
CONPRO PROGRAMMING LANGUAGE

CP
ConPro Programming Language

ConPro Programming Language for the Design of Concur-
rent Data Processing Systems

SYNOPSYS

Introduction to and overview of the Programming Language ConPro
implementing the Concurrent Communicating Sequential Processes
Model

SYNOPSYS___ 1
DESCRIPTION __ 1
DATA TYPES __ 2
VALUES __ 2
EXPRESSIONS AND ASSIGNMENTS _____________________________ 3
DATA OBJECTS___ 5
IPC DATA OBJECTS _______________________________________ 6
ABSTRACT OBJECTS _______________________________________ 7
ARRAYS __ 8
STRUCTURES __ 9
ENUMERATION__ 10
PROCESSES ___ 10
FUNCTIONS __ 11
BLOCKS ___ 12
BRANCHES ___ 13
LOOPS __ 14
EXCEPTIONS__ 15
IPC OBJECTS ___ 16
MODULES ___ 19
VERSION __ 20

DESCRIPTION

The ConPro programming language provides generic imperative
statements like branches and loops with additional true parallel pro-
gramming features. The main execution object is a process. Process-
es support data processing with strict sequential instruction
behaviour. Concurrency is provided by (creation of) multiple process-
es executing in parallel on control path level and by bounded instruc-
tion blocks inside a process on data path level. Access of global
shared resources is implemented with atomic guarded actions (mu-
tual exclusion).
The programming language maps the communicating sequential
processes model with atomic guarded actions to multiple finite-state
SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE CP-1

CP

DATA TYPESCONPRO PROGRAMMING LANGUAGE
machines with data and control path specifications on Register-
Transfer level, providing input for hardware synthesis.

DATA TYPES

Predefined ordinal data types DT are summarized in Table 2.

Tab. 1. Data types DT

VALUES

Values used in expressions with data content of registers, variables,
and signals are associated with different ordinal data types DT de-
pending on the value format, summarized in Table 2.

Tab. 2. Values and data types DT

Statement Type DT Description

int[N] INT Signed integer with data with

of N bits

logic
logic[N]

LOGIC Unsigned integer and logic

vector (value set {0, 1, Z,
H, L}) with data width of N

bits.

char CHAR Character

bool BOOL Boolean type (value set {true,

false}.

value VALUE Untyped value (integer, logic,

char, bool) with data type and

width assigned at compile time

(only used in constants)

Value Type Description

-2, -1, 0, 1 ,2
,3 ,4, ...

INT Signed integer (decimal for-

mat)
SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSECP-2

EXPRESSIONS AND ASSIGNMENTS

CP

CONPRO PROGRAMMING LANGUAGE
EXPRESSIONS AND ASSIGNMENTS

Expressions are used in assignments, branches, function applications,
and loops. There are arithmetic, relational, and boolean/logical oper-
ations.

Tab. 3. Arithmetic, relational, and boolean/logical (bitwise) operators
with applicable data types

0,1,2,3,4,... INT, LOGIC Unsigned integer (decimal for-

mat)

0x1,0x2,... INT, LOGIC Unsigned integer or logic

(hexadecimal format: 0-9,
A-F, a-f)

0b110,0b0101,..
.

INT, LOGIC Unsigned integer or unsigned

logic value (binary format:

0,1)

0l111,0lZZZ LOGIC Logic value (logic multi-value

format; 0,1,L,H,Z)

’a’,’A’,... CHAR Character

"abc" STRING String (character array)

true, false BOOL Boolean value

nanosec, mi-
crosec, mil-
lisec, sec

UNIT Time unit (used with integer

values)

hz, kilohz,
megahz, gigahz

UNIT Frequency unit (used with in-

teger values)

Operator Type Description

+,-,*,/ INT, LOGIC,
CHAR

Addition,Subtraction (Nega-

tion), Multiplication, Division.

(CHAR: ASCII code)

Value Type Description
CP-3SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

CP

EXPRESSIONS AND ASSIGNMENTSCONPRO PROGRAMMING LANGUAGE
All operands of an expression must be of the same type. Explicit type
conversion can be used only to convert the data type of native ob-
jects (register, variable, signal).
Assignments of expression values to data objects are shown in Def. 1.

Def. 1. Assignment of a value (calculated from an expression) to a data
object (register, variable, signal, queue, channel).

LHS <- RHS;
x <- expr;

Function application (only not recursive) is provided by the function
name and an argument list, which can be empty (Def. 2). Arguments
containing expressions are evaluated before function application.
Function applications can be embedded in expressions.

