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Overview

Goals and Requirements in Embedded System Design
Design of parallel and distributed embedded systems from algorithmic level

Behaviourial modelling on programming level using a multi-process model with in-
terprocess-communication and atomic guarded actions

ConPro: Concurrent programming and design of parallel hardware and software
systems

Abstraction of operational hardware blocks and access from programming level

Transition from parallel to distributed systems: Required communication architec-
ture for distributed systems

Design example: SLIP - a robust and efficient communication protocol stack for
multidimensional network topologies (HW/SW implementation)

X array link_tx_proc: process[NUM_LINKS ] of
Copver.smn_’_ Datq begin
Filtering Processing reg d: logic[8];
try begin
always do begin
. ind <- pkt_send_queue. [#];
Comersion| | ~Data d[0 to 1] <- pkt_pool_hdt.[ind].hdt_adc;
Filtering Processing d[2 to 3] <- pkt_pool hdt.[ind].hdt_dsc
d[4 to 5] <- pkt_pool_hdt.[ind].hdt_asc
d[6 to 7] <- pkt_pool_hdt.[ind].hdt_typ!
off <- ind*PACKET SIZE;
for i = 0 to to_int(len)-1 do
begin
d <- pkt_pool_data.[off];
err <- link write(#,d);
if err = true then raise Tx_error;
off <- off + 1;
end;
pkt_discard(ind); end;
) ) with begin
Concurrent Tasks & Algorithmic Level when Tx_¢  Programming Level nd: Hardware SoC Level BT
end;
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Concurrent Programming with a Multi-Process Model

Execution Environment. processes
executing instructions in sequential
(imperative) order ™ Finijte State Ma-
chine

Interaction between processes: al-
ways using global shared objects
Interprocess-Communication (IPC)
Interprocess-Communication = Syn-
chronization: Mutex, Semaphore, ...
Access of shared resources is serial-
ized: guarded atomic actions

Access of shared resources is man-
aged by a scheduler. processes
blocked untill resource is available.
Hardware Implementation: Mapping of
processes to concurrently executing
state machines and RTL

Software Implementation: Mapping of
processes to threads (simulated multi-
processing)

Figure 1. Multi-Process Model [mod. CSP/Hoare]
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ConPro: Language & Highlevel-Synthesis

Programming Model

Communicating Sequential Proc-
esses
Guarded shared objects

Concurrency Model

Control path: concurrently execut-
ed processes

Data path: bounded
blocks

instruction

Synchronization

Interprocess-Communication = di-
rectly implementable in hardware:
Mutex, Semaphore, Event, Timer,
Queue, ...

Shared objects guarded by mutex
scheduler (atomic guarded ac-
cess)

Synthesis of massive parallel application specific SoC designs AND parallel soft-
ware from algorithmic & behavioural programming level

Execution Model

Process: strict sequential
HW: Finite-State-Machine & RTL
SW: light weighted process/thread

Objects

Data storage: registers (CREW),
variables (RAM,EREW), ...
Object orientated programming:
abstract objects accessed with
methods (hardware blocks)

Programming Language

Imperative with data and control
statements

Explicitly modelled parallelism
Parameterization on block level:
synthesis, scheduling, allocation,
object parameters, ...
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ConPro Synthesis

M One synthesis compiler is used for

Figure 2. ConPro Synthesis with HW/SW targets
hardware- and software targets.

W Hardware Implementation: Mapping of P\ ',«P\ IP ::H:m
processes to concurrently executing o 0 O: Shared Object
state machines and RTL NS N " action (Communication)

P P P

W Software Implementation: Mapping of 1L
processes to threads with different ab-
straction levels (high,mid,low) ConPro

W Central part for HW/SW co-design: Ex-
ternal Module Interface

4 1 B

Synthesis

HW: Hardware
SW: Software

EMI: External Module
Interface

M Operational blocks like Interprocess-
Communication are modelled with uni-
fied abstract objects P

RTL: Register-Transfer
Logic

FSM: Finit-State Machine

M Objects can be implemented directly in o
hardware or software
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ConPro Synthesis
B Multi-stage synthesis flow (HW/SW):

Figure 3. ConPro Design Flow
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ConPro: Abstract Objects and External Module Interface

Abstract ObjeCts Figure 4. Abstract Objects modelled with the Ex-
M Abstraction & Interconnect of ternal Module Interface
hardware blocks to programming N
level 01010
W A set of methods is used to access "™ "

ooo
ooo

[m]
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Level

SW Level
m HW: Objects are modelled on hard- ey (T
ware behaviour level (VHDL) and B
meta language statements (inter- =
preted during synthesis) élj élj élj

W SW: For each object there is a soft-
ware model, too.
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tributed in domains on algorithmic

programming level

OBJECT O
0

HARDWARE ACCESS : SIGNALS

GUARD ___t__ ‘;O.METH(args)
-40.METH() 3—O.METH()

