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Overview
Goals and Requirements in Embedded System Design

1. Design of parallel and distributed embedded systems from algorithmic level 
2. Behaviourial modelling on programming level using a multi-process model with in-

terprocess-communication and atomic guarded actions
3. ConPro: Concurrent programming and design of parallel hardware and software

systems
4. Abstraction of operational hardware blocks and access from programming level 
5. Transition from parallel to distributed systems: Required communication architec-

ture for distributed systems
6. Design example: SLIP - a robust and efficient communication protocol stack for

multidimensional network topologies (HW/SW implementation)  
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array link_tx_proc: process[NUM_LINKS ] of
begin
  reg d: logic[8];
  try begin
    always do begin
      ind <- pkt_send_queue.[#];
      d[0 to 1] <- pkt_pool_hdt.[ind].hdt_adc;
      d[2 to 3] <- pkt_pool_hdt.[ind].hdt_dsc;
      d[4 to 5] <- pkt_pool_hdt.[ind].hdt_asc;
      d[6 to 7] <- pkt_pool_hdt.[ind].hdt_type;
      off <- ind*PACKET_SIZE;
      for i = 0 to to_int(len)-1 do
      begin
        d <- pkt_pool_data.[off];
        err <- link_write(#,d);
        if err = true then raise Tx_error;
        off <- off + 1;
      end;
      pkt_discard(ind); end;
  with begin 
    when Tx_error: pkt_discard(ind); end;
 end; Hardware SoC LevelConcurrent Tasks & Algorithmic Level Programming Level

??? ??? ???
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Concurrent Programming with a Multi-Process Model
n Execution Environment: processes

executing instructions in sequential
(imperative) order à Finite State Ma-
chine

n Interaction between processes: al-
ways using global shared objects à

Interprocess-Communication (IPC)
n Interprocess-Communication = Syn-

chronization: Mutex, Semaphore, ...
n Access of shared resources is serial-

ized: guarded atomic actions
n Access of shared resources is man-

aged by a scheduler: processes
blocked untill resource is available.

n Hardware Implementation: Mapping of
processes to concurrently executing
state machines and RTL

n Software Implementation: Mapping of
processes to threads (simulated multi-
processing)

 Figure 1. Multi-Process Model [mod. CSP/Hoare]
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queue q: int;
process a:
begin
  reg x: int;
  x <- 0;
  for i = 1 to 10
  do
    x <- x + q;
  done;
end;
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process b:
begin
  reg y: int;
  y <- 0;
  for i = 1 to 10
  do
    q <- y+i;
    y <- y*2;
  done;
end;
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SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 3 of 14 



3
  Stefan Bosse -  Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems

ConPro: Language & Highlevel-Synthesis
Synthesis of massive parallel application specific SoC designs AND parallel soft-
ware from algorithmic & behavioural programming level

Programming Model
n Communicating Sequential Proc-

esses 
n Guarded shared objects 

Concurrency Model
n Control path: concurrently execut-

ed processes
n Data path: bounded instruction

blocks
Synchronization

n Interprocess-Communication à di-
rectly implementable in hardware:
Mutex, Semaphore, Event, Timer,
Queue, ...

n Shared objects guarded by mutex
scheduler (atomic guarded ac-
cess) 

Execution Model
n Process: strict sequential 
n HW: Finite-State-Machine & RTL
n SW: light weighted process/thread

Objects
n Data storage: registers (CREW),

variables (RAM,EREW), ...
n Object orientated programming:

abstract objects accessed with
methods (hardware blocks)

Programming Language
n Imperative with data and control

statements
n Explicitly modelled parallelism
n Parameterization on block level:

synthesis, scheduling, allocation,
object parameters, ...
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ConPro Synthesis
n One synthesis compiler is used for

hardware- and software targets. 

n Hardware Implementation: Mapping of
processes to concurrently executing
state machines and RTL

n Software Implementation: Mapping of
processes to threads with different ab-
straction levels (high,mid,low)

n Central part for HW/SW co-design: Ex-
ternal Module Interface 

n Operational blocks like Interprocess-
Communication are modelled with uni-
fied abstract objects

n Objects can be implemented directly in
hardware or software

 Figure 2. ConPro Synthesis with HW/SW targets

P

ConPro

P P P

O O

P P P

Multi-Process Model

P: Sequential Process

O: Shared Object

-: Atomic Guarded
    Action (Communication)

HW SW

Synthesis

HW: Hardware

SW: Software

EMI: External Module 
         Interface

RTL: Register-Transfer
         Logic 

FSM: Finit-State Machine
P O

O

P O

EMI

RTLRTL

RTLRTL

SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 5 of 14 



5
  Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems

ConPro Synthesis

n Multi-stage synthesis flow (HW/SW):