< <= > >= = <> INT, LOGIC,
CHAR

Lower than, lower equal

than, greater than, greate

equal than, equal, not equal.

and, or , xor,
not

BOOL Boolean operators

land, lor , lx-
or, lnot

INT, LOGIC,
CHAR

Bitwise logical operators

@
a @ b @ c ..

LOGIC Bitvector concatenation op-

erator

~
V~B

INT logB(V) (only in constant

definitions allowed)

lsl, lsr
obj lsx n

INT, LOGIC Static and dynamic (non-con-

stant shift parameter n) shift

operations. Left hand opera-

tor must be an object (regis-

ter, variable, signal).

to_logic
to_int
to_char
to_bool

INT, BOOL,
LOGIC, CHAR

Type conversion (only appli-

cable to single objects)

Operator Type Description
SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSECP-4

DATA OBJECTS

CP

CONPRO PROGRAMMING LANGUAGE
Def. 2. Function application (f) and procedure execution (p) with argu-
ments, w/o arguments

dst <- f(arg1,arg2,...);
dst <- f();
expr(f(...))
p(arg1,arg2,...);
p();

DATA OBJECTS

Sequential data processing requires storage objects (memory). There
are registers and variables for data storage. A register is a single mem-
ory object mappable to CREW access behaviour, whereas a variable is
bounded to a memory block (RAM) with EREW access behaviour. Ad-
ditional there is a signal object without any storage required for inter-
connect of hardware components. Data objects are assigned to a spe-
cific data type.
There are data objects with local and global visibility (scope). Local
objects can only be accessed by one process, whereas global objects
can be accessed by multiple processes concurrently. Concurrent ac-
cess of those global objects are resolved and serialized with a atomic
guarded actions and a scheduler for each object.
Storage objects of structure type (concerning only registers and sig-
nals) are splitted in an independent set of storage objects with each
object associated with a structure element.

Tab. 4. Data object definitions (TYPE: structure type)

Statement Data Type DT Description

reg R: DT;
reg R: DT[N];
reg R,S,...:DT;

INT, LOGIC,
CHAR, BOOL,
TYPE

Creates a register storage

object R of data type DT and

optional data width N (bits).
CP-5SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

CP

IPC DATA OBJECTSCONPRO PROGRAMMING LANGUAGE
IPC DATA OBJECTS

There are predefined data objects implementing synchronized inter-
process communication: queue and channels. Though queues and
channels are abstract objects they can be used directly in expressions
(RHS) and assignment statements (LHS). Queues have a buffer stor-
age depth (size) which can be specified with the parameter depth.
Channels have always a depth of one and can be buffered or unbuf-
fered only implementing a handshake.
Queues or channels of structure type are splitted in a set of coupled
queues or channels with each object associated with one structure el-
ement.

block B;
var V: DT in B;
var V: DT[N] ...

INT, LOGIC,
CHAR, BOOL,
TYPE

Creates a variable storage

object V of data type DT and

optional data width N (bits).

Variables are bound in a

RAM block, which must be

specified explicitly. RAM

data cell width and number

of cells are determined at

compile time.

sig S: DT;
sig S: DT[N];
sig S,T,...:DT;

INT, LOGIC,
CHAR, BOOL,
TYPE

Creates a inter-connect sig-

nal object S of data type DT

and optional data width N

(bits).

const C:
 DT := V;
const C:
 DT[N] := V;
const NC:
 value := V;

INT, LOGIC,
CHAR, BOOL,
VALUE

Creates a constant object C

with value V of data type DT

(or generic VALUE) and op-

tional data width N (bits).

Statement Data Type DT Description
SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSECP-6

ABSTRACT OBJECTS

CP

CONPRO PROGRAMMING LANGUAGE
Tab. 5. IPC data object definitions (TYPE: structure type)

Tab. 6. IPC data object parameters

ABSTRACT OBJECTS

Abstract objects are modified only by a set of defined methods. There
are builtin objects (queue, channel) and user abstract objects, with
behavioural implementation and method interfaces defined by the
EMI ADTO programming language.

Tab. 7. Abstract object definitions

Statement Data Type DT Description

queue Q: DT;
queue Q: DT[N];
queue Q,R,..: DT
 with P=V
 and ..;

int, logic,
char, bool,
TYPE

Creates a queue object Q of

data type DT with optional

parameter settings.

channel Q: DT;
channel Q: DT[N];
channel Q,R,..:
 DT with P=V
 and ..;

int, logic,
char, bool,
TYPE

Creates a channel object Q

of data type DT with option-

al parameter settings.