O SCHEDULER

Distributed Architecture and Communication
Distributed Architecture

M Processes and objects can be dis-

Communication Architecture

M Object access is mapped to mes-

sage based communication and do-
main routing using serial links

Figure 5. Left: local access, Right: global access of objects using message based communication

OBJECT O
4 WRAPPER

0.METH()

O

OBJECT O

SOFTWARE ACCESS : FUNCTION CALL

METH(O)

-

METH(O,args)
METH(O,args) —

O SCHEDULER

Domain 1

0.MSG_WRITE(MSG')

L.WRITE(MSG)

| ——LREAD(MSG) —
OBJECT OBJECT
LINK NORTH LINK SOUTH
A

PROC P %ROUTER_OUT ROUTER_IN

kskskok

OBJECT O

MSG

| |P_SHADOW_REQ| |

Domain 2

O.METH()

P_SHADOW

*

[ MSGIREQ

ROUTE_OUT | |

MSG'/REP -

ROUTER_OUT

ROUTER_IN

LWRITEMSG) | ReaD(MSG)

OBJECT
LINK NORTH

OBJECT

LINK SOUTH SRS

Stefan Bosse - Hardware-Software-Co-Design of Parallel and Distributed Embedded Systems
SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague, Session EMT 102 VLSI Circuits and Systems, Proc. SPIE 8067, 80670G (2011); doi:10.1117/12.888122,Page 8 of 14




Communication
Network Topology

Each node is connected in a two-di-
mensional mesh-grid with their direct
neighbours

Each node is a service end-point and
a message router, too.

Delay Insensitive Link

Problem: local: synchronous sys-
tem, global: asynchronous system

Solution: asynchronous serial links
between nodes (GALS wrapper)

But asynchronous links requires
asynchronous logic or

Asynchronous link is implemented
with synchronous finite state-ma-
chine and input signal oversampling

Dual-rail encoding and four-phase
handshaked protocol is used

Figure 6. Asynchronous Link Architecture
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Synthesis of Distributed Systems

Programming Model

Figure 7. Extended Design flow using a partitioner

M Concurrently executing communi-

cating processes Concurrency  <=>  Complexity
M Processes and objects are assigned object o: 0 in domain A; ,
: . for i =1 to 2 do Programming Model
to domains on programming level !

. . . Domain A :
B Communication: always using ab- Domain B
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still with handshaked hardware sig- N —
nals (HW) or function calls (SW) lule l ll
M Remote object access: hidden mes- CONPRO Synthesis
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Partitioner gg‘ 4 HW/SW System
B A common programming source is
partitioned into independent domain Domains

sources and compiled independently
by ConPro to HW/SW targets

B Add communication architecture
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Design Example: SLIP

B Smart and robust communication with
Simple Local Intranet Protocol SLIP

based on smart delta-routing

B Remote procedure call interface

(RPC, application layer)

Figure 8. SLIP network topology (2-dim.) and massive parallel implementation of protocol stack
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Design Example: SLIP

» Mapping of algorithms and massive » Mapping of same sources to software
parallel data processing to SoC node (C) using ConPro, too: ™ @ interfacing
with high-level synthesis using Con- computers @ test/simulations/

Pro: = @ low power ® minaturiza-
tion ® low latencyv

Table 1. Characteristics of SLIP implementation (HW: Hardware, SW: Software)

Parameter Value

HLS source code, ConPro ~ 4000 lines, 34 processes

30 shared objects (16 queues, 2 timers)
HW: synthesized VHDL sources ~ 32000 lines
SW: synthesized C sources ~ 5500 lines
HW: FPGA, Xilinx Spartan Il - 1000k 11261/15360 LUT (73 %), 2925 FF
HW: ASIC, standard cell library LSI_10K ~ 244k gates, 15k FF = 2.5mm? | 0.18um
HW: power consumption (FPGA board) < 100mW (including analog electr.)
HW: performance benchmark R1 82 clock cycles

SW: performance benchmark R1 2305 unit machine instructions

"R1: Sequential part of message routing in SLIP
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Summary and Conclusions

Desgin of parallel hardware systems

B Complex SoC hardware devices with concurrency on control- and data path level can
be efficiently designed from programming level

W The concurrent multi-process model with interprocess-communication and guarded
atomic access of shared resources allows designing of complex parallel systems

W Hardware blocks are abstracted and accessed using a method based object-orien-
tated programming style

B Access of objects is fast and efficient (at least 2 clock cycles)

Design of parallel software systems

M Parallel software can be synthesized using the same synthesis frame work and pro-
gramming language
M Access of objects is fast and efficient (< 100 machine operations)
Design of distributed systems

M Distributed systems can be synthesized using the same synthesis frame work and
programming language with an additional partitioner and message based communi-
cation

M Prelimenary results: automated synthesis of distributed systems using a partitioner
results in significant increase of complexity, resources, and latency of remote object
access (> 100 clock cycles).
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