I. Parser, Lexer, Analysis 

II. First Intermediate Representation
(IR): Abstract Syntax Tree (pi →
ASTi ∀ p∈P)

III. Second IR: Compiling of AST to
linear list of μCode using parame-
terizable rule sets

IV. Third IR: Mapping of μCode to
state transition-graphs (STG) and
data path: Register-Transfer Level
Architecture

V. HW: Compiling of state transition-
graphs to hardware model VHDL

VI. SW: Compiling of AST or μCode  to
software model C (imperative) or
ML (functional)

 Figure 3. ConPro Design Flow
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ConPro: Abstract Objects and External Module Interface
Abstract Objects

n Abstraction & Interconnect of
hardware blocks to programming
level

n A set of methods is used to access
objects (read,write,control).

n Unified access interface (HW/SW)
n HW: method access is mapped to

handshaked hardware signals
n SW: method access is mapped to

function calls
External Module Interface EMI

n HW: Objects  are modelled on hard-
ware behaviour level (VHDL) and
meta language statements (inter-
preted during synthesis)

n SW: For each object there is a soft-
ware model, too.

 Figure 4. Abstract Objects modelled with the Ex-
ternal Module Interface
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Distributed Architecture and Communication
Distributed Architecture

n Processes and objects can be dis-
tributed in domains on algorithmic
programming level

Communication Architecture
n Object access is mapped to mes-

sage based communication and do-
main routing using serial links

 Figure 5. Left: local access, Right: global access of objects using message based communication 
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Communication
Network Topology

n Each node is connected in a two-di-
mensional mesh-grid with their direct
neighbours 

n Each node is a service end-point and
a message router, too.

Delay Insensitive Link
n Problem: local: synchronous sys-

tem, global: asynchronous system
n Solution: asynchronous serial links

between nodes (GALS wrapper)
n But asynchronous links requires

asynchronous logic or
n Asynchronous link is implemented

with synchronous finite state-ma-
chine and input signal oversampling

n Dual-rail encoding and four-phase
handshaked protocol is used

 Figure 6. Asynchronous Link Architecture 
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Synthesis of Distributed Systems
Programming Model

n Concurrently executing communi-
cating processes 

n Processes and objects are assigned
to domains on programming level

n Communication: always using ab-
stract object access (IPC...)

n Local object access: communication
still with handshaked hardware sig-
nals (HW) or function calls (SW)

n Remote object access: hidden mes-
sage based communication 

Partitioner
n A common programming source is

partitioned into independent domain
sources and compiled independently
by ConPro to HW/SW targets

n Add communication architecture 

 Figure 7. Extended Design flow using a partitioner
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Design Example: SLIP
n Smart and robust communication with

Simple Local Intranet Protocol SLIP
based on smart delta-routing

n Remote procedure call interface
(RPC, application layer)

 Figure 8. SLIP network topology (2-dim.) and massive parallel implementation of protocol stack
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Design Example: SLIP

ä Mapping of algorithms and  massive
parallel data processing to SoC  node
with high-level synthesis  using Con-
Pro: à ¶ low power        · minaturiza-
tion ¸ low latency3

ä Mapping of same sources to software
(C) using ConPro, too:  à ¶ interfacing
computers · test/simulation3

 Table 1. Characteristics of SLIP implementation (HW: Hardware, SW: Software)

*R1: Sequential part of message routing in SLIP

Parameter Value
HLS source code, ConPro ∼ 4000 lines, 34 processes

30 shared objects (16 queues, 2 timers)
HW: synthesized VHDL sources ∼ 32000 lines
SW: synthesized C sources ∼ 5500 lines
HW: FPGA, Xilinx Spartan III - 1000k 11261/15360 LUT (73 %), 2925 FF
HW: ASIC, standard cell library LSI_10K ∼ 244k gates, 15k FF ≅ 2.5mm2 | 0.18μm 
HW: power consumption (FPGA board) < 100mW (including analog electr.)
HW: performance benchmark R1* 82 clock cycles
SW: performance benchmark R1* 2305 unit machine instructions
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Summary and Conclusions
Desgin of parallel hardware systems

n Complex SoC hardware devices with concurrency on control- and data path level can
be efficiently designed from programming level

n The concurrent multi-process model with interprocess-communication and guarded
atomic access of shared resources allows designing of complex parallel systems

n Hardware blocks are abstracted and accessed using a method based object-orien-
tated programming style

n Access of objects is fast and efficient (at least 2 clock cycles)
Design of parallel software systems

n Parallel software can be synthesized using the same synthesis frame work and pro-
gramming language 

n Access of objects is fast and efficient (< 100 machine operations)
Design of distributed systems

n Distributed systems can be synthesized using the same synthesis frame work and
programming language with an additional partitioner and message based communi-
cation 

n Prelimenary results: automated synthesis of distributed systems using a partitioner
results in significant increase of complexity, resources, and latency of  remote object
access ( > 100 clock cycles).  
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