Parameter Value Description

depth 1..256 (∞) Size of queue buffer. Chan-

nel depth is always 1.

Statement Type Description

object O: AT;
object O: AT
 with P=V
 and P=V ...;

AT: mutex,
semaphore,
event, timer,
...

Creates an abstract object O

of type AO with optional pa-

rameter list (parameter P

and value V).
CP-7SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

CP

ARRAYSCONPRO PROGRAMMING LANGUAGE
ARRAYS

Arrays can be created with registers, variables, and signals with a spe-
cific array element data type. A register array has still CREW access be-
haviour for each cell, though dynamic element selectors require
adressable array selectors (one for each accessing process).
Additionally arrays can be created with structure and abstract object
types.

Tab. 8. Array definitions (TYPE: structure type)

Statement Data Type DT Description

array A: reg[I]
 of DT;
array A:
 reg[I,J,K]
 of DT;

int, logic,
char, bool,
TYPE

Creates a register storage ar-

ray A with I elements of data

type DT and optional data

width N (bits). Multi-dimen-

sional arrays can be created

by extending the size param-

eter list I,J,K.

array A: var[I]
 of DT;
block B;
array A: var[I]
 of DT in B;

int, logic,
char, bool,
TYPE

Creates a variable storage ar-

ray A with I elements of data

type DT and optional data

width N (bits) bounded to a

RAM block. The assignment

of a specific block is optional.

array A: sig[I]
 of DT;

int, logic,
char, bool,
TYPE

Creates a signal array A with I

elements of data type DT

and optional data width N

(bits).

array A: object
 AT[I];

array A: object
 AT[I] with P=V
 and P=V ...;

AT: queue,
channel, ...

Creates an abstract object ar-

ray A with I elements of ob-

ject type AT and optional

parameter list (parameter P

with value V).
SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSECP-8

STRUCTURES

CP

CONPRO PROGRAMMING LANGUAGE
STRUCTURES

There are data and component structure types (records). Data struc-
tures are used to bind single data elements semantically coupled to a
named type. Component structures define a hardware component
interface (port signals). Data structure types can be applied to all data
object definitions including queues and channels.

Tab. 9. Stucture type definitions and definition of objects of structure
type.

A.[i] <- A.[j];
A.[i,j,k] <-
 A.[x,y,z];

AT Access of array elements on

left-hand (write) and right-

hand (read) side of an assign-

ment and in expressions by

using the dot bracket selec-

tor.

Statement Data Type DT Description

type T: {
 e1 : DT;
 e2 : DT;
 .. };

int, logic,
char, bool

Defines a data structure type

T with elements e1, e2, .. of

specified data types. Regis-

ters, variables, and signal ob-

jects of this type can be

instantiated.

type T: {
 e1 : N1;
 e2 : N2;
 e3 : N3 to N4;
 e4 : N5 downto
 N6;
 .. };

logic Defines a bit-field data struc-

ture type T with elements

e1, e2, .. of specified data

width (data type logic) N1,

N2 ,.... Registers, variables,

and signal objects of this

type can be instantiated.

type Tc: {
 e1 : DIR DT;
 e2 : DIR DT;
 .. };
DIR = {input,
output, inout}

int, logic,
char, bool

Defines a component struc-

ture interface type Tc with

elements e1, e2, .. of speci-

fied data types and data/sig-

nal flow directions.

Statement Data Type DT Description
CP-9SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

CP

ENUMERATIONCONPRO PROGRAMMING LANGUAGE
ENUMERATION

Tab. 10. Enumeration type definitions

PROCESSES

A process is the main execution unit. Entire processes are operating
independently and concurrently, but process statements are execut-
ed sequentially. A process has a local process space consisting of data
and some abstract objects. Inter-process communication and syn-
chronization is performed by using global objects with guarded
atomic access. Concurrent access is serialized by a scheduler.

reg R: T;
var V: T;
...

TYPE Defines a data object (regis-

ter R, variable V, signal S) of

the user defined structure

type T.

component C: Tc; TYPEc Instantiates a component

object with an interface

structure type Tc.

reg R: T;
R.e1 <- ..
X <- R.e2 ..

TYPE Access of structure elements

and bit fields by using the

dot selector.

Statement Object Type Description

type e : {
 S1;
 S2;
 ..
};

type e : {..
} with code=C;

C={one,bin,gray
,NAME}

REGISTER, SIG-
NAL, VARIABLE

Definition of symbolic enu-

meration list defining

named constants.

