@&0@;:‘%0@ bd#‘?'ﬁ%lkﬁ’ﬂ%ﬁe%?_%R%Jp?ééﬁn /13 pages

Overview

Goals and Requirements in Embedded System Design
Design of parallel and distributed embedded systems from algorithmic level

Behaviourial modelling on programming level using a multi-process model with in-
terprocess-communication and atomic guarded actions

ConPro: Concurrent programming and design of parallel hardware and software
systems

Abstraction of operational hardware blocks and access from programming level

Transition from parallel to distributed systems: Required communication architec-
ture for distributed systems

Design example: SLIP - a robust and efficient communication protocol stack for
multidimensional network topologies (HW/SW implementation)

X array link_tx_proc: process[NUM_LINKS] of
Copver.smn_’_ Datq begin
Filtering Processing reg d: logic[8];
try begin
always do begin
. ind <- pkt_send_queue. [#];
Comersion| | ~Data d[0 to 1] <- pkt_pool_hdt.[ind].hdt_adc;
Filtering Processing d[2 to 3] <- pkt_pool hdt.[ind].hdt_dsc
d[4 to 5] <- pkt_pool_hdt.[ind].hdt_asc
d[6 to 7] <- pkt_pool_hdt.[ind].hdt_typ!
off <- ind*PACKET SIZE;
for i = 0 to to_int(len)-1 do
begin
d <- pkt_pool_data.[off];
err <- link write(#,d);
if err = true then raise Tx_error;
off <- off + 1;
end;
pkt_discard(ind); end;
)) with begin
Concurrent Tasks & Algorithmic Level when Tx_¢ Programming Level nd: Hardware SoC Level BT
end;

36mm

Data
Processing

Message Data
Passing Processing

HEER ..

oooooon

Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems
SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 2 of 14

Concurrent Programming with a Multi-Process Model

Execution Environment. processes
executing instructions in sequential
(imperative) order ™ Finijte State Ma-
chine

Interaction between processes: al-
ways using global shared objects
Interprocess-Communication (IPC)
Interprocess-Communication = Syn-
chronization: Mutex, Semaphore, ...
Access of shared resources is serial-
ized: guarded atomic actions

Access of shared resources is man-
aged by a scheduler. processes
blocked untill resource is available.
Hardware Implementation: Mapping of
processes to concurrently executing
state machines and RTL

Software Implementation: Mapping of
processes to threads (simulated multi-
processing)

Figure 1. Multi-Process Model [mod. CSP/Hoare]

P P

P

NSNS

@) @)

S NS N

P =

P

queue g: int;
process a:

begin
reg x: int;

;
for i = 1 to 10

Multi-Process Model
P: Sequential Process
O: Shared Object

- Atomic Guarded

Action
(Communication)

) S—
%
X~
) S—
O T =
N/
) —
FSM RTL
) S—
%
X~
) a—
O T
N/
) a—
FSM RTL

Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems
SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 3 of 14

- ___0__0_00000000000_]
ConPro: Language & Highlevel-Synthesis

Programming Model

Communicating Sequential Proc-
esses
Guarded shared objects

Concurrency Model

Control path: concurrently execut-
ed processes

Data path: bounded
blocks

instruction

Synchronization

Interprocess-Communication = di-
rectly implementable in hardware:
Mutex, Semaphore, Event, Timer,
Queue, ...

Shared objects guarded by mutex
scheduler (atomic guarded ac-
cess)

Synthesis of massive parallel application specific SoC designs AND parallel soft-
ware from algorithmic & behavioural programming level

Execution Model

Process: strict sequential
HW: Finite-State-Machine & RTL
SW: light weighted process/thread

Objects

Data storage: registers (CREW),
variables (RAM,EREW), ...
Object orientated programming:
abstract objects accessed with
methods (hardware blocks)

Programming Language

Imperative with data and control
statements

Explicitly modelled parallelism
Parameterization on block level:
synthesis, scheduling, allocation,
object parameters, ...

Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems
SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 4 of 14

- ___0__0_00000000000_]
ConPro Synthesis

M One synthesis compiler is used for

Figure 2. ConPro Synthesis with HW/SW targets
hardware- and software targets.