The value of an enumeration

element is calculated at

compile time. The first enu-

meration element has index

1, the seconde 2, and so

forth. The final coding style

can be set with parameter

code.

Statement Data Type DT Description
SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSECP-10

FUNCTIONS

CP

CONPRO PROGRAMMING LANGUAGE
Tab. 11. Process definition and process control.

FUNCTIONS

Functions are implemented by using processes with additional pa-
rameters (global registers) intialized with a value at function applica-
tion time. The application of a function within an expression or the
procedure execution passes (optional) arguments to the parameters
and starts the process associated with the function. The calling pro-
cess is blocked untill the function process finishes (by reaching the
end state). A return value is passed back to the calling process (in case
of a function).

Statement Description

process P:
begin
 definitions
 statements
end;
process P: ...
end with P=V and ..;

Definition of a process with object

definitions (optional) and a sequence

of statements. Processes can be pa-

rameterized by appling a parameter

list (paramter P and value V).

Except the main process each pro-

cess must be started explicitly.

array P: process[N] of
begin
 definitions
 statements
end;
≡ process number

Definition of a process array with ob-

ject definitions (optional) and a se-

quence of statements. Processes can

be parameterized by appling a pa-

rameter list (paramter P and value V).

N is the size of array (number of pro-

cesses to be created).

P.call();
P.start();
P.stop();

Process control statements (process

methods).

Process calling is a synchronous op-

eration. If a process P1 calls a process

P2, the process P1 is blocked untill

process P2 has finished his work (by

reaching the end state).

Process starting and stopping does

not block the executing process. It is

an asynchronous operation.
CP-11SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

CP

BLOCKSCONPRO PROGRAMMING LANGUAGE
Tab. 12. Function definition and function application

BLOCKS

Process or function statements can be grouped with a block state-
ment. A block can be parameterized, for example with different
scheduling, allocation, or optimization behaviour.

Statement Description

function f(p1:DT,..)
 return (pn:DT):
begin
 definitions
 statements
end;
..
end with P=V and .. ;
..
end with inline;

Definition of a function with (option-

al) formal parameters p1, p2,.. and a

return parameter pn. There is no re-

turn statement. The value of teh re-

turn parameter must be modfied

within the function body.

Function and procedures can be pa-

rameterized. The inline parameter re-

places each function application or

procedure execution with the re-

spective statement sequence. Local

data objects are shared.

function p(p1:DT,..):
begin
 definitions
 statements
end;

Definition of a procedure with (op-

tional) formal parameters p1, p2,..

but without a return parameter.

There is no return statement.

P(v1,v2,...);
P();
X <- f(v1,v2,..);
X <- f();

Function and procedure application

with and w/o arguments.
SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSECP-12

BRANCHES

CP

CONPRO PROGRAMMING LANGUAGE
Tab. 13. Statement blocks

BRANCHES

There are different branch statements available. They pass the pro-
gram flow to an alternative statement or a block of statements de-
pending on values. Branches can appear on module top-level and
within block statements (processes, functions...).

Statement Description

begin
 stmt1;
 stmt2;
 ..
end;

Sequetntial statement composition.

begin
 stmt1;
 stmt2;
 ..
end with P=V and ..;

Sequetntial statement composition

with additional behaviour or synthe-

sis parameterization (paremeter P

with value V).

begin
 stmt1;
 stmt2;
 ..
end with bind[=true];
⇔
 stmt1,
 stmt2,...;

Parallel data statement composition.

Equal to comma separated list of (da-

ta assignment only) statements. Only

one data statement may perform a

guarded access of a global object

(read of global registers is not guard-

ed).
CP-13SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

CP

LOOPSCONPRO PROGRAMMING LANGUAGE
Tab. 14. Branch statements

LOOPS

There are different loop statements available. Each loop repeats the
execution of the loop body as long as a boolean condition is satified.
A counting loop iterates a list of values, specified by a range.

Statement Kind Description

if expr then
statement1;

if expr then
statement1
else statement0;

Boolean Branch Depending on the result of

the boolean expression expr
a branch occurs either to

statment1 (expr=true) or op-

tional to the statement0 (ex-

pr=false). If there is more

then one statement, a block

is required.

match expr with
begin
 when v1: stmt1;
 when v1,v2,..:
 stmt123;
 when v1 to v2:
 stmtv1tov2;
 when v1 downto
 v2:
 stmtv2tov1;
 others: stmte;
end;

Multi-value Match-

ing Branch

Different constant values are

matched with the result of

the expression expr and the

respective statements are

selected on successfull

matching. The default oth-
ers case (matching all other

values) is optional.

A list of values v1,v2,..
specifies different alterna-

tives matching the same

case.

exception e1,..;
try
 statement;
with
begin
 when e1: stmt1;
 when e1,e2,..:
 stmt123;
 others: stmte;
end;

Exception Handler

Branch

Execptions raised in state-
ments are matched and the

respective statements are

selected on successfull

matching. The default han-

dler else (matching all oth-

er exceptions) is optional.
SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSECP-14

EXCEPTIONS

CP

CONPRO PROGRAMMING LANGUAGE
Tab. 15. Loop statements

EXCEPTIONS

Statement Kind Description

for i =
 a to|downto b
do begin
 statements
end;

end with unroll;

end with P=V ..;

Counting Loop The for-loop executes the

loop body statements for

each element in the iterator

list, a range of values includ-

ing boundaries. The loop it-

erator variable i holds the

current ieration value.

Loops can be parameterized.

The unroll parameters repli-

cates the loop body (b-a)+1

times and replaces the loop

iterator with the current iter-

ation value.

while expr do
begin
 statements
end;

Conditional Loop The while-loop executes the

loop body as long as the

boolean expression expr is

true. The test of the boolean

expression is performed be-

fore each loop iteration.

always do
begin
 statements
end;

Unconditional

Loop

This loop never terminates

(except by raising an excep-

tion).

wait for cycles;
wait for time;
wait for cond;
wait for cond
 with statement;
wait for cond
 with stmt1;
 else stmt0;

Delay/Blocking

Loop

The wait for statement

blocks the execution until a

time interval is passed or a

condition is true. Optionally

a signal assignement can be

applied (stmt1) as long as

the condition is false. An op-

tional default statement

(stmt0) is applied at the re-

maining time.
CP-15SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

CP

IPC OBJECTSCONPRO PROGRAMMING LANGUAGE
Exceptions are used to leave a control environment, for example a
function, loop, or branch. Exceptions are propagated beyond control
environments untill an exception handler catches the exception. Oth-
erwise an uncaught exception fault appears.
An exception raised within a nested control environment (nested
branches/loops or function calls) is passed to the next higher environ-
ment level untill a handler environment is reached. Excption handler
envionments can be nested, too. Exception not caught by a particular
handler (without default-branch) are re-raised.

Tab. 16. Exception handler statements

IPC OBJECTS

Inter-process communication takes place by using global objects.
Though global data storage objects are guarded by a mutex schedul-
er, they are nou suitbale for process synchronization. There abstract
IPC objects available providing synchronization of different kind,
summarized in Table 17.

Statement Kind Description

exception ex1,..; Type Defintion of a named excep-

tion signal.

try
 statement;
with
begin
 when e1: stmt1;
 when e1,e2,..:
 stmt123;
 others: stmte;
end;

Exception Handler

Branch

Execptions raised in state-
ments are matched and the

respective statements are

selected on successfull

matching. The default han-

dler else (matching all oth-

er exceptions) is optional.

raise ex; Raising Raises an exception signal.
SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSECP-16

IPC OBJECTS

CP

CONPRO PROGRAMMING LANGUAGE
Tab. 17. Synchronization objects and their methods

Object Methods Description

queue

open Core;
queue q: DT
 ?with depth=N
 and scheduler
 ="fifo";

q.write:
 q <- expr;
q.read:
 x <- q;
q.unlock()

A queue is a buffer holding

up to N elements with syn-

chronized access in FIFO or-

der. The read operation

blocks until at least one data

element is available. The

write operation blocks if

the queue is full. The un-
lock operation unblocks all

blocked processes. The data

type can either be a core

type or record structure

type.

channel

open Core;
channel c: DT
 ?with
 model=M;
M={buffered,
 unbuffered}

c.write:
 c <- expr;
c.read:
 x <- c;
c.unlock()

A channel is a buffer holding

one (buffered) or no element

with synchronized access.

The read operation blocks

until at least one data ele-

ment is available or one

write operation is pending.

The write operation is

blocked until the buffer is

empty or a read operation

occurs. The unlock opera-

tion unblocks all blocked

processes.
CP-17SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

CP

IPC OBJECTSCONPRO PROGRAMMING LANGUAGE
mutex

open Mutex;
object o: mutex
 ?with
 schedule=S;
S={fifo}

o.lock()
o.unlock()
o.init()

A mutex implementes mutu-

al exclusion access to shared

resources. A mutex is eithe

rlcoked or unlocked. Only

one process can own the

lock by using the lock oper-

ation. The unlock opera-

tion releases the lock.