W Hardware Implementation: Mapping of P\ ',«P\ IP ::H:m
processes to concurrently executing o 0 O: Shared Object
state machines and RTL NS N " action (Communication)

P P P

W Software Implementation: Mapping of 1L
processes to threads with different ab-
straction levels (high,mid,low) ConPro

W Central part for HW/SW co-design: Ex-
ternal Module Interface

4 1 B

Synthesis

HW: Hardware
SW: Software

EMI: External Module
Interface

M Operational blocks like Interprocess-
Communication are modelled with uni-
fied abstract objects P

RTL: Register-Transfer
Logic

FSM: Finit-State Machine

M Objects can be implemented directly in o
hardware or software

Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems
SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 5 of 14

ConPro Synthesis
B Multi-stage synthesis flow (HW/SW):

Figure 3. ConPro Design Flow

I. Parser, Lexer, Analysis

Multi-Process Model
. . . Programming Level
Il. First Intermediate Representation | q pome Guaraed |
(IR): Abstract Syntax Tree (p; — —
AST v c P Analysis \
- |Abstract Syntax Graph m synthesis
Ill. Second IR: Compiling of AST to — !
. . . | N— | | State Graph &
linear list of uCode using parame- _DataPath /RL FH
. Synthesis |
terizable rule sets
1 ,
o nthesis nthesis
IV_ Thlrd IR Mapplng Of HCOde to 7Iriermed|l:s\teRepr. m Synthesis Il Synthesis I
state transition-graphs (STG) and I
data path: Register-Transfer Level | Bz On3 m | Software Modd m
. , VHDL 7 C, ML
Architecture
- . gg SoC Program
V. HW: Compiling of state transition- Aiogr fardware _Softwere

graphs to hardware model VHDL

VI. SW: Compiling of AST or uCode to
software model C (imperative) or
ML (functional)

Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems
SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 6 of 14

ConPro: Abstract Objects and External Module Interface

Abstract ObjeCts Figure 4. Abstract Objects modelled with the Ex-
M Abstraction & Interconnect of ternal Module Interface
hardware blocks to programming N
level 01010
W A set of methods is used to access "™ "

ooo
ooo

[m]
[m]

objects (read,write,control).
M Unified access interface (HW/SW)

® HW: method access is mapped to L ﬁ OM}_
. External I GUARD .. O.METH(args)
handshaked hardware signals Module 10 0| 0] ||d& eimbm—

Interface yy yy
W SW: method access is mapped to ?j | | élj / I;Iilj / E
PP P

"0
HY
i
HY

function calls
OSCHEDULER
External Module Interface EMI

Programming

Level

SW Level
m HW: Objects are modelled on hard- ey (T
ware behaviour level (VHDL) and B
meta language statements (inter- =
preted during synthesis) élj élj élj

W SW: For each object there is a soft-
ware model, too.

O SCHEDULER

Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems
SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 7 of 14

tributed in domains on algorithmic

programming level

OBJECT O
0

HARDWARE ACCESS : SIGNALS

GUARD ___t__ ‘;O.METH(args)
-40.METH() 3—O.METH()

O SCHEDULER

Distributed Architecture and Communication
Distributed Architecture

M Processes and objects can be dis-

Communication Architecture

M Object access is mapped to mes-

sage based communication and do-
main routing using serial links

Figure 5. Left: local access, Right: global access of objects using message based communication

OBJECT O
4 WRAPPER

0.METH()

O

OBJECT O

SOFTWARE ACCESS : FUNCTION CALL

METH(O)

-

METH(O,args)
METH(O,args) —

O SCHEDULER

Domain 1

0.MSG_WRITE(MSG')

L.WRITE(MSG)

| ——LREAD(MSG) —
OBJECT OBJECT
LINK NORTH LINK SOUTH
A

PROC P %ROUTER_OUT ROUTER_IN

kskskok

OBJECT O

MSG

| |P_SHADOW_REQ| |

Domain 2

O.METH()

P_SHADOW

*

[MSGIREQ

ROUTE_OUT | |

MSG'/REP -

ROUTER_OUT

ROUTER_IN

LWRITEMSG) | ReaD(MSG)

OBJECT
LINK NORTH

OBJECT

LINK SOUTH SRS

Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems
SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 8 of 14

Communication
Network Topology

Each node is connected in a two-di-
mensional mesh-grid with their direct
neighbours

Each node is a service end-point and
a message router, too.

Delay Insensitive Link

Problem: local: synchronous sys-
tem, global: asynchronous system

Solution: asynchronous serial links
between nodes (GALS wrapper)

But asynchronous links requires
asynchronous logic or

Asynchronous link is implemented
with synchronous finite state-ma-
chine and input signal oversampling

Dual-rail encoding and four-phase
handshaked protocol is used

Figure 6. Asynchronous Link Architecture

D 0 01 0
-D 0 10 0

| Evpry] vALID|X] EMPTY |

T\

Sender Receiver

—D ——

|
==

[e—— ACK

1 <
| | <

==

Serializer Deserializer

Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems
SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 9 of 14

Synthesis of Distributed Systems

Programming Model

Figure 7. Extended Design flow using a partitioner

M Concurrently executing communi-

cating processes Concurrency <=> Complexity
M Processes and objects are assigned object o: 0 in domain A; ,
: . for i =1 to 2 do Programming Model
to domains on programming level !