Locking an already locked

mutex blocks the proecss.

Initialization is required by

using the init operation.

semaphore

open Semaphore;
object o:
 semaphore
 ?with
 scheduler=S and
 depth=N and
 init=V;
S={"fifo"}

o.down()
o.up()
o.unlock()
o.init(V)

A semaphpore implements

asynchronized counter with

a value range [0..depth-1]

used in producer-consumer

applications. The counter

value never becoms nega-

tive. The down opration dec-

rements the counter. If the

counter is already zero, the

process is blocked. The up
operation increments the

counter. Initialization is re-

quired by using the init
operation.

Object Methods Description
SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSECP-18

IPC OBJECTS

CP

CONPRO PROGRAMMING LANGUAGE
event

open Event;
object o: event
 ?with
 latch=B;

o.await()
o.wakeup()
o.init()

An event implements simple

signal-based process syn-

chronization. Multiple pro-

cesses can wait for an event

by using the await opera-

tion. Another process can

wakeup those blocked pro-

cesses at the same time by

using the wakeup opera-

tion. A latched event prevent

race conditions if the waiting

request arrives after the

wakeup operation. Initializa-

tion is required by using the

init operation.

barrier

open barrier;
object o:
 barrier;

o.await()
o.init()

A barrier implements simple

signal-based process syn-

chronization of group of N

processes. A group of pro-

cesses can wait for a barrier

event (enter the barrier) by

using the await operation.

If the N-th process enters the

barrier all processes are un-

blocked immediately at the

same time. The group size N

is determined at compile

time. Initialization is re-

quired by using the init
operation.

Object Methods Description
CP-19SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

CP

MODULESCONPRO PROGRAMMING LANGUAGE
MODULES

Commonly there is one main module defined by the main entry
source file. A module consists explicitly of a module behavioural de-
scription including processes, object definitions, and top-level state-
ments and implicitly of a module interface defining the component
port interface, at least the clock and reset port signals. Additional port
components can be added by exporting objects (register, signals)
and hardware component interfaces.
Additional compound modules can be defined on structural compo-
nent level. Each compound module conists of an implementation
definition (a main module which must be imported), behavioural
components instantiated from this main module, and an inter-con-
nect component connecting all instantiated module components.

timer

open Timer;
object o: timer
 ?with
 mode=M;
M={0,1}

o.await()
o.time(T)
o.start()
o.stop()
o.init()
o.sig_action(
 S,L1,L0)

A timer is a self synchroniz-

ing event object. Processes

can wait for the timer event

by using the await opera-

tion. After the time interval

has elapsed, which must be

set by the time operation,

the waiting processes are

woken up. The timer must

be started and can be

stopped by the start and

stop operations. In

mode=0 the timer operates

continously, in mode=1 only

one time. The sig_action
operation attaches a signal S

to the timer returning the ac-

tual state (L0: inactive, L1: ac-

tive).

Object Methods Description
SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSECP-20

VERSION

CP

CONPRO PROGRAMMING LANGUAGE
Tab. 18. User defined modules

VERSION

Last modified: October 29, 2013

Statement Description

definitions
declarations
processes
top-level stmts

Declares and creates a top-level behavioural

module M (from source file m.cp).

module MC
begin
 import
 component
 connect
 mapping
end;

Declares and creates a new compound mod-

ule MC from a behavioural module with im-

port, component instantiaition, inter-connect

and mapping parts.

import M;
component C1, C2,..:
M;

Import of a behavioural module M (top-level

main module) and module component in-

stantiations (replicated module compo-

nents).

type ic: {
 port S: dir typ;
 ...
};
component IC : ic :=
{
 C1.S1, ...
};
IC.S1 << IC.S2;

Definition of an inter-connect component

type and instantiation of an inter-connect

component with default signal mapping of

module component port signals.

Finally inter-connect component signals can

be connected with additional mapping state-

ments.
CP-21SYNDK SYNTHESIS DEVELOPMENT KIT - DR. STEFAN BOSSE

	Synopsys
	Description
	Data Types
	Values
	Expressions and Assignments
	Data Objects
	IPC Data Objects
	Abstract Objects
	Arrays
	Structures
	Enumeration
	Processes
	Functions
	Blocks
	Branches
	Loops
	Exceptions
	IPC Objects
	Modules