. . . Domain A :
B Communication: always using ab- Domain B
. (0] (o]
stract object access (IPC...) - @ | P éjp / N

M Local object access: communication = -
still with handshaked hardware sig- N —
nals (HW) or function calls (SW) lule l ll
M Remote object access: hidden mes- CONPRO Synthesis
sage based communication / /
Partitioner gg‘ 4 HW/SW System
B A common programming source is
partitioned into independent domain Domains

sources and compiled independently
by ConPro to HW/SW targets

B Add communication architecture

Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems
SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 10 of 14

Design Example: SLIP

B Smart and robust communication with
Simple Local Intranet Protocol SLIP

based on smart delta-routing

B Remote procedure call interface

(RPC, application layer)

Figure 8. SLIP network topology (2-dim.) and massive parallel implementation of protocol stack

QUEUE o QUEUE L QUEUE L, QUEUE
pkt_send[0] pkt_send[1] pkt_send[2] pkt_send[3]

l

!

PROCESS
link_tx_proc

PROCESS
link_tx_proc

PROCESS
link_tx_proc

!

!

!

QUEUE QUEUE QUEUE QUEUE
tx_queue[O0] tx_queue[1] tx_queue[2] tx_queue[3]
/
; ! ! } v
'y OBJECT OBJECT OBJECT OBJECT
LINK NORTH LINK SOUTH LINK WEST LINK EAST
L1011 ‘ ‘ ‘ ‘
QUEUE QUEUE QUEUE QUEUE
rx_queue[0] rx_queue[1] rx_queue[2] rx_queue[3]
PROCESS PROCESS PROCESS PROCESS
link_rx_proc

link_rx_proc link_rx_proc link_rx_proc

| ' | |
N\ /S

QUEUE
pkt_process

| | PROCESS
pkt_process
[]

FUNCTION
route_opposite

DELIVER MESSAGE
TO

APPLICATION
LAYER

36mm

FUNCTION
route_backward

FUNCTION
route_normal

Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems
SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 11 of 14

Design Example: SLIP

» Mapping of algorithms and massive » Mapping of same sources to software
parallel data processing to SoC node (C) using ConPro, too: ™ @ interfacing
with high-level synthesis using Con- computers @ test/simulations/

Pro: = @ low power ® minaturiza-
tion ® low latencyv

Table 1. Characteristics of SLIP implementation (HW: Hardware, SW: Software)

Parameter Value

HLS source code, ConPro ~ 4000 lines, 34 processes

30 shared objects (16 queues, 2 timers)
HW: synthesized VHDL sources ~ 32000 lines
SW: synthesized C sources ~ 5500 lines
HW: FPGA, Xilinx Spartan Il - 1000k 11261/15360 LUT (73 %), 2925 FF
HW: ASIC, standard cell library LSI_10K ~ 244k gates, 15k FF = 2.5mm? | 0.18um
HW: power consumption (FPGA board) < 100mW (including analog electr.)
HW: performance benchmark R1 82 clock cycles

SW: performance benchmark R1 2305 unit machine instructions

"R1: Sequential part of message routing in SLIP

Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems
SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 12 of 14

- ___0__0_00000000000_]
Summary and Conclusions

Desgin of parallel hardware systems

B Complex SoC hardware devices with concurrency on control- and data path level can
be efficiently designed from programming level

W The concurrent multi-process model with interprocess-communication and guarded
atomic access of shared resources allows designing of complex parallel systems

W Hardware blocks are abstracted and accessed using a method based object-orien-
tated programming style

B Access of objects is fast and efficient (at least 2 clock cycles)

Design of parallel software systems

M Parallel software can be synthesized using the same synthesis frame work and pro-
gramming language
M Access of objects is fast and efficient (< 100 machine operations)
Design of distributed systems

M Distributed systems can be synthesized using the same synthesis frame work and
programming language with an additional partitioner and message based communi-
cation

M Prelimenary results: automated synthesis of distributed systems using a partitioner
results in significant increase of complexity, resources, and latency of remote object
access (> 100 clock cycles).

Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems
SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 13 of 14

£ [))
ISIs w Universitat Bremen

SENSORIAL MATERIALS

Hardware-Software-Co-Design of Parallel and Distri-
buted Systems Using a unique Behavioural Program-
ming and Multi-Process Model with High-Level
Synthesis

Stefan Bosse
University of Bremen, Department of Computer Science, Workgroup Robotics, Ger-
many, ISIS Sensorial Materials Scientific Centre, Germany(2)

19.4.2011

SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE SOQZSQQ‘@EQQ‘JQIQW bﬁ9'1110311aw/l13p§e%1?29ﬁ\% 1ﬂ'r9£.11rﬂl 13 pages

	Overview
	Concurrent Programming with a Multi-Process Model
	ConPro: Language & Highlevel-Synthesis
	ConPro Synthesis
	ConPro: Abstract Objects and External Module Interface
	Distributed Architecture and Communication
	Communication
	Synthesis of Distributed Systems
	Design Example: SLIP
	Summary and Conclusions

